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Non-reflecting boundary conditions (NRBCs) play an important role in computational
fluid dynamics (CFD). A novel NRBC based on the method of characteristics using
timeline interpolations is proposed for fluid dynamics solved by smoothed particle
hydrodynamics (SPH). It is performed by four layers of particles whose pressures
and velocities are obtained through the Lagrange interpolation in the time domain
which is derived from the propagation of characteristic waves between particles. The
proposed NRBC can allow outward travelling pressure and velocity messages to pass
through the boundary without obvious reflection. That is, with the implementation of
the NRBC, the solution in a finite computational domain of interest is close to that
in an infinite domain. Several numerical tests show that this NRBC is robust and
applicable for a broad variety of hydrodynamics ranging from low to high speed.

Key words: computational methods, mathematical foundations

1. Introduction
Computational fluid dynamics (CFD) has been widely used to solve and analyse

various hydrodynamic problems. Boundary conditions are one of the key aspects for
CFD and special attention should be paid to them. Sometimes, a specific boundary
condition should be established to avoid undesirable boundary effects and therefore
to model infinite or very large computational domains. That is, a non-reflecting
boundary condition (NRBC) is needed. The NRBC is usually divided into two
groups, namely the non-local NRBC and the local one. The former is solved based
on the information of the whole flow field and can guarantee the solution of a finite
domain coincides with that of an infinite domain. However, it is usually limited
to linear wave problems with the boundary of specific geometries (see e.g. Givoli
1992, 1999; Alpert, Greengard & Hagstrom 2000; Lubich 2002). For the latter, it
is solved only from the information of the neighbouring flow field, which may
lead to inaccurate solutions. But it is efficient and easy to implement, and many
papers have been published on this topic. Kreiss (1970), Engquist & Majda (1977)
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and Thompson (1990) adopted the characteristic waves method to construct NRBCs
for hyperbolic systems, where different waves propagating through boundaries are
analysed. This approach is commonly used for Euler equations (see e.g. Poinsot &
Lelef 1992; Grinstein 1994; Baum, Poinsot & Venin 1995; Okong’O & Bellan 2002).
Another widely used local NRBC was proposed by Bayliss & Turkel (1980). The
boundary can be placed extremely close to the domain of interest even with strong
inhomogeneity, and arbitrary-order accuracy can be obtained by increasing the order
of the introduced boundary operator. Besides, the perfect match layer (PML) is also
a powerful technique to accomplish NRBCs. It was proposed by Berenger (1994)
and further improvements have been made in the literature (see e.g. Hagstrom 1999;
Bermúdez et al. 2010). The PML is arranged around the computing domain, and the
governing equations in the layer are modified to achieve a perfect match between the
PML and the interior domain, so that the outgoing waves inside the layer decay.

As an important branch of CFD, meshless methods are playing an increasingly
critical role in simulating fluid dynamics today, among which the smoothed particle
hydrodynamics (SPH) method is one of the earliest particle methods. It was first
proposed by Gingold & Monaghan (1977) and Lucy (1977) in the simulation of
astrophysical problems, and Monaghan (1994) was the pioneer in applying this
method to fluid dynamics. Unlike the traditional grid-based numerical methods, the
system in the SPH method is discretized into a set of particles possessing material
properties, and the conservative variables of these particles are calculated by using
a kernel interpolation. Compared with traditional mesh-based methods, the SPH
method presents some remarkable advantages in dealing with problems with free
surfaces, large deformations, moving interfaces, etc. Nowadays, the SPH method has
been widely used in simulating complex fluid dynamics including free surface flows
(Landrini et al. 2007; Ferrari et al. 2010), surface tension problems (Morris 2000)
and transport phenomena (Tartakovsky et al. 2007; Adami, Hu & Adams 2010).

As an important application in fluid dynamics, the SPH method also plays a critical
role in the simulation of problems involving an impact, such as underwater explosions
and water entries. In these problems, if the computing domain is limited to a small
region of interest with inappropriate boundary conditions imposed, the pressure waves
reflected from the boundary often have significant effects on the predictions of the
pressure and velocity fields. To avoid this problem, an accurate enforcement of the
NRBC is particularly important. However, there is still a lack of an accurate and
universal NRBC in the SPH method at present because the SPH method presents
inherent shortcomings in dealing with boundary conditions. One of the NRBCs in
the SPH method is the open boundary condition (see e.g. Morris, Fox & Zhu 1997;
Lastiwka, Basa & Quinlan 2010; Alvarado-Rodríguez et al. 2017; Tafuni et al. 2018),
where the spatially fixed inflow and outflow zones are respectively attached to the
upstream and downstream of the computational domain. When a particle inside the
inflow region enters the fluid domain, a new particle will be created in the inflow
region accordingly, while once a particle flows out the outflow region, it will be
deleted from the simulation. These boundaries have been used in a wide range of
flows (see e.g. Marrone et al. 2013; Hou et al. 2014; Hirschler et al. 2016; Tafuni
et al. 2016, 2017). Apart from the open boundary condition, another NRBC that
should be mentioned in the SPH method is the sponge layer boundary condition.
Indeed, there are two types of sponge layer. One is the damping zone introduced by
Lind et al. (2012) and Altomare et al. (2017) which works by gradually reducing the
velocity of the particles in it. The damping zone has been widely used to avoid the
reflection of the water waves occurring on the free surface of water. Another type of
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sponge layer is proposed by Gong, Liu & Wang (2009), in which the density variation
of the particle belonging to the layer is damped with a factor related to its distance
from the boundary. This treatment is convenient for numerical implementation, and
has been applied to reduce the reflections of pressure waves (see e.g. Sun, Ming &
Zhang 2015). However, its shortcomings are also apparent. For instance, the reflected
pressure is not reduced efficiently, and the movement of the fluid particles near the
sponge layer is confined. Besides, this sponge layer may bring about considerable
computational cost, especially for three-dimensional problems.

In this paper, we develop an accurate and efficient NRBC to obtain the propagation
and evolution of both the pressure and velocity information at the fluid boundary. It
is performed by several layers of boundary particles whose pressures and velocities
are updated using the timeline interpolations based on the method of characteristics.
This interpolation scheme is derived from the propagation of characteristic waves
between particles. The present NRBC is different from some previous NRBCs in
SPH (e.g. the outflow boundary condition proposed by Tafuni et al. (2018) and the
sponge layer introduced by Gong et al. (2009)). In those boundary conditions, the
updating of the physical quantities of boundary particles is usually based on the
particle approximation, which is conducted by summing the contributions of all the
neighbouring particles within a given particle’s own support domain. Obviously, the
particle approximation is essentially a kind of spatial interpolation. In the proposed
NRBC, a timeline interpolation rather than a spatial interpolation is adopted to update
the physical quantities of the boundary particles. The timeline interpolation scheme is
capable of describing the evolution of the pressure and velocity information in fluids
more precisely, thus the NRBC can be enforced more accurately for both pressure and
velocity fields. This is the first novelty of the proposed NRBC. Another novelty lies
in its simplicity and efficiency. Because four layers of boundary particles need to be
arranged outside the fluid domain (the number of boundary particles is significantly
reduced with respect to the sponge layer proposed by Gong et al. (2009)) and the
interpolation algorithm adopted is very simple, this NRBC is efficient and easy to
implement. The third novelty of the proposed NRBC is its wide applicability. Since
the interpolation applied in this NRBC is independent of particle velocities and local
sound speed, the proposed NRBC is appropriate for hydrodynamics ranging from low
to high speed, viscous or non-viscous flows.

This paper is organized as follows: in § 2 the introduction of the SPH method is
provided. Then, in § 3 the method of characteristics is firstly introduced, and based on
it, a novel NRBC is proposed within the SPH framework. The influence of numerical
parameters on the non-reflection effects is also discussed. Section 4 consists of several
examples of the proposed NRBC implementations to further validate the accuracy and
stability of this NRBC. Finally, some conclusions will wrap up the paper.

2. The SPH method
2.1. Governing equations for fluid dynamics

In numerical simulations, the fluid dynamics is usually solved by governing equations,
including the continuity equation, the momentum equation and the energy equation.
Here we focus on an inviscid fluid, and in this case, the governing equations (i.e. Euler
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equations) in Lagrangian form are

Dρ
Dt
=−ρ∇ · u,

Du
Dt
=−
∇p
ρ
+ g,

De
Dt
=−

p
ρ
∇ · u,


(2.1)

where ρ, u, e, p are respectively the fluid density, velocity, specific internal energy and
pressure, and g denotes the gravitational acceleration.

To solve the differential equations presented in (2.1), there are mainly two steps
in the SPH method, namely kernel approximation of field functions and particle
approximation. In the first step, a generic field function f (x) at a certain position x is
represented by the integration of the multiplication of f (x′) and a weighting function
W over the support domain Ω as follows (Liu & Liu 2003):

f (x)≈ 〈 f (x)〉 =
∫
Ω

f (x′)W(x− x′, h) dx′, (2.2)

in which 〈 f (x)〉 denotes the kernel approximation of f (x) and x′ is the position in
the support domain of x. The weighting function W(x− x′, h), which is often called
the kernel function in the SPH literature, has a compact support domain Ω whose
radius is kh, where h denotes the smoothing length and k is a parameter varying with
the chosen kernel function. When kh tends to zero, the kernel function converges to a
delta Dirac function and 〈 f (x)〉 is exactly equal to f (x). The kernel function is usually
chosen to be a positive even function satisfying

∫
W(x− x′, h) dx′= 1 with some other

conditions which are detailed in Liu & Liu (2003).
To convert the continuous integration presented in (2.2) to a discretized form.

The second step, i.e. the particle approximation, is conducted. Different from the
traditional mesh-based methods, in the SPH method, the whole computational domain
is discretized into a collection of particles possessing material properties, including
pressure, velocity, density, etc., as depicted in figure 1. Therefore, the continuous
integration in (2.2) can be replaced by the summation of the particles in the support
domain. Thus one can get (Liu & Liu 2003)

〈 f (xi)〉 =
∑

j

f (xj)W(xi − xj, hi)Vj, (2.3)

in which i represents the particle to be solved and j is the particle in the support
domain of particle i. Vj is the particle volume solved by mj/ρj, where mj and ρj are
the mass and density of particle j, respectively.

Generally, the gradient of the scaler function f (x) and the divergence of the vector
function f (x) are field functions. Their particle approximations can be obtain by
substituting the function f (xi) in (2.3) with ∇i f (xi) and ∇i · f (xi), respectively. The
particle approximations of ∇i f (xi) and ∇i · f (xi) are respectively

〈∇i f (xi)〉 =
∑

j

f (xj)∇iW(xi − xj, hi)Vj (2.4)
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Boundary

Node Element

Computational domain Traditional mesh-based methods SPH method

The kernel function
W(xi - xj, hi)
of particle i

Support domain of
the kernel function

of particle i

W

i
khi

j

FIGURE 1. (Colour online) Comparison of conceptual diagrams between traditional mesh-
based methods and the SPH method. Different from the traditional mesh-based methods,
in the SPH method, the whole computational domain is discretized into a collection of
particles whose physical quantities are obtained by interpolating the quantities of particles
in their own support domain with the kernel function W. The radius of the circular support
domain is kh.

and
〈∇i · f (xi)〉 =

∑
j

f (xj) · ∇iW(xi − xj, hi)Vj, (2.5)

where the symbol ∇i indicates differentiation with respect to the coordinates of
particle i.

Therefore, by using (2.4) and (2.5), together with symmetrization processing, the
governing equations given by (2.1) can be discretized into the following forms

Dρi

Dt
= ρi

∑
j

(ui − uj) · ∇iWijVj,

Dui

Dt
=−

∑
j

pi + pj

ρi
∇iWijVj + g,

Dei

Dt
=

1
2

∑
j

pi + pj

ρi
(ui − uj) · ∇iWijVj,


(2.6)

where Wij =W(|xi − xj|, hi) represents the kernel function; hi denotes the smoothing
length of the ith particle and it is set to a constant equal to 1.2 times the initial particle
spacing in the present work. In particular, an improved Gaussian kernel (Grenier et al.
2009) with a support radius equal to 3h is used for all the simulations in this paper.
To stabilize the numerical scheme, it is a common practice in the SPH method to
add an artificial viscosity term to the right-hand side of the momentum and energy
equations. Here the artificial viscosity terms ΠI and ΠII introduced by Monaghan &
Gingold (1983) are applied, whose forms in the momentum and energy equations are
respectively

ΠI = αhic0

∑
j

πij∇iWijVj (2.7)

and
ΠII =

1
2
αhic0

∑
j

πij(ui − uj) · ∇iWijVj, (2.8)
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where the term πij is defined as

πij =


(ui − uj) · (xi − xj)

|xi − xj|
2 , (ui − uj) · (xi − xj) < 0

0 otherwise.
(2.9)

In (2.7) and (2.8), the non-dimensional parameter α is an empirical coefficient.
As most of the literature on SPH indicates, its value covers 0.01–1.0 for different
problems (see e.g. Monaghan 1988; Antuono et al. 2010; Marrone et al. 2011). In
the present work, a commonly used value 0.1 (see e.g. Molteni & Colagrossi 2009;
Antuono et al. 2010; Sun et al. 2015) is applied to all of the numerical simulations.

In general, considering the compressibility of a fluid, the fluid dynamics solved by
the SPH method can be classified into two categories, namely, incompressible flows
(e.g. water entries) and completely compressible flows (e.g. underwater explosions).
The corresponding SPH methods for solving these two flows are called the weakly
compressible SPH (WCSPH) method and the completely compressible SPH method,
respectively. These two methods are described in more detail in the following
subsections.

2.2. SPH formulas for incompressible flows
For the water flow problems in § 4 (including the water entry of a wedge and the flow
around a moving circular cylinder in a rectangular box), the Mach number is less
than 0.1, and therefore the water can be considered incompressible in these cases.
However, if the real sound speed of water is adopted, the corresponding required
stable time step, which depends on the condition of Courant–Fredrich–Levy (CFL),
is often very small. To obtain a larger time step and thus reduce the computational
costs, Monaghan (1994) proposed the WCSPH model, which has a wide range
of applications in engineering (see e.g. Altomare et al. 2017; Cheng, Zhang &
Ming 2017; Ming et al. 2018). In the WCSPH model, the real sound speed is
replaced by a proper artificial sound speed whose value should satisfy the approximate
incompressible condition, i.e.

Ma=
‖u‖

c
6 0.1, (2.10)

where Ma denotes the Mach number and c is the artificial sound speed. According to
(2.10), the artificial sound speed must be at least one order of magnitude larger than
the maximum flow velocity, i.e.

c > 10 max(‖u‖). (2.11)

The artificial sound speed obtained by (2.11) can ensure a reasonable time step and
meanwhile, guarantee flow characteristics.

In the context of the WCSPH method, the influence of the energy variation on flow
characteristics can be ignored when the peak pressure within the flow field is below
1 GPa (Marrone 2012). Thus the energy equation presented in (2.6) is not considered.

Since (2.6) is a non-closed equation, it is a conventional treatment in the SPH
method to use a state equation to describe the correlation between the pressure and
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density. In WCSPH, the widely used Tait state equation is adopted for water, which
takes the form of

p=
c2

0ρ0

7

[(
ρ

ρ0

)7

− 1

]
, (2.12)

where ρ0 is the reference density when the pressure of the particle is zero. In
this paper, the reference density of water is set equal to 1000 kg m−3 for all the
simulations.

As discussed in Antuono et al. (2010), one of the drawbacks of standard WCSPH is
that the pressure field is generally affected by spurious high-frequency noise. To tackle
this problem, we can add a proper artificial diffusive term into the right-hand side of
the continuity equation to reduce the pressure noise. This treatment is the so-called
δ-SPH method proposed by Antuono et al. (2010). Indeed, the δ-SPH method is a
typical variation of the WCSPH method. The artificial diffusive term Λ in the δ-SPH
method reads as

Λ= δhic0

∑
j

ψij∇iWijVj, (2.13)

where the parameter δ tunes the magnitude of the numerical diffusive contribution in
the continuity equation, and it is set equal to 0.1 for all the simulations. The work
of Antuono et al. (2010) shows that δ shall be treated as an unadjustable parameter.
Besides, the term ψij in (2.13) is given by

ψij = 2(ρi − ρj)
(xi − xj)

|xi − xj|
2 − (〈∇ρ〉

L
i + 〈∇ρ〉

L
j ) (2.14)

in which the symbol 〈∇ρ〉Li indicates the renormalized density gradient defined in
Randles & Libersky (1996).

2.3. SPH formulas for completely compressible flows
For underwater explosions, the Mach number is usually greater than 0.1. Thus the
real compressibility of water should be considered and the real sound speed of water
is adopted. Besides, because of the consideration of internal energy variation, the
energy equation should be applied, and the pressure of water is given through the
Mie–Gruneisen equation of state (Steinberg 1987). When the water is in a compressive
state, its pressure is given by

p=
ρ0c2

0µ
[
1+

(
1−

γ0

2

)
µ−

a
2
µ2
]

[
1− (S1 − 1)µ− S2

µ2

µ+ 1
− S3

µ3

(µ+ 1)2

]2 + (γ0 + aµ)e, (2.15)

while in the case of expansion, the pressure of the water is given by

p= ρ0c2
0µ+ (γ0 + aµ)e, (2.16)

where the variable µ is defined as µ = ρ/ρ0 − 1; µ > 0 means that water is in
compressed state while µ < 0 implies an expanded state. γ0 is the Gruneisen
coefficient and a represents the volume correction coefficient. S1, S2 and S3 are
experimental fitting coefficients. Parameters in (2.15) and (2.16) are listed in table 1.
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ρ0 (kg m−3) c (m s−1) γ0 a S1 S2 S3

1000 1480 0.5 0 2.56 1.986 1.2268

TABLE 1. Material parameters and coefficients in the Gruneisen state equation for water.

ρ0 (kg m−3) A (Pa) B (Pa) R1 R2 ω e (J kg−1)

1630 3.712× 1011 3.21× 109 4.15 0.95 0.3 4.29× 106

TABLE 2. Material parameters and coefficients in the JWL state equation for explosive
products.

In underwater explosions the cavitation of water will occur and affect the shock
loading. However, the cavitation is not the concern of this paper. Thus a simple cutoff
model is adopted to describe the cavitation, i.e. when the water pressure is lower than
zero, it is simply set to zero. This treatment can also be seen in Xie, Liu & Khoo
(2006) and Ming et al. (2016).

For explosive products produced by the detonation of trinitrotoluene (TNT) the state
equation of Jones–Wilkins–Lee (JWL) (Dobratz 1981) is employed. The pressure of
the explosive products is given by

p= A
(

1−
ωη

R1

)
e−R1/η + B

(
1−

ωη

R2

)
e−R2/η +ωηρ0e, (2.17)

where η indicates the ratio of the density of the detonation products to the initial
density of the original explosive, i.e. η = ρ/ρ0. A, B, R1, R2 and ω are fitting
coefficients. The values of these parameters are given in table 2.

In addition, because the large deformation of an explosive gas tends to cause
inhomogenous spatial distribution of particles, the smoothing length of particles
should be updated as (Benz 1990)

hn+1
i = hn

i −
1
d

hn
i

ρn
i

Dρn
i

Dt
1t, (2.18)

where hn
i and ρn

i denote respectively the smoothing length and density of the ith
particle at the nth time step; d is the number of spatial dimensions and 1t represents
the size of the time step.

2.4. Boundary implementation and time integration
In this subsection, several boundary conditions used in the present work are
introduced, including the outflow boundary condition, the sponge layer boundary
condition and the solid boundary condition. Additionally, the time integration scheme
applied is also illustrated.

2.4.1. Outflow boundary
In the SPH method, an alternative to reduce the undesirable wave reflections is

to impose open boundary conditions outside the computational domain. Recently, a
versatile open boundary condition is developed by Tafuni et al. (2018). It can be
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Flow direction

Fluid domain Outflow region

Outlet threshold Downstream limit

: Fluid particle : Outflow particle : Mirror particle

FIGURE 2. (Colour online) Schematic diagram of the outflow boundary condition
proposed by Tafuni et al. (2018) for two-dimensional models. The fluid particles entering
the outflow region are transformed into outflow particles, while the outflow particles
passing through the downstream limit of the outflow region are eliminated from the
simulation. The pressure and velocity interpolations are firstly carried out at the mirror
particles which are the instantaneous mirrors of the outflow particles with respect to the
outlet threshold. Then the physical quantities of the mirror particles are projected back to
the corresponding outflow particles by using the first-order Taylor series expansion.

used for the inflow, outflow and mixed open boundary conditions, and has been
successfully implemented in the simulations of two-dimensional (2-D) and 3-D
complex flows (see more details in Tafuni et al. 2016, Tafuni et al. 2017). In this
paper, considering the problems to be solved, only the outflow boundary condition
is applied, and its schematic is displayed in figure 2. The outflow region, whose
width should be comparable to or greater than the support radius of fluid particles,
is defined downstream of the fluid domain. The particles in the fluid domain and
the outflow region are called fluid particles and outflow particles, respectively. When
the fluid particles flow out of the fluid domain and enter the outflow region, they
are transformed into outflow particles. Once the outflow particles flow past the
downstream limit of the outflow region, they are eliminated from the simulation.
To update the physical quantities of the outflow particles, the pressure and velocity
interpolations are firstly carried out at the mirror particles which are the instantaneous
mirrors of the outflow particles with respect to the outlet threshold. However, a
standard SPH interpolation tends to yield poor results due to the kernel truncation
near the boundary. Therefore, a correction can be made to restore the consistency of
the kernel function (Liu & Liu 2006; Huang et al. 2018). If we note Rm and Rm,β

respectively the approximation of the physical quantities of mirror particles and their
first-order spatial derivatives, they can be obtained as

Rm =

∣∣∣∣∣∣∣∣∣

∑
j

RjWmjVj

∑
j

(xβj − xβm)WmjVj∑
j

RjWmj,γVj

∑
j

(xβj − xβm)Wmj,γVj

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

∑
j

WmjVj

∑
j

(uβj − uβm)WmjVj∑
j

Wmj,γVj

∑
j

(xβj − xβm)Wmj,γVj

∣∣∣∣∣∣∣∣∣,
(2.19)
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Rm,β =

∣∣∣∣∣∣∣∣∣

∑
j

WmjVj

∑
j

RjWmjVj∑
j

Wmj,γVj

∑
j

RjWmj,γVj

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

∑
j

WmjVj

∑
j

(xβj − xβm)WmjVj∑
j

Wmj,γVj

∑
j

(xβj − xβm)Wmj,γVj

∣∣∣∣∣∣∣∣∣, (2.20)

where the subscript m denotes the mirror particle, and j represents the fluid particle
inside the support domain of particle m. β and γ are the dimension indexes repeated
from 1 to d. Wmj,γ = ∂Wmj/∂xγ is the spatial derivative of the kernel function. For
this outflow boundary condition, the pressure and velocity of the mirror particles are
calculated through (2.19), and then these physical quantities are projected back to
the corresponding outflow particles by using the first-order Taylor series expansion as
follows

Rn = Rm + (xβn − xβm)Rm,β, (2.21)

where the subscript n represents the outflow particle corresponding to the mirror
particle m, and the spatial derivative Rm,β is obtained by (2.20).

2.4.2. Sponge layer
Sponge layer is another boundary condition that can reduce the wave reflection

caused by the truncation of the physical domain. Here the sponge layer proposed by
Gong et al. (2009) is introduced, which is enforced by arranging dozens of layers of
particles around the fluid domain. Regarding the particles in the sponge layer, the time
derivatives of density are multiplied by a correction term as follows(

Dρi

Dt

)
= (1− 100−0.950λ

)

(
Dρi

Dt

)
, (2.22)

where λ= (s− d)/s, in which d denotes the distance from the sponge layer particle to
the interface between fluid and the sponge layer, and s is the thickness of the sponge
layer. In addition, the solid wall boundary condition should be applied outside the
sponge layer to offer restriction to the fluid flow.

2.4.3. Dummy boundary
In this work, the dummy boundary condition is adopted as the solid boundary

condition. It was proposed by Adami, Hu & Adams (2012) and has been extensively
used to deal with various fluid and bodies interactions (see e.g. Ulrich, Leonardi
& Rung 2013; Cao, Ming & Zhang 2014; Ming, Sun & Zhang 2017). It is
discretized into several layers of particles distributed along the boundary, and the
relative positions of boundary particles do not change during the simulation. The
near-boundary fluid particles interact with neighbouring dummy particles to guarantee
full support of the kernel interpolation. The pressure of boundary particles is obtained
as follows

pw =
∑

f

Wwf [ρf (g− aw) · (xw − xf )+ pf ]

/∑
f

Wwf , (2.23)

where the subscript f denotes the fluid particle while w represents the body wall
particle. Through solving the equation of state conversely, the density of the dummy
particles can be obtained. For all simulations in this work, the free-slip condition
is applied, and the equations for describing the rigid body motions can refer to
Sun et al. (2015).
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2.4.4. Time integration
With respect to the time integration scheme, the predictor–corrector scheme in

Monaghan (1989) is implemented. To guarantee the numerical stability, the magnitude
of the time step 1t is limited by the CFL condition (see Monaghan (1989) and Morris
et al. (1997) for more details). Considering the particle acceleration, viscous diffusion
and combined Courant viscous force, the size of the time step is restricted by the
following three conditions

1t 6 0.25

√√√√ hi

max
i
‖a‖

, (2.24)

1t 6 0.125
hi

2

ν
, (2.25)

1t 6 0.25 min
i

 hi

c0 + hi max
j
πij

, (2.26)

where a denotes the particle acceleration and ν is the kinematic viscosity coefficient.
The minimum of the values obtained by the above three conditions is selected as the
final time step.

3. Non-reflecting boundary

As discussed in § 1, the NRBC is of great importance to obtain physically
meaningful and correct numerical results in simulating some problems, such as
underwater explosions and water entries. In this section, a novel NRBC within the
SPH framework is presented. Because this NRBC is derived based on the method
of characteristics, the method of characteristics is firstly introduced in the following,
then the idea of the NRBC within the SPH framework will be presented.

3.1. Method of characteristics
The method of characteristics is one of the conventional methods in CFD for the
implementation of boundary conditions because of its simplicity and robustness.
For the unsteady, one-dimensional inviscid flow whose governing equations are
hyperbolic, it has been proved that there exist two real characteristic lines with
slopes Dt/Dx = 1/(u+ c) and Dt/Dx = 1/(u− c) through a given point A in the
x–t (space–time) plane, as sketched in figure 3, where u and c denote respectively
the flow velocity of fluid and the local speed of sound. These two lines can be
interpreted as the trajectories of disturbance or sound waves (often called characteristic
waves) carrying the information of specific variables. These variables are so-called
characteristic variables whose values are constant along the characteristic lines. The
characteristic waves with the propagation velocities Dx/Dt= u− c and Dx/Dt= u+ c
are respectively labelled M− and M+, representing the waves travelling upstream and
downstream at the speed of sound (relative to the moving fluid), respectively, and they
are called left- and right-running characteristic waves. The method of characteristics
solves the flow from the perspective of information propagation, thus providing an
effective approach for the implementation of numerical boundary conditions.
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t (time)

x (space)

A

Streamline direction

Dx

Dx

Dx/Dt = u - c

Dx/Dt = u + c
Dt

Dt

O

M_

u: flow velocity
c: local sound speed

M+

Left-running
characteristic wave

Right-running
characteristic wave

FIGURE 3. (Colour online) The characteristic lines for unsteady, one-dimensional inviscid
flow. M− and M+ denote the left- and right-running characteristic waves, respectively, and
they can be interpreted as the trajectories of disturbance or sound waves.

Outward propagating characteristic waves

: fluid particle

M+

M-

t

tB

xi
tC xj

tA xk
tB

uj +tA cj
tA

tA

tC

O

: boundary particle

Interpolation scheme:

Right-running
characteristic wave

Flow

Dx/Dt =  

uj -tA cj
tADx/Dt =  

A

B

C

Boundary

i j k

i j k
x

fk
t� = (t� - tB)/(tA - tB) fk

tA

+ ( t� - tA)/(tB - tA) fk
tB

(a) (b)

FIGURE 4. (Colour online) The propagation of the characteristic waves in one-dimensional
(a) and two-dimensional (b) models. In the one-dimensional model, the straight line CB
can be interpreted as the right-running characteristic wave emitted from the particle i at
time tC, passing through the particle j at time tA and reaching the particle k at time tB.
Therefore, the physical quantities of the particle k at the time tB can be predicted by
f tB
k = f tA

j , and then their values at a given time t′ (tA 6 t′ 6 tB) can be evaluated by the
Lagrange interpolation in time domain given by (3.2). For the two-dimensional model, the
characteristic waves passing through the boundary particles are approximately assumed to
be coming from their nearest particles in the inner layer.

3.2. Non-reflecting boundary condition within SPH framework
In this subsection, based on the method of characteristics using timeline interpolations,
a novel NRBC in the SPH method is presented. A one-dimensional model is taken
to illustrate the non-reflecting boundary algorithm in detail. As figure 4(a) shows,
the fluid particles are distributed along the x axis at the initial time. The first step
of building the NRBC is to place several layers of boundary particles outside the
fluid domain, and the thickness of the boundary layer needs to be comparable to or
greater than the support radius of the kernel function to guarantee the integrity of the
support domain of near-boundary fluid particles. In the present work, four layers of
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boundary particles are initially positioned. The fluid and boundary particles closest to
the boundary are respectively denoted by j and k, while the fluid particle next to j is
represented by i. The direction of the flow is assumed to be from the fluid particles
to the boundary particles.

The second step is to update the physical quantities of the boundary particles
by conducting the Lagrange interpolation in the time domain. This interpolation
scheme is capable of accurately describing the evolution of pressure and velocity
waves. In the following, the updating algorithm of the quantities of particle k is
presented to illustrate the interpolation scheme in detail. As figure 4(a) shows, the
coordinate of particle j at time tA is noted as xtA

j . According to the method of
characteristics, there exist two characteristic waves M− and M+ through the point A
in the x–t plane. The velocities of M− and M+ are respectively Dx/Dt= utA

j − ctA
j and

Dx/Dt = utA
j + ctA

j , where utA
j and ctA

j denote the velocity and sound speed of particle
j at time tA, respectively. The moment when the characteristic wave M+ reaches
particle k is denoted as tB, and the coordinate of particle k at tB is represented by xtB

k .
The enforcement of NRBCs means that there is no upstream propagating disturbance
produced by boundary particles. Besides, it is assumed that the initial perturbation of
the boundary particles is zero. Therefore, the fluid particle j and the four boundary
particles shown in figure 4(a) are only affected by the right-running characteristic
waves from upstream. Thus, these characteristic waves can be treated as simple waves,
that is, the characteristic lines are straight and all physical quantities are constant
along them. Accordingly, the physical quantities for particle k at the time tB can be
obtained as

f tB
k = f tA

j , (3.1)

where f tA
j denotes the quantities of particle j at time tA. Then the physical quantities

of particle k at a given time t′ (tA 6 t′ 6 tB) are obtained by a simple Lagrange
interpolation in time domain as follows

f t′
k =

t′ − tB

tA − tB
f tA
k +

t′ − tA

tB − tA
f tB
k , (3.2)

where f tA
k , f tB

k and f t′
k denote the physical quantities of particle k at times tA, tB

and t′, respectively. In this work, the pressure and velocity of boundary particles
are updated by (3.2) while the density is inversely solved through the equation of
state. According to the velocities of the boundary particles, their coordinates are
updated by 1xb/1t = ub, where xb and ub are the coordinates and velocities of the
boundary particles, respectively. However, one should note that tB in (3.2) is unknown.
According to the propagation of the characteristic wave M+ between particles j and k,
tB can be calculated by

tB = tA +
xtB

k − xtA
j

ctA
j + utA

j
, (3.3)

where xtB
k , representing the coordinate of particle k at time tB, is unknown. It can be

approximately equal to the coordinate at time tA (i.e. xtB
k = xtA

k ). Then (3.3) becomes

tB = tA +
xtA

k − xtA
j

ctA
j + utA

j
. (3.4)

However, it is obvious that (3.4) will lead to an underestimation of tB in practice,
which tends to result in significant influences on the non-reflection effect, as proved
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Measuring point

: non-reflecting boundary particle : water particle : TNT particle

0.04 m 0.56 m

xO

FIGURE 5. (Colour online) Parameters and particle distributions of the 1-D underwater
explosion with the proposed non-reflecting boundary. The fluid particle closest to the
boundary is chosen as the measuring point.

in the following one-dimensional underwater explosion simulation. Therefore, another
access to obtain the values of tB is proposed in this paper. Since the right-running
characteristic waves emitted from i, j and all boundary particles are all simple waves,
it can be determined that the characteristic line M+ is collinear with the characteristic
line emitted from the particle i at a certain time. This time is denoted by tC, and the
coordinate of the particle i at time tC is represented by xtC

i . Then the reverse extension
of line AB must pass through the point C whose abscissa and ordinate are xtC

i and tC,
respectively. Therefore, the straight line CB can be interpreted as the right-running
characteristic wave emitted from the particle i at time tC, passing through the particle
j at time tA and reaching the particle k at time tB. It is assumed that the time interval
for the characteristic waves passing from the particle i to j is equal to that from j to
k (when the initial particle distribution is uniform), i.e.

tA − tC = tB − tA. (3.5)

Thus the value of tB can be obtained as follows

tB = 2tA − tC, (3.6)

where tC can be obtained by the relation f tC
i = f tA

j , i.e. tC is the moment when the
physical quantity of particle i is equal to that of particle j at time tA. In this paper,
the pressure is chosen as the quantity to determine the value of tC. Thus, the pressure
evolutions of the fluid particles i and j should be recorded at adjacent previous time
steps. It is obvious that the method of calculating tB given by (3.6) is independent
of particle velocities and local sound speed. Therefore, it can be applied to a broad
variety of fluid dynamics ranging from low-speed flows to high-speed impacts.

When the NRBC is applied to two- and three-dimensional problems, the boundary
particles should be initially placed on four paralleled lines or planes outside the fluid
domain accordingly. Figure 4(b) depicts a sketch of the non-reflecting boundary in
two-dimensional models. For the boundary particle k, its closest particle in the inner
layer is noted as j, and the particle closest to j in the inner layer is particle i. The
pressure and velocity of all boundary particles are updated by (3.2) at every time
step, while the quantities of fluid particles are updated by the governing equations.
To avoid the kernel truncation error, the fluid particles interact with not only fluid
particles nearby but also the boundary particles inside their own support domain.

Subsequently, to demonstrate that (3.6) gives a more accurate estimation of tB than
(3.4), the simulation of a one-dimensional underwater explosion is performed (the
validation of the present SPH procedure for underwater explosions is given in § 4.3).
Figure 5 depicts a sketch of the whole model, where the water and TNT particles
are regularly distributed along the x axis with a particle spacing 1x= 0.005 m. The
initial density and pressure of TNT are 1630 kg m−3 and zero, respectively. The
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FIGURE 6. (Colour online) One-dimensional underwater explosion: comparison of the time
evolutions of the pressure (a) and velocity (b) at the measuring point between the result
with the proposed non-reflecting boundary and the remote boundary.

progressive detonation model for TNT (see e.g. Ming et al. 2016) is applied and the
behaviour of detonation products is described with the JWL state equation. Gravity is
not considered in this simulation. There are four particles at both ends of the water
domain, and the detonation point is located at the origin O. The water particle closest
to the boundary is chosen as the measuring point. The solution is depicted up to
t= 2 ms. Simulations with tB evaluated by (3.4) or (3.6) are carried out. Additionally,
the free-field underwater explosion with a large water domain is simulated to provide
a reference of the exact NRBC. In the reference case, the water domain is set to
3.0 m long while other parameters remain the same, aiming to ensure the shock
wave produced by the detonation has not yet reached the boundary at the end of
the simulation. This reference case with the large water domain is recognized as the
solution with a remote boundary hereinafter.

The time histories of the pressure and velocity for the measuring point with different
boundary conditions are presented in figure 6. It can be seen that the value of tB
has a substantial influence on the non-reflection effect. Both the velocity and pressure
errors induced by the reflected waves are significant when (3.4) is adopted, while they
become so small that they can be neglected when (3.6) is used, thus demonstrating
that (3.6) leads to a more accurate estimation of tB.

3.3. Numerical tests and the influence of parameters
In this subsection, a 2-D underwater explosion is simulated to validate the proposed
NRBC, and meanwhile, the influence of the position and the shape of the boundary
on the non-reflection effect is investigated.

Underwater explosion is a critical issue posing a great threat to ship structures
(Cui, Zhang & Wang 2016; Zhang et al. 2017). The SPH method has been proved
to be a good algorithm to simulate underwater explosions which are featured by large
deformations and material fragmentations (see e.g. Klaseboer et al. 2005; Zhang, Yang
& Yao 2012; Ming et al. 2016). However, if the computing domain is limited to a
small region of interest with inappropriate boundary conditions imposed, the generated
shock wave with pressure up to dozens of GPa will be reflected back into the interior,
which often has a non-negligible impact on the prediction of the shock wave load, as
well as the shape and motion of the bubble produced by the detonations (Liu et al.
2018).
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FIGURE 7. (Colour online) Two-dimensional underwater explosion. Sketches of the
computational models with different boundary conditions. (a) The remote boundary
condition, (b) the outflow boundary condition (Tafuni et al. 2018), (c) the sponge layer
boundary condition (Gong et al. 2009) and (d) the proposed NRBC.

A sketch of the computational model with the proposed NRBC enforced is given
in figure 7(d), where a circular TNT charge is located at the centre of a square water
domain with four layers of boundary particles initially placed outside. The initial
density and pressure of TNT are 1630 kg m−3 and zero, respectively. Gravity is
not taken into account. The charge is denoted at the centre. The duration of the
whole simulation is 0.55 ms. For comparison, this simulation is repeated applying the
outflow boundary proposed by Tafuni et al. (2018) and the sponge layer introduced by
Gong et al. (2009). The model with a larger square water domain of 2.4 m× 2.4 m
with no boundary condition enforced is selected as a reference solution. This model
has the minimum water domain size that can ensure no shock waves produced by the
detonation reach the boundary at the end of the simulation. The models of the above
four cases are initialized through a Cartesian grid with an initial spatial resolution
of 0.002 m. The initial sound speed c0 and density ρ0 of water are 1480 m s and
1000 kg m−3, respectively. There are three gauging points A, B and C in the water
domain to record the pressure and velocity evolution, and their locations are shown
in figure 7.
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FIGURE 8. (Colour online) Two-dimensional underwater explosion: snapshots of pressure
(top row) and velocity (bottom row) fields of water with the outflow boundary introduced
by Tafuni et al. (2018) (the left side), compared with the solution with the proposed non-
reflecting boundary (the right side) at three instants (a) tc0/L0 = 0.42; (b) tc0/L0 = 0.49;
(c) tc0/L0 = 0.57.

The pressure and velocity nephrograms of the water domain obtained by applying
the outflow boundary condition (the left side) and the proposed NRBC (the right side)
at three selected instants are shown in figure 8. It can be observed that with the
detonation of the charge, there are cylindrical waves presented in both the pressure
and velocity fields. When the outflow boundary condition is enforced, the rarefaction
waves induced by the boundary are reflected back into the interior, resulting in low
pressure regions and high-speed zones. For the case with the proposed NRBC, there
is no obvious perturbation induced by the boundary in either the pressure or velocity
field. The waves with different angles of incidence propagate through the boundaries
freely just as they pass through the interior domain.

Similarly, the comparison between the sponge layer (the left side) and the proposed
NRBC (the right side) is shown in figure 9, where the dashed line represents the
interface between the sponge layer and the water domain. It can be observed that the
sponge layer significantly slows down the propagation velocity of the waves, leading
to an obvious change of the shape of the wave fronts. But the reflected waves are
also apparent in both pressure and velocity fields.

The quantitative comparisons of the time evolutions of the relative errors of the
pressure and velocity of gauging points A, B and C are presented in figure 10. For
the velocity, here the direction from the detonation point to the measuring points is
taken as positive. The relative errors at different times caused by the application of
the NRBC, the outflow boundary condition and the sponge layer boundary condition
are defined as

Eq(t)=
q(t)− q̄(t)

q̄(t)
with q(t) ∈ {p(t), v(t)}, (3.7)
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FIGURE 9. (Colour online) Two-dimensional underwater explosion: snapshots of pressure
(top row) and velocity (bottom row) fields of water with the sponge layer introduced by
Gong et al. (2009) (the left side), compared with the solution with non-reflecting boundary
(the right side) at three instants (a) tc0/L0= 0.42; (b) tc0/L0= 0.49; (c) tc0/L0= 0.57. The
dashed line indicates the interface between the sponge layer and the water domain.

where q̄(t) denotes the pressure and velocity at time t obtained by using the remote
boundary condition while q(t) is the corresponding variable values yielded by
enforcing the NRBC, the outflow boundary condition and the sponge layer boundary
condition.

From figure 10 we can observe that, for the same measuring point, the relative
errors of pressure and velocity appear at approximately the same time, even though
the applied boundary conditions are different. Further, as the distance between the
measuring points and the detonation point increases, which implies a increase of the
propagation distance of the incident shock waves produced by the detonation, both the
pressure and velocity errors occur later. For the cases with the outflow boundary and
the sponge layer, the relative errors of pressure and velocity increase rapidly after the
reflected waves arrive. In particular, the relative errors of pressure eventually tent to
be constant −1 for all gauging points. This is attributed to the adoption of the cutoff
model presented in § 2.3. In this cutoff model, the minimum pressure of the measuring
points is prescribed to be 0, and thus the corresponding maximum pressure error is −1.
Regarding the result with NRBC, the relative errors of pressure and velocity for all the
measuring points with different incident angles are significantly reduced to less than
15 % and 10 %, respectively, which further validates the applicability and accuracy of
the proposed NRBC for underwater explosions.

To verify the efficiency of the proposed NRBC, the comparisons of total number of
particles and CPU time for the four models applying different boundary conditions are
given in table 3. All these simulations ran on a machine equipped with a quad-core
processor of i7-4790 with a frequency of 3.60 GHz. Note that, for the case with the
outflow boundary condition, the total number of particles decreases over time owing to
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FIGURE 10. (Colour online) Two-dimensional underwater explosion: time evolutions of
the relative errors of pressure (a) and velocity (b) of gauging points obtained by applying
the outflow boundary condition (Tafuni et al. 2018), the sponge layer boundary condition
(Gong et al. 2009) and the proposed NRBC. The result applying the remote boundary is
selected as the reference solution. The outflow boundary condition and the sponge layer
boundary condition are plotted on the left axis while the NRBC is on the right axis.

the deletion of particles, while for the other three cases, the particle number remains
constant during the whole simulation process. The cases with the outflow boundary
condition and the NRBC have same initial particle numbers and CPU time, which
are obviously less than other two cases, demonstrating the efficiency of these two
boundary conditions. The initial particle number of the case with the remote boundary
is approximately four times those of the outflow boundary condition and the NRBC.
As a result, the required CPU time of the remote boundary increases significantly
with respect to other two cases. Similarly, the enforcement of the sponge layer also
brings about a remarkable increase in the number of particles and, therefore, the CPU
time increases significantly. For the cases with the outflow boundary condition and
the present NRBC, the required number of particles and CPU time are close. But the
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FIGURE 11. (Colour online) Two-dimensional underwater explosion applying the proposed
NRBC: time evolutions of relative errors of pressure (a) and velocity (b) at measuring
point A with different sizes of water domain. L0 denotes the initial side length of the
square water domain, and d0 is the initial diameter of the TNT charge.

Simulation Total number of
particles

CPU time on a
single CPU core (h)

Initial Final

Remote boundary 1 440 000 — 22.3
Outflow boundary (Tafuni et al. 2018) 370 881 338 429 6.8
Sponge layer (Gong et al. 2009) 502 681 — 8.5
The proposed non-reflecting boundary 370 881 — 6.6

TABLE 3. Comparisons of total number of particles and CPU time for the cases of 2-D
underwater explosions with different boundary conditions.

present NRBC can more accurately guarantee the pressure and velocity non-reflection
in both low- and high-speed problems.

Subsequently, to assess the influence of the distance between the pressure source
and the boundary on the non-reflection effect of the proposed NRBC, the initial
side length of the square water domain L0 is set to 12.5d0, 15.0d0 and 17.5d0,
respectively, where d0 = 0.08 m is the initial diameter of the TNT charge. For these
three models, the time evolutions of the pressure and velocity relative errors at the
measuring point A are displayed in figure 11. The reference solution is still the
result with the remote boundary. It can be concluded that the further the boundary is
from the measuring point, the less is the error with respect to the reference solution.
In particular, when the side length is approximately 17.5 times the diameter, the
relative errors of the pressure and velocity are within 10 % and 5 %, respectively. As
a consequence, one should note that the proposed NRBC is only approximate, and
should be placed as far as possible from the region of interest.

The previous numerical tests have shown the validity of the proposed NRBC in
dealing with straight boundaries. Here, we also perform a 2-D underwater explosion
but adopt circular water domains to check the applicability of this NRBC for curved
boundaries. Three computational models applying different boundary conditions are
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FIGURE 12. (Colour online) Two-dimensional underwater explosion with a circular water
domain. Sketches of the models with the remote boundary (a), the dummy boundary (b)
and the proposed non-reflecting boundary (c). For these three models, the particles are
initially placed on a series of concentric circles with the same spacing 0.002 m.

(a) (b) (c)
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FIGURE 13. (Colour online) Two-dimensional underwater explosion with a circular water
domain. The pressure (top row) and velocity (bottom row) profiles of the water domain at
three instants after the shock wave reaches the boundary, (a) tc0/R0 = 0.84; (b) tc0/R0 =

0.98; (c) tc0/R0= 1.14. Left: dummy boundary (Adami et al. (2012)). Right: the proposed
non-reflecting boundary.

established, as sketched in figure 12. For these models, the particles are initially placed
on a series of concentric circles with the same spacing 0.002 m.

The pressure and velocity fields of the water domain with the dummy boundary
(the left side) and the non-reflecting boundary (the right side) at three instants after
the shock wave arrives at the boundary are presented in figure 13. When the dummy
boundary condition is imposed, strong reflected waves propagate from the boundary
to the interior, while these reflections become much weaker when the NRBC is
enforced. These behaviours can also be proved by the pressure and velocity spatial
distributions along the x axis at two instants, as shown in figure 14, where the
variable D denotes the distance between the measuring points and the detonation
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FIGURE 14. (Colour online) Two-dimensional underwater explosion with a circular water
domain. The pressure (top) and velocity (bottom) distributions along the x axis with
the dummy boundary (Adami et al. 2012) and the proposed non-reflecting boundary,
compared with the remote boundary. The variable D, denoting the distance between the
measuring point and the detonation point, is non-dimensionalized with the initial radius
of explosive r0.

point non-dimensionalized with the initial radius of the explosive r0. As expected,
for the case with the dummy boundary, there is a large amplitude pressure wave
propagating from the boundary to the interior, which reduces the velocity of the
particles and even reverses their direction. In contrast, despite the weak rarefaction
wave produced by the NRBC, the errors of pressure and velocity are both reduced
significantly. In other words, the proposed NRBC is demonstrated to be applicable to
curved boundaries.

4. Examples
In this section, several numerical examples of fluid dynamics including water flows

and underwater explosions are presented to demonstrate the accuracy and reliability
of the proposed NRBC. Firstly, the water entry of a free-falling wedge is simulated
to verify the accuracy of the NRBC for common impact problems with a free
surface. Then, the simulation of a moving circular cylinder inside a rectangular box
is conducted to demonstrate that the NRBC is applicable for low-speed flows. The
last case concerns a 3-D underwater explosion, aiming to prove that the proposed
NRBC can be applied to three-dimensional problems.

4.1. Two-dimensional water entry of a free-falling wedge
In this part, the simulation of two-dimensional water entry of a free-falling wedge is
carried out to validate the NRBC. According to the experiment of Zhao & Faltinsen

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.852


Non-reflecting boundary condition in smoothed particle hydrodynamics 103

0 0.1 0.2 0.3

0.8

0.6

0.4

0.2

t√0/L

F √
/(

® 0
√ 02 L

2 )

Exp. (Zhao & Faltinsen, 1993)

SPH: L/Îx = 125
SPH: L/Îx = 250
SPH: L/Îx = 500

FIGURE 15. (Colour online) Two-dimensional water entry of a free-falling wedge. Time
histories of the vertical force for different resolutions, compared with the experimental
data in Zhao & Faltinsen (1993). The size of the water domain is 4.0 m × 2.0 m with
no boundary conditions imposed.

(1993), the width of the triangle base is L = 0.5 m, and the deadrise angle is 30◦.
The mass of the wedge is 241.0 kg. At the initial moment, the wedge impacts
on the water with an initial speed of v0 = 6.15 m s−1. In this simulation, gravity
g = 9.8 m s−2 is taken into account with its direction vertically downward. In the
present SPH scheme, the problem is simplified to two dimensions, and the wedge
is treated as moving dummy boundaries discretized into four layers of particles.
Firstly, the δ-SPH scheme is validated by comparing with the measurements, and
the convergence is studied by setting three different particle resolutions: L/1x= 125,
L/1x = 250 and L/1x = 500, where 1x is the initial particle spacing. To avoid
the wave reflection induced by the boundary, the width and depth of the water area
are set to 4.0 m and 2.0 m, respectively, which can ensure that the pressure waves
produced by the impact have not reached the boundary by the end of the simulation.
In figure 15, the time history of the non-dimensional total vertical force acting on
the wedge is presented, and compared with the measurements. Fv denotes the vertical
force and ρ0 = 1000 kg m−3 is the initial density of water. It can be seen that,
with an increase in resolution, the numerical results converge to the experimental
data. However, the vertical force is over-predicted at the later stage due to the
three-dimensional effect, as mentioned by Zhao & Faltinsen (1993). In general, the
numerical outcome can be regarded as agreeing well with the experimental data, thus
validating the accuracy of the SPH model applied in the present work.

Subsequently, to check the accuracy of the proposed NRBC, the water entry of
the wedge in a reduced water domain with the NRBC enforced is simulated, and
compared with the results obtained by enforcing the outflow boundary condition
(Tafuni et al. 2018) and the sponge layer boundary condition (Gong et al. 2009). For
these three cases, the size of the water domain is reduced to 1.5 m long and 0.75 m
deep. The thickness of the sponge layer is set to 0.2 m. Additionally, the result with
the remote boundary is used to provide an exact reference solution. For all of these
four cases, the particle resolution is L/1x = 500, and the computational models are
displayed in figure 16.

In figure 17, the pressure field evolution with the outflow boundary, the sponge
layer and the proposed non-reflecting boundary are displayed, and compared with
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FIGURE 16. (Colour online) Two-dimensional water entry of a free-falling wedge.
Sketches of the calculation models with the different boundary conditions. (a) The remote
boundary condition; (b) the outflow boundary condition (Tafuni et al. 2018); (c) the
sponge layer boundary condition (Gong et al. 2009); and (d) the proposed NRBC.

the result with the remote boundary. It is worth noting that, for the case with the
remote boundary, only part of the whole water domain, whose size is identical to
the water domain of other cases, is displayed. It can be seen that when the outflow
boundary is enforced, the rarefaction waves induced by the boundary are apparent
and the pressure field becomes asymmetric. For the results with the sponge layer,
it can be observed that, after the pressure wave reaches the sponge layer, there is
a sudden decrease in its propagation velocity, leading to a very different pressure
distribution from that with the remote boundary. At tv0/L = 0.295, the rarefaction
waves produced by the sponge layer reach the wedge and the pressure field is altered
significantly. Afterward, the pressure waves travel through the sponge layer and reach
the outermost dummy boundary, reflecting strong compression waves back to the
interior domain. Regarding the case with the NRBC, before tv0/L = 0.295, there is
no significant pressure reflection occurring from the boundary, and the pressure field
is very similar to that with the remote boundary. After that, the reflection is enhanced
gradually along with the accumulation of error. Nonetheless, the reflected waves are
much weaker with respect to those produced by the outflow boundary and the sponge
layer.

Figure 18 depicts the time histories of the vertical force obtained by applying
different boundary conditions. The boundary conditions from left to right are the
remote boundary, the outflow boundary, the sponge layer and the non-reflecting
boundary, respectively. The dashed line represents the interface between the sponge
layer and water domain. It can be observed that, before approximately tv0/L = 0.3,
the vertical force obtained by applying the outflow boundary and the sponge layer
coincide with that of the remote boundary, even though the pressure field has been
significantly affected by the reflected waves. The reason is that the reflected waves do
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FIGURE 17. (Colour online) Water entry of a free-falling wedge. Pressure field obtained
by enforcing different boundary conditions at three different time instants: (a) tv0/L =
0.221; (b) tv0/L = 0.295; (c) tv0/L = 0.369. The boundary conditions from left to right
are the remote boundary, the outflow boundary (Tafuni et al. 2018), the sponge layer
(Gong et al. 2009) and the proposed non-reflecting boundary, respectively. The dashed line
represents the interface between the sponge layer and the water domain.

not reach the wedge before approximately tv0/L= 0.3. In the later stage, the vertical
force for the cases with the outflow boundary and the sponge layer is underestimated
due to the reflected waves interacting with the wedge. Regarding the case with the
NRBC, the curve agrees well with that with the remote boundary condition, which is
equivalent to little pressure reflection, thus further demonstrating the accuracy of the
proposed NRBC.

4.2. Two-dimensional flow around a moving cylinder in rectangular domain
The second problem considered is the two-dimensional flow around a moving circular
cylinder in a rectangular box. As studied in Marrone et al. (2013), the sudden
movement of the cylinder radiates pressure waves in a weakly compressible fluid,
and when the solid boundary condition is applied, the spurious reflected waves tend to
cause unphysical disturbances on the drag force that acts upon the cylinder. However,
in the present work, the non-reflecting boundary can help to tackle this problem.

Firstly, to illustrate the unphysical pressure reflection problem, and meanwhile, to
check the accuracy and convergence of the present procedure, this flow is simulated
by using the δ-SPH method with the dummy boundary condition imposed around the
water domain. The sketch of the whole model is illustrated in figure 19(a). During
the time interval tU/D∈ [0, 1], the cylinder accelerates along the x-axis until it attains
a speed of U. Its acceleration and velocity are prescribed by the curves displayed in
figure 19(b). In this test, the physical viscosity of water is not considered, but artificial
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FIGURE 18. (Colour online) Water entry of a free-falling wedge. Time histories of the
vertical force obtained by applying the outflow boundary (Tafuni et al. 2018), the sponge
layer (Gong et al. 2009), the proposed non-reflecting boundary and the remote boundary.
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FIGURE 19. (Colour online) A moving circular cylinder in a rectangular box. The sketch
of the whole model (a) and the time evolution of the circular cylinder motion (b), refer
to Marrone et al. (2013).

viscous is taken into account for good numerical stability. In addition, to eliminate
the unphysical cavitation in the water domain induced by the tensile instability, the
background pressure p0 = 3ρ0U2 provided by Marrone et al. (2013) is applied. By
using the particle packing algorithm introduced by Colagrossi et al. (2012), a regular
particle distribution close to the cylinder at the preprocessing stage is obtained. Gravity
is not considered in this simulation.

Time histories of the drag coefficient with three different particle resolutions are
shown in figure 20, compared with the analytical solution provided by Bai (1977)
for incompressible potential flow. The drag coefficient is defined as CD = 2Fx/ρU2D,
where Fx and D denote the resistance along the x axis and the diameter of the
cylinder, respectively. From figure 20, the SPH algorithm applied in the present
work has a good performance in terms of convergence. During the time interval
tU/D ∈ [0, 1], the magnitude of the drag force increases to the peak value and then
decreases to approximately 0. Note that there is a slight difference between the SPH
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FIGURE 20. (Colour online) A moving circular cylinder in a rectangular box. Time
evolutions of the drag coefficient acting on the cylinder obtained with the SPH method
with three different resolutions when a dummy boundary (Adami et al. 2012) is enforced
around the water domain, compared with the analytical solution provided by Bai (1977).

solution and the analytical result in the phase and amplitude of the first peak owing
to the influence of the weak compressibility, more details can be found in Marrone
et al. (2013). However, after tU/D= 1.0, when the steady state is reached, the curves
obtained by using the SPH method are characterized by large amplitude oscillations
due to the reflected waves interacting with the cylinder.

Then, to reduce the unphysical pressure reflection, the outflow boundary condition
introduced by Tafuni et al. (2018) and the proposed NRBC are respectively assigned
to the right side of the boundary where the pressure waves are mainly reflected, while
other three sides remain dummy boundary conditions to reduce the computational
costs. For the entire model, the initial particle spacing and the smoothing length are
set equal to 0.01 and 0.012, respectively. Figure 21 shows the pressure distribution
at three time instants. The solution in the top row is obtained by applying the
outflow boundary condition while the bottom row using the NRBC. The pressure
wave, which can be approximated as a plane wave, is generated along with the
accelerating movement of the cylinder. When the outflow boundary is arranged, some
weak reflected waves can be observed in the pressure field. Regarding the result with
the non-reflecting boundary, the pressure waves pass through the boundary freely with
less reflection and the pressure field is smoother.

Figure 22 depicts time evolutions of the drag coefficient for these two boundary
conditions. It can be observed that when the outflow boundary condition or the present
NRBC is enforced, the unphysical oscillations of the drag force after tU/L= 1.0 are
reduced significantly. Overall, the present NRBC has a good performance in reducing
the reflected waves for 2D low-speed flow problems.

4.3. Three-dimensional underwater explosion
The numerical tests presented in § 3.3 have validated the NRBC for the two-
dimensional underwater explosion. In this subsection, the underwater explosion
simulation is extended to three-dimensional cases, aiming to show the applicability
of the NRBC to three-dimensional problems.
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FIGURE 21. (Colour online) A moving circular cylinder in a rectangular box. Comparison
of the predicted pressure field between the result with the outflow boundary condition
(Tafuni et al. 2018) (top) and the solution with the proposed NRBC (bottom) enforced
on the right side of the water domain at (a) tU/D= 1.2, (b) tU/D= 4.5, (c) tU/D= 7.0.
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FIGURE 22. (Colour online) A moving circular cylinder in a rectangular box. Time
histories of the drag coefficient obtained by using the SPH method with the outflow
boundary condition (Tafuni et al. 2018) and the proposed NRBC, compared with the
analytical solution in Bai (1977).

Firstly, the simulation of underwater explosion in a free field is performed to
validate the SPH procedure in the prediction of shock wave load. The whole
computational model is sketched in figure 23(a), in which a spherical TNT charge
with a radius r0 = 0.018 m is located at the central point of a cubical water region.
The initial density and pressure of TNT are 1630 kg m−3 and zero, respectively, and
the charge is denoted at the centre. Gravity is not taken into account. The initial
particle spacing 1x and the smoothing length h are respectively set to 0.002 m
and 0.0024 m. In underwater explosions, the velocities of detonation and shock
propagation are so rapid that the explosive gas and water can be assumed to be
inviscid, and the whole process is adiabatic (Liu & Liu 2003). There are two
measuring points in the water domain and the distances between them and the charge
centre are equal to 0.108 m and 0.144 m (i.e. 6.0r0 and 8.0r0), respectively.

In figure 23(b), the numerical result is compared with the empirical formula
introduced by Zamyshlyaev & Yakovlev (1973), where d denotes the distance between
the gauging points and the detonation point. It can be observed that the pressure–time
curves obtained by using the SPH method agree well with the empirical data in the
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FIGURE 23. (Colour online) Three-dimensional free-field underwater explosion. (a) Sketch
of the model. (b) Comparison of the pressure evolution at different detonation distances
between the SPH method and the empirical data in Zamyshlyaev & Yakovlev (1973).

overall trend and peaks. However, some oscillations can be found in the numerical
results, which may be because the SPH method adopted cannot cope well with the
strong discontinuity induced by the shock wave (Wang et al. 2014). Indeed, this
behaviour can also be observed in other numerical methods of discretization type
(see e.g. Liu et al. 2003; Kim & Shin 2008; Wang et al. 2014). Besides, it always
takes a rise time to reach the peak pressure, which is tightly related to the kernel
approximate treatment. As the smoothing length decreases, a thinner shock front can
be obtained (Ming et al. 2016). Overall, the results verify the validity and feasibility
of the present SPH scheme for underwater explosion modelling.

Then, the applicability of the proposed NRBC to 3-D underwater explosions is
investigated. The parameters of the whole model and the particle distributions of the
half-model are shown in figure 24, in which a cubical TNT charge is placed at the
centre of a cubical water region with the NRBC imposed, and the detonation point
is located at the centre of the charge. The side lengths of the water and charge are
L= 1.5 m and l= 0.1 m, respectively. The boundary particles are distributed on four
planes and the whole computing domain is initialized using a Cartesian grid with a
spacing equal to 0.015 m. Similar to the previous subsection, here we also set up
the reference model which has a larger water region 3.0 m× 3.0 m× 3.0 m with no
boundary condition implemented. There are two measuring points A and B on the
horizontal plane passing through the detonation point and the distances between them
and the charge centre are 0.465 m and 0.570 m, respectively.

Figure 25 shows the pressure field of water at three times obtained by applying
the proposed NRBC. Only half of the computational domain is shown considering the
symmetry. It can be observed that there is a spherical shock wave produced by the
detonation in the water. When the NRBC is applied, the boundary becomes permeable
to the shock wave. Indeed, there is no obvious perturbation induced by the wave
reflection appears in the pressure field, and therefore, the shock front is able to stay
spherical over time.

The effect of the NRBC is further demonstrated in figure 26, in which the
pressure–time and velocity–time curves with the NRBC and the remote boundary
condition are compared. In the early stage, both the pressure and velocity for the
gauging points using the non-reflecting boundary are identical to those of the remote
boundary. Subsequently, the results of the NRBC diverge a little from those of
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L = 1.5 m
0.1 m

TNT

Water

Non-reflecting
boundary

A B

0.570 m
0.465 m

(a) (b)

FIGURE 24. (Colour online) Three-dimensional underwater explosion applying the
proposed NRBC. The parameters of the computational model (a) and the particle
distributions of a half-model (b).
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FIGURE 25. (Colour online) Three-dimensional underwater explosion applying the
proposed NRBC. The propagation of shock waves at three instants (a) tc0/L = 0.468;
(b) tc0/L= 0.564; and (c) tc0/L= 0.660.

the remote boundary, which is attributed to the wake rarefaction waves generated
by the boundary. Besides, both the pressure and velocity errors develop slowly.
Thus the applicability and validity of the NRBC for three-dimensional problems are
demonstrated.

5. Conclusions
In the present work, based on the method of characteristics using timeline

interpolations, a general and accurate NRBC for the fluid dynamics in SPH has
been proposed. This non-reflecting boundary is discretized into four layers of
particles whose pressures and velocities are approximately obtained by the Lagrange
interpolation in time domain. This NRBC can ensure that the information of the inner
domain, such as the pressure and velocity, can transmit through the boundary just as
it propagates in an infinite fluid domain.

Several numerical tests, including low-speed flows and high-speed fluid dynamics,
are conducted to validate the robustness and accuracy of the NRBC. Results show that
the proposed NRBC has many advantages. Firstly, the adopted timeline interpolation
scheme is capable of describing the evolution of pressure and velocity waves in fluids
more precisely, thus the NRBC can be enforced more accurately for both the pressure
and velocity fields. Additionally, the interpolation algorithm used is very simple. Thus
this NRBC is efficient and easy to implement. Last but not least, the interpolation is
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FIGURE 26. (Colour online) Three-dimensional underwater explosion applying the
proposed NRBC. The pressure and velocity varying with time at gauging points A (top)
and B (bottom). The results obtained by using the NRBC, compared with the result with
the remote boundary.

independent of the particle velocities and local sound speed, so the proposed NRBC
can be applied to a broad variety hydrodynamics ranging from low to high speed.
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