
Macroeconomic Dynamics, 3, 1999, 384–426. Printed in the United States of America.

MD SURVEY

FOLIATIONS LEAF THROUGH
ECONOMICS

DONALD G. SAARI
Northwestern University

Foliations provide a general, convenient, geometric way to catalogue information from
topics as varied as sufficient statistics, solutions of differential equations, indifference
curves for utility functions, distributed computing, and so forth. An introduction to aspects
of this area is provided.

Keywords: Foliations, Indifference Sets, Utility Functions, Sufficient Statistics,
Apportionment, Message Systems, Excess Demand

1. INTRODUCTION

Although the technical termfoliationsmay be unfamiliar to many, this widely used
concept is employed almost on a daily basis in economics. Indeed, foliations are
used whenever indifference sets for preferences are drawn on a blackboard or the
effects of different economic indicators are discussed. They are so common that
it is fair to assert that after one learns what to look for, foliations can be found
almost everywhere. In part, this is because important special cases of foliations are
the level sets of smooth mappings. Thus a convenient geometric way to envision
a foliation is with the pages of a folded soft-cover book; each page is a level set,
or leaf, of the foliation, and the book, the collection of all leafs, is the foliation.

The indifference-sets-of-preferences illustration accurately suggests that one
use of foliations is to conveniently catalogue information. Each leaf serves as an
equivalence set of information or data that is of equal value relative to a spec-
ified objective or goal; for example, this goal could be captured by an agent’s
preferences or by a specified set of economic indicators. Different leafs, then, de-
scribe different equivalence classes of information. This description motivates the
following examples:

• The level sets commonly used to express individual preferences. Each in-
difference set is a leaf; it consists of all alternatives, commodity bundles,
etc. that the agent views as being equivalent relative to her preferences. The
foliation is the collection of all leafs—of all indifference sets. Changes in
leafs correspond to changes in preference levels.
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• All states of an economy corresponding to the same specified index levels
define a leaf. Here, relative to the indices, the different states in a leaf provide
an equivalent amount of information. The set of all leafs—all possible states
of the economy—defines the foliation. Changing from one leaf to another
represents changing at least one index level.
• In statistics, all data that determine the same value for a sufficient statistic

define a leaf. All possible leafs—all possible data sets—define the foliation.
Each leaf consists of all data sets that identify particular parameter values
for the sufficient statistic. Consider, for example, the problem of determining
the likelihood of “heads” when spinning a penny on edge. Each leaf consists
of a particular number of heads obtained by spinning the coin a specified
number of times; the nature of runs and the order in which heads occurred
are not relevant.
• All posterior distributions obtained by a Bayesian updating of a specified

kind of prior defines a leaf. All possible leafs define a foliation.
• The trajectory of an autonomous differential equation as determined by a

specified initial condition is a leaf. This defines all states that can be attained
from the dynamic and a specified initial condition by going either forward
or backward in time. The set of all leafs—all possible solutions—forms the
foliation.

The dynamical systems example is particularly important because near the end
of the nineteenth century, it already was understood that the study of dynamics
could not be advanced significantly just by trying to discover explicit solutions to
equations. Moving the field in a different direction, H. Poincar´e developed ways
to understand dynamical behavior by exploiting the geometry of the associated
foliation. This approach is the source of much of modern dynamics [e.g., for
applications to economics, see Saari and Simon (1978)] and even chaos [see Medio
(1998, 1999)].

Although it is useful to treat foliations as a higher-dimensional dynamical sys-
tem, I emphasize those other interpretations where the geometry associated with
foliations becomes a useful tool for economics. For instance, the geometric traits
common to all foliations offer a mathematical framework that allows seemingly
unrelated notions to transfer from one topic to another. This is indicated here by
showing how natural issues from dynamics introduce new, natural questions about,
for example, Bayesian updating. What facilitates this transfer is that foliations start
with a common description of how changes among equivalence classes of infor-
mation can occur. Thus, issues that arise in one context, for example, sufficient
statistics, have a foliation analogue in another setting, for example, preferences.
As illustrated, the mathematics of foliations provide a technical and conceptual
tool to address and predict a variety of topics.

After providing a technical description of foliations (with references), the dis-
cussion emphasizes two general themes. An important topic (Section 4) involves
the designof foliations. To indicate how rich and even traditional this topic is
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within economics, the design issue is illustrated (Section 5) with Samuelson’s weak
axiom of revealed preference (WARP), the reason the strong axiom of revealed
preferences is needed, Arrow’s impossibility theorem and related consequences,
L. Hurwicz’s information theory, Debreu’s proof showing that, beyond Walras’s
laws, essentially nothing can be stated about the aggregate excess demand function
for pure exchange economies, and selective other topics.

A second theme (Sections 3 and 5) concerns theuseof specified foliations. The
geometry of foliation is used to create new tools that motivate, raise, and answer
natural issues. Among the illustrations is a brief discussion of strategic behavior.

2. MATHEMATICS OF FOLIATIONS

As Definition 1 (given later) makes clear, foliations partition a specified space or
manifold into leafs. What makes foliations more useful than a mere partitioning
is their added structure, which requires a smooth transition from one leaf to an-
other. To accomplish this goal, the local structure of leafs is patterned by how
p-dimensional coordinate planes are stacked in anRn coordinate system. This
means, for instance, that the local structure of any one-dimensional foliation in a
three-dimensional manifold resembles the way that the lines parallel to thex axis
are stacked inR3. To make this notion precise, I review certain concepts about
manifolds, which can be thought of as smooth surfaces in a higher-dimensional
space.

2.1. Coordinate Systems

To illustrate coordinate systems on a manifold, consider the torusT2: This is the
two-dimensional manifold that resembles the surface of a donut. To suggest how
such a construct arises in economics, suppose two agents are planning to locate
businesses on the shore of a round lake. Because each potential location for thei th
agent can be identified with a point on a circleS1, the position can be described in
terms of an angleθi relative to a reference axis. The usual optimization analysis
uses the product spaceS1× S1 where the entries are the couples of angles(θ1, θ2).
To describeS1× S1, notice that attached to eachθ1 is the circle of points, or
possible locations, for agent 2. As indicated in Figure 1a, when agent 1’s location
changes (i.e., variesθ1), the circle of agent 2’s choices moves around agent 1’s
circle of choices to define a torus. [To see howT2 and its foliations arise in a
similar fashion in Chichilnisky’s (1982) nice extensions of Arrow’s theorem, see
Saari (1997).]

The torusT2, illustrated in Figure 1b, is a smooth two-dimensional manifold.
One coordinate system uses theθ1, θ2 variables; here the names of the coordinates
are borrowed from the angular location on each circle. More generally, a local
coordinate system onT2 is defined by “borrowing the coordinates” fromR2.
Namely, about each pointp ∈ T2, select an open neighborhoodV and an invertible
mappingF : V → R2. Playing the role of thex andy axes inV are, respectively,
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FIGURE 1. The torusT2 = S1 × S1.

F ’s inverse image of thex andy axes ofR2. (See Figure 1b.) In this manner, the
(F,V) coordinates of a pointp ∈ V on the torus are inherited from the coordinates
of F(p) ∈ F(V) ⊂ R2. Indeed, by drawing all of the “coordinate” lines inV—
that is, all inverse images of the lines parallel to thex and y axes—we obtain a
nonlinear version of the usual coordinate mesh of horizontal and vertical lines in
R2.Extending the(F,V) coordinate system to a setV1, whereV ∩V1 6= ∅, means,
of course, that the(G,V1) system must allow the coordinate lines for both(F,V)
and(G,V1) to agree on the intersectionV ∩V1. Similarly, local coordinates for an
m-dimensional surface are borrowed fromRm via the inverse image of an invertible
mapping.

Our discussion of foliations requires the concept of asmooth-mapping Gfrom
an m-dimensional manifoldM to Rn. Here, problems are encountered immedi-
ately because, whereas the notion of a continuous-mappingG is well defined
as soon as the topology onM is specified, a definition for differentiability on
a manifoldM is not obvious. This difficulty is resolved in a manner similar to
how coordinates are described: The definition ofdifferentiationis borrowed from
Rm. To do so, “coordinate systems” are used to transfer the issue into a set-
ting where the standard definition of differentiation holds. Namely, although our
true interest concerns the mappingG : M→ Rn, using the coordinate system
F : V ⊂M→ Rm allows us to consider the mappingG ◦ F−1. An advantage of
usingG ◦ F−1 : Rm→ Rn is thatG ◦ F−1 has Euclidean spaces for a domain and
range where the notion of differentiation is well defined. Thus,G◦ F−1 is what we
use when discussing the differential structure ofG. In other words, an assertion that
a function from a manifold toRn, or to another manifold, is differentiable always is
in terms of the adopted coordinate systems. [To side step the obvious problems as
to whether these definitions are circular, the idea of achartand anatlasare intro-
duced. See, e.g., Spivak (1970), Warner (1970), or Flanders (1989), for more infor-
mation.]

A particular convenience offered by the coordinate system is that the local
properties of a mapping with anm-dimensional manifoldM as its domain can be
treated as having the more familiar domain of an open set inRm. So, the assertion
that G : M→ Rn is Cr -smooth means that, for eachF in a set of admissible
coordinate systems, the associated mappingG ◦ F−1 is differentiabler times and
the derivatives are continuous.
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2.2. Foliations

Now that the notions of a coordinate system and differentiability are specified, the
idea of a foliation can be introduced. Anonsingular p-dimensional foliationhas
two parts:

(1) It partitions the space in a manner so that each equivalence set—each leaf—is a
p-dimensional manifold.

(2) The partitioning is constructed in a manner to permit a smooth transition between
leafs; that is, between the partition classes.

Singular foliations are where some partition sets—that is, some leafs—have
lower dimensions. The importance of these foliations already is suggested by dy-
namical systems where the lower-dimensional leafs correspond to the equilibrium
points that are used to determine the overall dynamics of the system. More gener-
ally, as described later, it is possible for the geometry of certain surfaces to force
all foliationsof certain dimensions to be singular.

Because a coordinate system allows us to “borrow” from Euclidean space, the
notion of a foliation is described first inRm with coordinatesx= (x1, . . . , xp, . . . ,

xm). A natural partitioning ofRm is the set of allp-dimensional subspaces parallel
to the p-dimensional coordinate plane defined by the firstp coordinates; that is,
thep-dimensional planes that are parallel toxp+1= xp+2= · · ·= xm= 0; there are
no restrictions on the firstp variables. The defined set of stackedp-dimensional
planes, then, is completely defined by the level sets

xp+1 = cp+1, . . . , xm = cm, for constantscp+1, . . . , cm. (1)

This means, for instance, that a one-dimensional foliation inR3 is patterned locally
after all lines that are parallel to thex axis.

More generally, ap-dimensional foliation on a specified manifoldM is defined
locally in terms of the coordinate system structure. It is a partitioning ofM into
p-dimensional submanifolds. The transition property between sets is captured by
requiring, about each point, that an appropriate coordinate system can be found
{i.e., there is a neighborhoodV and an invertible mapF(u) = [F1(u), . . . , Fm(u)]}
so that thep-dimensional leafs are given by level sets of this coordinate-system
structure. Thus, just as with equation (1),locally each leaf is given by

F(u) = cp+1, . . . , Fm(u) = cm

for an appropriate open set of choices of the constantscp+1, . . . , cm. So, locally, a
two-dimensional foliation in a three-dimensional manifold resembles the stacking
of the planes that are parallel to thex–y coordinate plane ofR3. As an illustration
of what doesnotsatisfy this definition, the one-dimensional partition illustrated in
Figure 2 isnota foliation because such a coordinate system cannot be constructed
in the region where the horizontal and vertical lines abut.
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FIGURE 2. A partition that is not a foliation.

DEFINITION 1. Let M be a smooth m-dimensional manifold. ACr nonsingular
foliationF on M with dimension p is a partition{Lα}α∈A of M that satisfies the
following property:

Around every point x∈M, there is an open set V⊂M and a Cr -smooth, in-
vertible function

F : V → Rm

so that each connected segmentLα ∩V is identified with a unique set of constants
cj , j = p+ 1, . . . ,m in the following manner. Each componentLα ∩ V is the F
inverse image of a p-dimensional plane given by xp+1= cp+1, xp+2= cp+2, . . . ,

xm= cm. A foliation with dimension p is said to have co-dimension q= m− p.

This definition emphasizes that, at least locally, the leafs of a foliation are level
sets of a functionF . Indeed, when we discuss the design of foliations in Section 4,
the goal is to start with a partitioning of a set and then use differential tools
to determine whether it is a foliation. For several concerns from economics, an
accompanying goal is to find a choice for the corresponding functionF .

2.3. Examples

My earlier assertion that the level sets of a set of functions define a foliation is
essentially a direct consequence of the implicit function theorem. To illustrate, it
follows from the implicit function theorem that if

F : Rm→ Rq, q < m, (2)

is a smooth mapping of maximal rank at each point, then its level sets locally define
a co-dimensionq, or dimensionp = m− q, surface. To show that these level sets
satisfy the definition of a foliation, about some domain point, letG : Rm→ Rp be
another mapping so that, locally (i.e., in some open setV), the mapping

F̂ = (G, F) : V ⊂ Rm→ Rp × Rq = Rm

has maximal rank. (BecauseF has maximal rank, there are many such choices of
G.) Because this rank condition guarantees thatF̂ = (F̂1, . . . , F̂m) is invertible,
it follows that F̂ and V define a coordinate system. By construction ofF̂ , the
level setsF̂ p+1= cp+1, . . . , F̂m= cm are the level sets ofF , and so, the assertion
follows. The role of the level sets ofG, then, is to add coordinates that define
positions on each leaf.
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Utility functions. To relate Definition 1 to the economic literature, recall the
considerable activity directed toward understanding when individual preferences
could be represented with a utility function. Restated in the terms given here,
this endeavor was to understand the settings where the preferences partition the
space of alternatives to define a co-dimension-one foliation. The goal is to dis-
cover, or establish the existence of, a utility functionU defined over the space of
all alternatives, for example, the setV = Rm

+ . Because this argument defines the
mapping

U : Rm
+ → R1,

it becomes a special case of the example given by equation (2). Therefore, the level
sets of the utility function define a foliation.

Notice the two different coordinate systems. The first, given byRm, describes the
commodity bundles or the alternatives. The second coordinate system, reflecting
how the information is placed into categories as defined by the preference indif-
ference sets, is the level sets ofU with an emphasis on the different utility levels.
The smoothness of the foliation is determined by the number of times functionU
is differentiable.

Because a utility function defines a foliation, and because a foliation requires the
leafs to line up in a specific manner, the geometric constraints of a foliation make it
obvious why certain preferences cannot be described in terms of utility functions.
All one needs is to envision the structure of the level sets; if, locally, they do not
resemble the stacking of planes inRn, then a utility function cannot exist. The
most obvious illustration is where preferences are determined by a lexicographic
ordering: For example, the ranking where(x1, y1) is preferred to(x2, y2) if and
only if x1> x2, or if x1= x2 andy1> y2 cannot be described with a utility function.

General differential equations and extensions.The existence and uniqueness
theorems of differential equations ensure that the trajectories of an autonomous
system partition phase space. This is because “existence” theorems ensure that a
solution passes through each point. Similarly, uniqueness results require that if
two curves pass through the same point, then they are the same trajectory. (One
might be an extension of the other.) Thus these two conditions guarantee that the
trajectories partition phase space.

It remains to ensure that, locally, the trajectories have the appropriate positions
relative to one another. This condition is ensured by the “continuity with respect
to initial conditions” property of differential equations. Indeed, this property often
is expressed exactly in terms of level sets in a manner consistent with Definition 1.
[See, e.g., Hartman (1964).]

However, not all differential equations form anonsingulardimension-one foli-
ation. In fact, the more interesting setting is where the solutions create a singular
foliation. An example is the system(

x

y

)′
=
(

2 0

0 −3

)(
x

y

)
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FIGURE 3. Foliations from flows.

with general solution(x(t), y(t))= (C1e2t ,C2e−3t ) for constantsC1,C2 deter-
mined by initial conditions. An important zero-dimensional orbit is the equilib-
rium point 0. All other trajectories are one-dimensional, as indicated in Figure 3a.
Notice how the singular structure of this foliation identifies certain properties of
the dynamics. This foliation geometry is emphasized when the dynamics are de-
scribed in terms of stable and unstable manifolds. [See, e.g., Saari and Simon
(1978), Devaney (1989), Katok and Hasselblatt (1995), Robinson (1995).]

Dynamical systems can be defined on a manifold, rather thanRn. For instance,
a way to understand the price dynamics of the pure exchange economy withc
commodities is to consider the system

p′ = ξ(p) (3)

whereξ(p) is the aggregate excess demand function. According to Walras’s laws,
ξ(p) is homogeneous of degree 0, and so, for convenience, the pricep can be
normalized to have Euclidean length 1. When this is done, equation (3) defines a
dynamical system on the portion of the(c − 1)-dimensional surface of the unit
ball in the positive orthant ofRc; that is,

Sc−1
+ =

{
x = (x1, . . . , xc) |

c∑
j=1

x2
j = 1, xj ≥ 0

}
.

All foliations defined by the solutions of equation (3) also are singular. This is
because the standard assumption that all commodities are desirable (so the demand
will increase with a relatively low price) ensure that equation (3) admits a Walrasian
equilibrium. This rest point is a zero-dimensional trajectory.

One way to understand the price dynamics for a pure exchange economy is to
examine the geometry of the foliations. For instance, Scarf (1960) proved that the
familiar story requiring prices to converge to an equilibrium need not hold. To prove
this, Scarf defined utility functions for three agents over three commodities (i.e.,
he constructed a foliation for each agent’s preferences) so that the solution curves
of equation (3) behave as indicated in Figure 3b. In particular, the solutions behave
such that if the price starts at the equilibrium, it will stay there. However, for any
other starting price, the subsequent prices must stay away from the equilibrium. In
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fact, these other prices tend to the periodic orbit represented by a circle in Figure 3b.
(Such a behavior is not a theoretical oddity; in a recent personal conversation, C.
Plott stated that such behavior has been observed in experiments.) Notice that the
trajectories of a dynamical system form a foliation with theadded propertyof a
specified direction of movement on each leaf.

2.4. Unit Sphere

The price dynamic discussion emphasizes a portion of thek-dimensional unit
sphereSk. It turns out that ifk is an even integer, then all one-dimensional foliations
onSk must be singular. There is an intuitive explanation for the familiar unit sphere
S2 in a three-dimensional space.

A one-dimensional nonsingular foliation always can be converted into a differ-
ential equation by using the unit tangent vector at each point on each leaf. (Of
course, care must be taken so that vectors point in the same general direction to
ensure continuity of the equations.) Therefore, the existence of a nonsingular fo-
liation can be equated with the existence of a continuous tangent vector field on
Sk, where each vector has length 1. On the circleS1, this description is equivalent
to starting with a hairy “ring” and then combing it in a continuous manner so that
all of the hairs (the unit vectors) are tangent to the ring. Clearly, this is easy to do.

On the sphereS2, however, the existence of a continuous tangent vector field re-
sembles trying to comb a hairy basketball in a continuous fashion without allowing
a “cowlick” (a vector standing up so that it is not tangential). No matter how clever
the attempt, it cannot be done because it is impossible to do. However, because this
combing is impossible on even-dimensional spheres, it follows that the existence
of a one-dimensional nonsingular foliation on these even-dimensional spheres also
is impossible. (In turn, this also means that any differential equation defined on
an even-dimensional sphere must have an equilibrium.) Slight changes in this ar-
gument establish that anyp-dimensional foliation onSk, k> p, must be singular
whenk is even. On the other hand, a one-dimensional nonsingular foliation always
exists forSk, k odd. The answer about the existence of other dimensional foliations
on an odd-dimensional sphere is more complicated and surprising.

Flow on a torus. I claimed that it is possible to use the structure of foliations to
anticipate new kinds of properties for models from the social sciences. To illustrate
this point with concerns from the social sciences, we first need to appreciate the
more general geometry allowed by foliations. In particular, although a utility func-
tionU : Rm

+ → R requires a global coordinate representation, the local emphasis of
Definition 1 permits the existence of foliations that have a more complex structure.

To develop an example, start with a unit circle where the points are described
in terms of angle 2πθ defined in a counterclockwise direction from a fixed base
point, for example, where the circle meets the positivex axis. Becauseθ measures
multiples of 2π , the integer portion ofθ designates the number of timesθ has
wound around the circle relative to the base point. Thus, for instance,θ = 91

2
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represents nine traversals of the circle, ending at a position diametrically opposed
to the reference point.

A particularly simple dynamical system rotates a point by a fixed amountα;
this defines the differential equationθ ′ =α, where the solution isθ(t)=αt + θ(0)
for initial position θ(0). Here, nothing surprising happens. So, to create a more
interesting description, consider the simultaneous rotation of two anglesθ =
(θ1, θ2) where eachθ j is rotated by a fixed amount according toα = (α1, α2) to
define

θ′ = (θ ′1, θ ′2) = (α1, α2) = α. (4)

The solution defined by the initial conditionθ(0) = (θ1(0), θ2(0)) is

(θ1(t), θ2(t)) = tα+ θ(0). (5)

For instance, the solution line for the particular initial conditionθ(0) = 0 starts at
the origin; it is designated by the solid slanted line in Figure 4a.

For purposes of developing intuition, it is useful to think of equation (4) as
describing the positions of two agents where each is walking around a circular
lake at the constant rateα j , j = 1, 2. Thus, the solutionθ(t) identifies the position
of each agent at timet . As described in the earlier lake model,θ(t) defines a
point on the torusT2. This suggests converting the particular equation (4) solution
represented in Figure 4a as a line on torusT2. To do so, recall that the fractional
portion of eachθ j (t) indicates thej th agent’s location on the circleS1 at timet .
Wheneverθ j has an integer value, the solution (or thej th agent’s location) is at the
base point. Thus, the vertical lines in Figure 4a indicate integerθ1 values, where
the motion (the position of the first agent) has passed around the circle to return to
the beginning reference point. Similarly, the horizontal lines correspond to where
θ2 (the position of the second agent) passes through its reference point.

In the particular case of Figure 4a, the solution line first passes through the
horizontal lineθ2= 1. On the two circles, this(θ1(t), 1) point has precisely the
same location as a(θ1(t), 0) point; that is, both(θ1(t), 1) and(θ1(t), 0) place each
agent at the same position along the lake. This suggests cutting the solid line at
θ(t) = (θ1(t), 1) and translating it downward [keeping the same slope andθ1(t)

FIGURE 4. Converting solution line to curve onT2.
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value] so that the new base of the translated line is at(θ1(t), 0). Each point on this
translated line, which is the parallel dashed line in Figure 4, defines an identical
location on each of the two circles as doesθ(t).

Similarly, whenθ(t)meets a vertical integer line, this means that the first com-
ponentθ1 passes through its reference point. In Figure 4a, this occurs where the
dashedline meets the first vertical lineθ1= 1. At this location, cut the solution
line and translate it horizontally from(1, θ2(t)) to (0, θ2(t)). By doing this when-
everθ(t) passes through a horizontal or vertical line, the solution of Figure 4a is
represented by the collection of lines in the square of Figure 4b.

This construction explicitly uses the identification of horizontal and of vertical
lines in Figure 4a. So, by identifying (i.e., gluing together) the two vertical edges
of the square in Figure 4b, a cylinder is formed. To understand this construction,
notice that each vertical edge corresponds to where the first agent is at the base
point. So, as it should, the gluing reattaches the solution lines that were cut and
then translated when passing through vertical edges. Next, identify the former
two horizontal edges (now circles at the top and bottom of the cylinder) to form
the torusT2. The manner in which the lines in Figure 4b are constructed means
that they now are reconnected to form a smooth, continuous line onT2. This line
represents the actual location of the solution on each circle; that is, each point on
this line on the torus identifies a position of each agent on the lakeshore.

The Figure 4a solution onT2 corresponds to the initial conditionθ(0)= 0.
However, each initial solution defines a corresponding line on the torus, and so, each
T2 point is on at least one such line. To see that the collection of all solution lines
defines a foliation forT2, we appeal, again, to the uniqueness properties of solutions
of autonomous differential equations, which require that if any two solution lines
agree at any point, they agree everywhere. Thus, the solutions partitionT2. That
the solutions form a foliation follows, again, from the usual theorems about the
smoothness of solutions with respect to initial conditions; as already asserted, these
theorems define this dependency in a manner exactly as specified by Definition 1
for a foliation.

Figure 4b makes it clear that the choice ofα determines how often each leaf
passes aroundT2 before it meets—if it ever does. To explain, start with the special
case in whichα1=α2. With the example of two agents, this assumption means
they walk at the same speed, and so, they always are separated by the same dis-
tance. If they start together, they remain together forever. Here, the Figure 4a line
would bey= x passing through the two diametric vertices of the relevant squares.
Corresponding to the fact that the agents simultaneously return to their starting
positions each time around the lake is the fact that the line onT2 connects each time
it circles the torus. In a special case, this is captured by the fact that the transposed
line in Figure 4b would be a single diagonal line. In contrast, if 2α1 = α2, then
the corresponding Figure 4a line isy = 2x starting at(0, 0) and passing through
(1, 2), where this structure is repeated forever in blocks of two; the associated
Figure 4b would have two line segments. [The first passes through the top edge at
( 1

2, 1).]
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More generally, it follows that the only way the curve will reconnect is if the
ratio of the two components ofα is a rational numberα1/α2 = a/b. Assume that
a/b is in reduced form, whereb > a. (If a > b, then considerα2/α1 = b/a.) The
same argument shows that the two agents always return to their initial positions
after the second agent has gone around the lakeb times, and the first agent has
gone arounda times. Because the corresponding version of Figure 4b hasb lines,
it follows that whenb has a sufficiently large value, then a portion of each line
comes close to another portion of the same line.

The extreme case is ifα1/α2 is irrational.Here the curve never reconnects, but
it passes infinitely often, arbitrarily close to any other specified point on the curve.
In other words, the closure of the curve is the full torus. To explain this fact in
terms of the two walking agents, choose any location along the lake for each agent.
If α1/α2 is irrational, then, eventually, there is a time when simultaneously each
agent is arbitrarily close to their specified location. This is similar to two children
swinging on swings with incommensurable rates; for any position specified for
each child, eventually there is a time when each is arbitrarily close to the specified
location.

Notice what this structure means about the coordinate representation required
by Definition 1. Because each leafL can intersect the specified open neighborhood
V many times—even an infinite number of times shouldα1/α2 be irrational — it is
possible forF to identify different portions of each leaf with many (even an infinite
number of) differentp-dimensional coordinate planes. This property also shows
why, in general, we cannot expect to define the foliation with just one functionF .

Incidentally, this “irrational flow on a torus,” whereα1/α2 is an irrational
number, determines one of the simpler examples of chaotic behavior. [See, e.g.,
Devaney (1989).] The standard “sensitivity with respect to initial conditions” re-
quirement is captured partially by the geometry of each leaf that passes arbitrarily
close to other portions of the same leaf.

3. USING FOLIATIONS

The geometric structure of foliations provides insight into several concerns coming
from the social sciences. A sample is provided.

3.1. Congressional Apportionments

This example of a foliation defined by a flow on a torus may appear to be sufficiently
pathological to ensure that it never will occur in the social sciences. However, this
is not the case. Instead, as I now indicate with a rounding-off example, this flow
on a torus and the associated properties of the foliation provide an important tool
for understanding, and even predicting, a reasonably wide class of problems from
the social sciences.

The problem of rounding off a fractional allocation to an integer one arises
in statistics, integer programming, optimization settings, and anywhere that only
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integer answers make sense. A politically important example, which I am will-
ing to predict will result in at least one U.S. Supreme Court case during the
next decade, involves the allocation of U.S. congressional seats to states on the
basis of the decennial census. With 50 states, the population figures define a
50-dimensional vectorp, where the j th component,pj , is the fraction repre-
senting the population of thej th state relative to the total U.S. population. Let
x(t) = (x1(t), x2(t), . . . , x50(t)) be the vector denoting the number of seats as-
signed to each state with house sizet . Reality requires the total number of repre-
sentativest to be an integer.

This problem can be identified with the equation

dx
dt
= p, (6)

where, perhaps, the initial conditionx(50) = (1, 1, . . . ,1) is imposed to satisfy
the U.S. Constitutional requirement that each state is entitled to at least one con-
gressional seat. However, the solution

x(t) = (t − 50)p+ x(50) (7)

creates difficulties because, in general, integer values oft (remember, eacht value
identifies the total numbers of representatives in the house) designatefractional
apportionmentsxj (t) for the states. Because a “fraction of a representative” cannot
be sent to Congress, the issue becomes one of rounding off; it is to replace the vector
x(t) of fractional values with an apportionment vector of integer components.

Hamilton’s method. There are many ways to handle this integer approximation
concern. For instance, because the sum of the components ofp is unity, at house
sizet = h the vectorx(h) = hp is on the simplex

S50
h =

{
x = (x1, . . . , x50) ∈ R50

∣∣ xj ≥ 0,
50∑
j=1

xj = h

}
.

By adopting a choice of a distance, for example, thel1 metric (which is the sum of
the absolute value of the components), it is natural to declare the actual apportion-
ment ofhp to be the nearestS50

h point with integer coefficients. Such an approach,
now known as theHamilton method, was proposed by Alexander Hamilton during
the formative years of the United States.

To illustrate withh = 25 seats and three states, where 25p = (11.30, 10.34,
3.36) ∈ S3

25 is the exact fractional apportionment, notice that a simple way to
determine the closest integer point is first to assign each state the integer value
of each component ofhp; this is computed for the example in the second to last
column of Table 1. Any remaining seats are assigned to states according to the size
of the fractional portions, where “larger is better.” In the example, one extra seat
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TABLE 1. Hamilton method for apportionment
of congressional seats

State Population Exact Rep. Min. Hamilton

A 4,520 11.30 11 11
B 4,136 10.34 10 10
C 1,344 3.36 3 4

Total 10,000 25 24 25

remains and, becauseC has the largest fractional portion of 0.36, stateC receives
the extra seat.

As this example demonstrates, the rounding-off procedure uses only the relative
sizes of the fractional parts; the integer part plays no role. However, placing em-
phasis on the fractional portions converts the problem to a flow on a torus. This is
because as soon as a new integer value for any state is reached, the fractional part
becomes zero. Consequently, following the arguments in the section “Flow on a
torus,” it follows immediately that the relevant fractional portions ofx(t) evolve
according to a flow on a50-dimensional torusfor the United States, or as a flow
on a three-dimensional torus for Table 1. The role of the different initial conditions
is to identify different leafs for the foliation.

By equating rounding off with a flow on a torus, we immediately discover the
source for many of the apportionment paradoxes: the more accurate the population
figures, the closer we can expect leafs on this torus to approach other portions of
thesame leaf. To see why this is so, consider the simpler setting of two states with
the population figures 4,000 and 16,000. The associatedp= (1

5,
4
5) requires the

fractional part of an apportionment for both states to be zero for any house size
that is a multiple of 5; that is, for everyt = 5n, n= 0, 1, 2, . . . . In turn, because
the line on the torus quickly returns to the starting reference point for both states,
it follows from the argument used with Figure 4 that different portions of a leaf
always remain reasonably far apart on the torus. However, by adding just one
person to the first state createsp′ = (4,001/20,001, 16,000/20,001), where the
fractional parts of each state are simultaneously zero if and only ift is an integer
multiple of 20,001. In turn, this means that the portions of the same leaf (defining
the fractional parts) must come very close to one another to pack the torus in a
very crowded manner.

As described next, this incommensurability property of the foliation that allows
the fractional parts of each state simultaneously to be near any specified value
is what creates the likelihood of all sorts of apportionment paradoxes, paradoxes
sufficiently severe to have caused Supreme Court cases [e.g., see Saari (1995b,
Chapters 5.4, 5.5)] and most surely will do so again during the first decade of
the new millennium. The geometric source of these problems is that whenever
different portions of an apportionment curve are packed close enough together,
they can enteranyreasonably sized open set on the torus.
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To carry the argument to the next step, recall that the continuity of a mapping is
defined in terms of open sets. Thus, if any paradoxical behavior can be identified
with continuity, then we must expectany leaf from a foliation corresponding to
“more accurate or large population figures” to enter these open regions. In other
words, on the basis of the structure of foliations, we must expect sharper census
figures (independent of the choice of initial conditions) to generate unexpected
difficulties, that is, apportionment paradoxes. I illustrate this observation with an
historically important problem, a problem in which ad hoc solutions resulted in
the current size of 435 members for the U.S. House of Representatives. The main
point, however, is that this foliation structure ensures that much more can go wrong;
indeed, it predicts thatany paradoxical behavior where a local description uses
continuity can occur, and most surely already has occurred, somewhere.

Alabama paradox. The problem described here concerns the change in allo-
cation with House size. Geometrically, this change is easy to understand. With the
equation (7) representation, to go from House sizet = h to t = h+ 1, just addp to
thehp term. In Table 1, for instance,

26p= 25p+ p= (11.30, 10.34, 3.36)+ (0.4520, 0.4136, 0.1344)

= (11.752, 10.7536, 3.4944).

This observation means that, to understand what can go wrong with apportion-
ments, our analysis can emphasize just the geometry of an incrementp. To illustrate
with just one kind of problem, on a simplexSn

h , place the butt ofp at a midpoint
of fractional values; that is, place it at a fractional point that is equidistant from
all neighboringSn

h integer points. For instance, with three states andh = 25, one
choice is to place the butt ofp at(111

3, 101
3, 3

1
3). The tip of vectorp, then, is in the

Sn
h+1 region, which favors states with the largest populations. (That is, the tip ofp

is closer to an integer coordinate that adds an extra seat to a state with the larger
population.) Continuity considerations allow the base ofp to be slightly moved
off of the midpoint inany desired directionwhile keeping the tip in the sameSn

h+1
region. In particular, the base ofp can be moved into anSn

h region where a state
with a low population is granted the extra seat, but increasing the House size by 1
forces this seatto be taken away and assigned to another state.

Can we expect this to occur? We surely can because continuity ensures the
existence of a small, open region of opportunities for this paradox to occur. One
such region has the property that ifx(h) is in this smallSn

h region, then a state
with a small population is granted an extra seat. Changing the size of the House to
x(h+1) has the effect of seizing this seat away from the small-population state to
award it to a state with a larger population. This scenario, however, depends upon
whether thex(t) solution—for a leaf defined by the solution—ever can enter this
region. We now know that when population terms involve enough decimal values,
this must occur. To illustrate with the example in Table 1, the House size ofh = 26
gives the number of representatives shown in Table 2.
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TABLE 2. Alabama paradox in apportionment
of congressional seats

State Population Exact Rep. Min. Hamilton

A 4,520 11.752 11 12
B 4,136 10.7536 10 11
C 1,344 3.4944 3 3

Total 10,000 26 24 26

Table 2 illustrates that by increasing the size of the House from 25 to 26, state
C losesa representative. Such a phenomenon, called theAlabama paradox, has
occurred often in the apportionment of the seats to the various states in the United
States. [See Huntington (1928) for the clever, original arguments in this area,
Balinski and Young (1975) for the paper that revived interest in this topic, and Saari
(1995b Chapters 5.4 and 5.5) for an explanation of why this and other difficulties
must occur with apportionment concerns, list methods, and almost any multiple-
variable rounding-off problem.]

By combining the continuity property with the structure of foliations once a
more accurate census is taken leads to the following conclusion.

THEOREM 1 (Saari 1978, 1995b).Let there be at least three states, and sup-
pose for each House size h, the same continuous method based only on the
fractional parts of hp is used to find the“closest” integer apportionment for hp.
Furthermore, assume for each state, that there are choices ofp so that that state
receives an extra representative. For almost all choices ofp, there exists an h so
that some state has one less representative at House size(h + 1) than at House
size h.

To complete the story, based on the 1910 Census, an appropriate number of con-
gressional seats to avoid this “chaotic dynamics” phenomenon was 433. Reserving
a seat for each of the two territories, we reach the current number of representa-
tives of 435. (For various political and historical reasons, this number was not
adjusted in 1920 or in 1930.) In other words, the current size of the U.S. House of
Representatives was determined as an ad hoc way to avoid difficulties imposed by
a natural foliation structure. Moreover, by invoking the structure of foliations, it
now is not difficult to establish that any “reform” procedure also has serious faults.
No wonder the mathematics of the social sciences is so intriguing!

3.2. Strategic Behavior

A particularly striking result discovered about a quarter century ago is the theorem
of Gibbard (1973) and Satterthwaite (1975), asserting that a certain class of voting
procedures always admits settings where the outcome can be manipulated. Namely,
a voter can obtain a more favorable outcome by not voting according to her true
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preferences. This result raises several questions, many of which have not been
answered. For instance,

• Is there a straightforward method to determine whether a given procedure
can be manipulated?
• How can we identify all settings where a procedure can or cannot be manip-

ulated?
• For such a setting, which agent(s) can manipulate the outcome? What is each

agent’s set of possible, successful strategies?

Answers for these questions follow from the structure of foliations. [See Saari
(1995b) for the special case of voting procedures.] To explain, first notice that
voting and allocation problems involvinga agents can be represented as a mapping

P : Rn1 × · · · × Rna → RA, (8)

whereRnj is thenj -dimensional space of parameters characterizing thej th agent,
j = 1, . . . ,a; RA represents the space of allocations or outcomes; and theperfor-
mance function Pidentifies the agents’ characteristics with the desired allocation.
So,P defines a foliation over the space of agent characteristics where each leaf is
the set of combined characteristics that cause a particularP outcome. To illustrate
with an election withA candidates, each component ofy ∈ RA is the election tally
for a particular candidate. IfP is the voting procedure, then each leaf identifies all
possible combinations of voter preferences that cause the specified election tally
y ∈ RA.

An important part of the definition of a foliation concerns the relative positioning
of leafs. In differential equations, this aspect is captured by the continuity with
respect to initial conditions; that is, a small change in initial conditions results in
a solution that remains near the original one, at least for awhile. In the allocation
framework of equation (8), a change in leafs corresponds to how a change in
individual characteristics changes theP outcome. The foliation structure captures
the effects of this change; thereasonfor the change of individual characteristics
is a separate issue. It may represent a strategic attempt, voters choosing to abstain,
or even mistakes in marking a ballot. This suggests (and it is the case) that all of
these seemingly disparate topics admit a similar analysis.

A standard approach to analyze these concerns emphasizes combinatorics by
considering different combinations of voters preferences. The approach advocated
here emphasizes the structure of the leafs ofP: Namely, because the goal is to
determine how the outcome ofP can change, a natural first step is to study how
to move from one leaf to another. The structure of changes in leafs (i.e., in the
allocation or outcome represented byP) identifies how changes in individual char-
acteristics can change the outcome. To find the changes in theP = (P1, . . . , PA)

outcome at pointx, just compute

DP = (∇P1(x), . . . ,∇PA(x)). (9)

https://doi.org/10.1017/S1365100599012055 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100599012055


FOLIATIONS 401

This equation (9) structure ofDP completely characterizes all possible changes—
strategic or otherwise–that can occur at the current positionx.

Rather than offering an abstract presentation of this approach, it probably is of
more value to illustrate it with a example. The example comes from the attempt
in recent years to characterize all ways to manipulate the plurality vote. (This is
the widely used procedure in which each voter votes for his top-ranked candidate
and the ranking of each candidate depends on the number of points the candidate
receives.) I now outline with three candidates how to completely analyze this topic
not only for the plurality vote, but for all positional procedures.

DEFINITION 2. A three-candidate positional procedure is given byws=
(1, s, 0), where in tallying ballots, 1, s, and0 points are given, respectively, to a
voter’s top-, middle-, and bottom-ranked candidates. The candidates are ranked
according to the number of points received.

To illustrate this definition, the plurality vote corresponds tow0= (1, 0, 0), the
Borda count, which normally assigns 2, 1, 0 points to a voter’s first-, second-, and
third-ranked candidate, is identified withw1/2= (2/2, 1/2, 0/2), and the antiplu-
rality vote, where a voter votes for two candidates, is associated withw1= (1, 1, 0).

In computing voting outcomes, it suffices to use the fraction of all voters who
have a particular ranking rather than the actual integer values. The advantage of
this approach is that it reduces the product space of equation (8) to the simplex

Si(6) =
{

p ∈ R6

∣∣∣∣∣
6∑

j=1

pj = 1, pj ≥ 0

}
,

wherepj is the fraction of all voters with thej ranking type as given by Table 3.
To analyze the strategic use ofws, it suffices to study the strategies involving

candidatesA andB with sincere outcomeA Â B. This involves comparing theA
andB outcomes by subtractingB’s ws tally of sp1+ sp4+ p5+ p6 from A’s tally
of p1+ p2+ sp3+ sp6 to obtain

TA−B(p;ws) = (1− s)p1+ p2+ sp3− sp4− p5− (1− s)p6.

(In B’s tally, for instance, a type-1 voter hasB second ranked, and so, he gives
hers points. Becausep1 is the fraction of all voters with a type-1 preference, the
type-1 voters giveB p1s points.)

TABLE 3. Voter ranking types

Type Preferences Type Preferences

1 A Â B Â C 4 C Â B Â A
2 A Â C Â B 5 B Â C Â A
3 C Â A Â B 6 B Â A Â C
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Each leaf of the foliation defined byTA−B(p;ws) identifies all profilespcausing
the specified difference inA, B tallies. Because theA – B relative election rank-
ing changes when this difference is zero, an analysis of strategic behavior must
emphasize changes near the leafTA− B(p;ws)= 0 as given by the gradient

∇TA−B(p;ws) = (s, 1, s,−s,−1,−(1− s)). (10)

By construction, the gradient points in the direction of profiles assistingA.
To understand how to use equation (10) to identify all possible strategic behavior,

notice that withn voters, if a type-j voter votes as though typek, this causes a

d j→k = 1

n
(Ek − E j )

change in the profile, whereE j ∈ R6 is the unit vector with 1 in thej th component.
The effects of any such change are given by the directional derivative

∂TA−B(p;ws)

∂d j→k
= ∇TA−B(p;ws) · d j→k. (11)

Because we assume that the sincere outcome isAÂ B, a change in the election
outcome can occur only if the adopted strategyd j→k makes the sign of equation (11)
negative.

By using equation (11), the strategic analysis now reduces to elementary com-
putations involving the dot product. For instance, voters of types 1, 2, and 3 prefer
A to B, and so, they have no interest in changing the outcome. To find the options
of a type-5 voter, notice that the product of the fifth components of∇TA−B(p;ws)

andd5→k is unity. Therefore, a strategic type-5 voter needs to vote like a type-k
voter, where thekth component of∇TA−B(p;ws) is less than−1.Because no such
term exists,a type-5 voter has no available strategic behavior.

Now consider the fate of a type-4 voter. Again, because the product of the fourth
components of∇TA−B(p;ws) andd4→k is s, this voter needs to vote like a type-k
voter, where thekth component of∇TA−B(p;ws) is less than−s. So, this voter
can vote as a type-5 voter whered4→5 creates an equation (11) value ofs− 1; this
has the desired negative value ifs< 1. Alternatively, the type-4 voter can vote as
though type 6 whered4→6 creates an equation (11) value ofs− (1− s)= 2s− 1,
which is negative forws for s< 1

2.

THEOREM 2. In a three-candidatews election with sincere election outcome
AÂ B, only type-4 and -6 voters have strategic options to try to change the elec-
tion outcome. A type-4 voter can vote as though type-5 for ws procedures where
0≤ s< 1 and as though type6 for procedures where0≤ s< 1

2. The strategic op-
tions available to a type-6voter are to vote as though type5 for ws where0< s≤ 1,
and as though type4 for 1

2 < s≤ 1. For a strategic action to be successful, the elec-
tion tally must be sufficiently close to an A∼ B tie.
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In the same manner usinga ≥ 2 agents in a pure exchange economy, where each
has a utility function of the formU = xαyβ , a mapping can be constructed that
identifies the price equilibria with the coefficients. Thus, each leaf of this mapping
identifies all combinations of the coefficients that create a specified price equilib-
rium. Therefore, by using gradients to study possible changes in this foliation, we
can quickly identify all possible strategic actions.

3.3. Bayesian Updating

To see how the structure of foliations raises new questions, recall the essentials of
Bayesian updating. Observations are taken from a distribution with a probability
distribution functionf (x | θ), where parameterθ ∈ Ä has an unknown value. The
goal is to use the p.d.f.f (x | θ) and observations to determine the most likely
value forθ ∈ Ä.

To do so, start with aprior distributionξ(θ); this is a probability distribution over
Ä for the likely value ofθ. Once observationsx = (x1, x2, . . . , xn) are obtained,
the prior distribution is updated to obtain a refined,posterior distributionfor the
value ofθ according to the relationship

ξ(θ | x) ∝ f (x | θ)ξ(θ). (12)

It is clear from equation (12) that the form of the posterior distribution depends
upon the form of the p.d.f.f (x | θ) and the prior distributionξ(θ). So, certain
prior distributions conveniently simplify the analysis when the samples come from
certain distributions. For instance, iff (x | θ) is a Bernoulli distribution, then
the analysis of the posterior distribution becomes elementary by using a beta
distribution for a prior. This is because equation (12) becomes

ξ(θ | x) ∝ f (x | θ)ξ(θ) ∝ [θS(x)(1− θ)1−S(x)]θα−1(1− θ)β−1

whereS(x) is the number of “successes” inx. Because this representation requires
the posterior also to be a beta distribution, the computation of the posterior reduces
to adding the appropriate exponents. In other words, we can think of theconjugate
family of prior distributionsfor samples coming from a given p.d.f.f (x | θ) as a
family that is closed under sampling.

However, are these conjugacy classes mere conveniences, or do they have a
deeper meaning? This is a natural question to raise when Bayesian updating is
viewed from the perspective of foliations. To explain, it is not difficult to show
that with certain distributions, the Bayesian updating creates a foliation for the
space of continuous priors: Namely, just as an initial condition defines a particular
leaf for a differential equation, a prior identifies a leaf for the class of resulting
posterior distributions. Now, a natural question from dynamics concernsstability.
To illustrate, in the Scarf’s example of Figure 3b, the equilibrium point is unstable
because the motion on all nearby leafs moves away. On the other hand, the periodic
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orbit depicted by the circle isstable; all nearby orbits tend toward this periodic
orbit.

To definestability, then, we just need a foliation augmented with a sense of
direction. This we have with the Bayesian updating foliation; the prior defines the
leaf and the updating defines the motion along the leaf. Thus, stability becomes
a natural issue. In particular, replacing the circular periodic orbit from Scarf’s
example with a conjugacy class, a natural question isto determine which conjugacy
classes are stable in the sense that(in some metric) the posterior distributions from
other leafs tend to the conjugacy class with updating, and which conjugacy classes
are unstable. It is clear that the conjugacy classes that enjoy stability have value
and importance beyond convenience; in a real sense these conjugacy classes are
the “natural” choice. Conversely, an unstable conjugacy class offers convenience
at an expense; much like a pendulum standing upright, one should doubt whether
these classes capture any lasting, actual behavior.

4. DESIGNING FOLIATIONS

Because foliations partition information, we should expect that several issues and
tools from the social sciences revolve about the design of foliations. The basic
problem is to determine the kinds of structures that define foliations. Geometry
suggests two natural “differential” ways to accomplish this goal. A way to think
about them is to recall how level sets of a utility function can be described in terms
of derivatives; this is either by specifying at each point the tangent-plane for the
level set, or the gradient. Both approaches are used to determine foliations.

The tangent-plane approach can be viewed as describing a higher-dimensional
differential equation. Indeed, a common way to determine solutions of a differential
equation (

x

y

)′
=
(

f1(x, y)

f2(x, y)

)
(13)

is to plot at each point inR2 the tangent line defined by the right-hand side of
equation (13). To find the solutions, a collection of curves is sought so that

• passing through each point is a unique curve, and
• at each point, the tangent line to the curve is the specified line.

Each solution curve is a one-dimensional leaf; the set of all solution curves is the
foliation.

More generally, as a way to define ap-dimensional foliation, at each point in
a given space, specify ap-dimensional plane. This collection of planes is called
a p-dimensional distribution.The goal is to find a collection ofp-dimensional
submanifolds so that

• passing through each point is a unique submanifold, and
• at each point, the tangent plane of thep-dimensional surface agrees with the

specifiedp-dimensional plane.

https://doi.org/10.1017/S1365100599012055 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100599012055


FOLIATIONS 405

Each submanifold is ap-dimensional leaf; the set of all leafs is the foliation.
For a differential equation to admit a solution, it suffices to have a sufficiently

smooth right-hand side for equation (13). Unfortunately, this simple condition
does not suffice for higher-dimensional settings ofp-dimensional foliations; here,
more stringent requirements are needed to handle the many possible ways to orient
a plane. (As illustrated later, these extra requirements correspond to the added
conditions of the Strong Axiom of Revealed Preferences.) Namely, to define a
foliation, these tangent planes need to satisfy certain structural rules of how they
are stacked. For instance, it is clear that a Figure 2 type of configuration is not
permitted. After all, after smoothly positioning “lines” in a space, there is not much
flexibility for something to go wrong. However, accompanying the positioning of
planes are the stacking conditions needed to ensure that the different directions
agree. When a distribution satisfies these technicalintegrability conditions[see,
e.g., Spivak (1970) and Warner (1970)], it is called anintegrable distribution.

Rather than distributions, the emphasis of this paper involves the dual approach
where, rather than the tangent vectors, the set of vectors orthogonal to level sets is
specified. An advantage of using this approach is that it involves generalizations of
concepts, such as the gradient, that are familiar to most readers. A related advantage
of this dual approach comes from a standard goal in the design of foliations, which
is to find a function that defines the level sets. Because the gradient of such a
function is orthogonal to the level sets, the gradient must be in this set of normal
vectors. Therefore, this dual approach brings us at least one step closer to the
objective of finding a functional representation of a foliation.

4.1. Normal Vectors

A way to design utility functions is to specify, at each point inRm, the line defined
by the desired gradient direction. For instance, in a pure exchange economy, this
line is defined by the price vector. The goal is to find a collection of(m− 1)-
dimensional surfaces (the level sets) so that

• passing through each point is a unique(m− 1)-dimensional surface, and
• at each point the line defined by the gradient of the surface is the specified

line.

More generally, the normal vector approach assigns anm− p = q dimensional
vector space at each point in anm-dimensional manifoldM . (More accurately, this
vector space is in the tangent space ofM .) So, at each specified point ofM , this
vector space identifies all vectors orthogonal to the leaf of the foliation. Once these
orthogonal spaces are specified, the goal is to find a collection ofp-dimensional
submanifolds ofM so that

• passing through each point ofM is a unique submanifold, and
• at each point ofM , the submanifold has a uniquely defined tangent plane;

each vector in this tangent plane is orthogonal to each vector in the specified
q-dimensional plane.
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Each submanifold is ap-dimensional leaf; the set of all leafs is the foliation.
Just as a distribution must satisfy appropriate structural conditions to permit the

existence of an associated foliation, dual conditions exist for this setting. These
constraints impose appropriate restrictions on the choice of normal vector spaces
to ensure the existence of a solution foliation.

The motivation for these conditions uses the fact that, at least locally, the leafs
are level sets of a function. Therefore, start by examining the level sets of

F : Rn→ R. (14)

At any pointx, a normal for the particular level set is given by

∇F(x) =
(
∂F(x)
∂x1

, . . . ,
∂F(x)
∂xn

)
. (15)

In the co-dimension-one foliation setting characterized by equation (14), this gra-
dient defines the one-dimensional space of orthogonal vectors. Because it also is
well known, with sufficient smoothness, the mixed partials satisfy

∂

∂xi

[
∂F(x)
∂xj

]
= ∂

∂xj

[
∂F(x)
∂xi

]
for all i, j . (16)

Our concern is to go in the opposite direction; it is to start with a vector-valued
function

v(x) = (v1(x), . . . , vn(x)) (17)

and then determine whetherv(x) can be expressed as a gradient of some function.
As established in standard calculus courses, this is true, at least locally, if thev(x)
components in equation (17) behave in the manner indicated by equation (16). That
is, a sufficient condition for a functionF(x) to exist so that, in some neighborhood,
∇F(x) = v(x) is if the integrability conditions

∂v j (x)
∂xi

= ∂vi (x)
∂xj

(18)

hold for all i, j about each pointx. More generally, if a vector fieldv(x) satisfies
condition (18) at each point, thenv(x) defines a foliation, andv(x) serves as a
normal vector for the foliation. (Recall that a foliation is defined, but a function
that defines the foliation everywhere might not exist.)

It follows from the definition of a foliation that if the designated normal bundles
define a foliation, then it always is possible to find vectorsv(x) that satisfy equa-
tion (18). However, most choices ofv(x) donotsatisfy equation (18) even if they
do define a foliation. To explain this assertion, start with the foliation defined by
F(x, y) = x3y2 and the gradient∇F(x, y) = (3x2y2, 2yx3).Even after factoring
out the commonx2y from each component of∇F , the remaining smooth vector
functionv(x, y) = (3y, 2x) defines a normal vector for each leaf ofF ’s foliation.
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On the other hand, because

∂v1(x)
∂y

= ∂3y

∂y
= 3 6= 2= ∂2x

∂x
= ∂v2(x)

∂x
,

v(x) fails to satisfy equation (18).
This kind of problem occurs when finding foliations associated with constrained

optimization problems; as such, this failure of equation (18) is a natural concern
for economics. For instance, when optimizing an individual’s utility in a pure
exchange economy, the demandx at pricep satisfies

λp= ∇U (x).

Therefore, when using the demand to find the preferences, the unknown∇U (x)
can be replaced by the directionp(x) = (‖∇U (x)‖)−1∇U (x). As true with the
illustration, althoughp(x) may define the desired foliation, we must expectp(x)
to fail equation (18).

To correct this integrability problem, we could seek an appropriate function
f (x) so that f (x)v(x) doessatisfy equation (18). In designing a utility function,
this requires finding a functionf (x) = ‖∇U (x)‖ so that f (x)p(x) = ∇U (x).
However, seeking such an integrating factor tends to result in complicated partial
differential equations that are difficult to solve. Therefore, there is a crucial need
to find a computationally simpler approach. This is introduced next.

4.2. Ideals and Wedge Products

To handle the integrability concerns, concepts such as differential forms, wedge
products, and ideals are introduced.

Forms and wedge products.Recall from integral calculus that the differential
dxj can be viewed as a measure of an element of length—it captures the sense of an
incremental change in thexj direction. So, vector fieldv(x) = (v1(x), . . . , vn(x))
can be identified with aone-formby defining

v =
n∑

i=1

vi (x) dxi .

In this manner, a gradient∇F(x) is identified with the one-form

d F = ∂F(x)
∂x1

dx1+ · · · + ∂F(x)
∂xn

dxn. (19)

Higher-dimensional integrals from calculus standardly use terms such as
dx dy dzto measure rectangular increments of area, volume, etc. [See, e.g.,
Flanders (1989).] This differential term captures the sense of a volume given
by the orthogonalx, y, z directions. To handle the more subtle aspects when the
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natural area or volume measure may not be rectangular, or when it may change
structure with the base point, thewedge product∧ is used. This product can be
thought of as combining two incremental elements of length in different directions
by building in the appropriate trigonometric factors. One wedge-product rule is an
orientation whereby each of thetwo-forms

dxi ∧ dxj = −dxj ∧ dxi (20)

defines a two-dimensional element of area, but with different orientations. (The
orientation is important for, e.g., fluid flow problems where we need to know which
way the fluid is passing through an element of area of a surface.)

A convenient consequence of including this orientation is that it requiresdxj ∧
dxj to agree with−dxj ∧ dxj —the negative of itself. However, the expression
dxj ∧ dxj = −dxj ∧ dxj can be true only if

dxj ∧ dxj = 0.

This conclusion reflects the obvious fact that a two-dimensional area cannot come
from incremental changes in the same direction—area is not “length times length”;
it is “length times width.”

The wedge product also satisfies the usual distributive rules. Consequently, by
use of the wedge product, two-forms can be constructed from any 2 one-forms,
for example,ω1=

∑3
j=1 aj (x) dxj andω2=

∑3
j=1 bj (x) dxj , where

ω1 ∧ ω2 = (a1dx1+ a2dx2+ a3dx3) ∧ (b1dx1+ b2dx2+ b3dx3)

= a1dx1 ∧ (b1dx1+ b2dx2+ b3dx3)+ a2dx2

∧ (b1dx1+ b2dx2+ b3dx3)+ a3dx3 ∧ (b1dx1+ b2dx2+ b3dx3),

or, after collecting terms and using the orientation rules (20)

ω1 ∧ ω2 = (a2b3− b2a3)dx2 ∧ dx3

+ (a3b1− a1b3)dx3 ∧ dx1+ (a1b2− b1a2)dx1 ∧ dx2. (21)

To appreciate the type of area measured by this two-formω1 ∧ ω2, identify
ω1, ω2, respectively, with the vectorsV1 = (a1,a2,a3),V2 = (b1, b2, b3).At each
x the vectorsV1,V2 define a parallelogram with area given by the magnitude of
the vector

V1× V2 =
∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3− b2a3,a3b1− a1b3,a1b2− a2b1) (22)

whereei represents the unit vector with unity in thei th component. The identi-
fied combination ofaj , bi components captures the necessary trigonometric terms
required to compute this area. It is no accident that the coefficients in equations (21)
and (22) agree. [To achieve agreement,dx3∧ dx1 is used in equation (21) instead
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of dx1∧ dx3. To have agreement with the right-hand rule of the cross product, the
dx3 ∧ dx1 term represents thee2 direction.] Thus, this two-form captures an area
element defined by the parallelogram, but it is an area element that can change
with x.

In general, the two-dimensional area element

ω1 ∧ ω2 =
(∑

ai dxi

)
∧
(∑

bj dxj

)
=
∑
i< j

(ai bj − bi aj )dxi ∧ dxj (23)

has the same meaning. In part, this can be seen by the fact that it has a determinant
interpretation for each coefficient. To see this similarity, fori < j let Ai, j be the
2× 2 determinant using thei th and j th columns from(

a1 a2 · · · an

b1 b2 · · · bn

)
.

Then,
ω1 ∧ ω2 =

∑
i< j

Ai, j dxi ∧ dxj .

In the same fashion, thek-form ω1 ∧ ω2 · · · ∧ ωk formed from the indicated
k one-forms computes thek-dimensional volume element defined by thek vec-
tors that are naturally associated with thek formsωi , i = 1, . . . , k. Because the
k-dimensional volume is nonzero if and only if thek vectors are linearly inde-
pendent, an important consequence of this interpretation is that thek one-forms
{ω j }kj=1 arelinearly independentatx if and only if

ω1(x) ∧ ω2(x) ∧ · · · ∧ ωk(x) 6= 0. (24)

Ideals. Starting with specified forms{ω j }kj=1 and using algebraic combina-
tions such asf1(x)ω1+ f2(x)ω2, where smooth functions are used as coefficients
and wedge products create a mathematical object that is more general than a vector
space. This construct, known as anidealplays a central role in our considerations.

DEFINITION 3. The Ideal generated by the one-formsω1, . . . , ωk, denoted by
I =〈ω1, . . . , ωk〉, is the collection of all possible forms that can be obtained with
wedge products of forms withω1, . . . , ωk and any linear combination where the
coefficients are smooth functions. If

ω1 ∧ ω2 ∧ · · · ∧ ωk 6= 0,

then the ideal is said to have dimension k.

To illustrate withR4 with variables(x, y, z, u), the ideal〈dx, dy〉 consists of
all one-forms f (x, y, z, u) dx+ g(x, y, z, u) dy, all forms of the typedx ∧ dz,
dx ∧ du, dy∧ dz, dy∧ du, dx ∧ dy, dx ∧ dz∧ du, etc. along with all linear
combinations with smooth functions as coefficients. The definition of dimension
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in Definition 3 comes, of course, from equation (24). To obtain a sense of how
ideals assist in understanding foliations, start with the fact that, according to the
implicit function theorem, the two functions

F1(x, y, z, u) = x2u2z3, F2(x, y, z, u) = u4y2x3 (25)

define a two-dimensional foliation inR4: Each leaf is the intersection of a level set
from each function. At each point of each leaf of the foliation, the space of normal
vectors is spanned by

v1 = ∇F1
/
(2xuz2), v2 = ∇F2

/
(u3yx2). (26)

However, starting withv1 andv2 or, even worse, starting with some functional
combinations

w1(x, y, zu) = f1(x, y, z, u)v1+ f2(x, y, z, u)v2,

w2(x, y, z, u) = g1(x, y, z, u)v1+ g2(x, y, z, u)v2,

there is no way (yet) to determine whether they define a foliation. Most surely
neither vector (in either case) satisfies the equation (16) integrability condition.
Moreover, we have yet even to discuss the kinds of integrability conditions needed
when the normal directions have a higher dimension.

To resolve this difficulty, letω j be the one-form associated withv j , j = 1, 2.
By definition of the idealI =〈ω1, ω2〉, any functional multiple ofω1 is in I . In
particular, the appropriate (but, in general, unknown) multiple 2xuz2ω1= d F1 is
in I . Because the same argument shows thatd F1, d F2 ∈ I , this suggests that
the sought-after integrability conditions might be obtained in terms of the more
general structure of the ideal. This is the case.

A far more complicated setting is whereω1, ω2 are defined by the abovew1,w2.
It is highly unlikely that the unknown formsd F1, d F2 can be discovered with any
amount of algebraic manipulation. However, this is not necessary. Just the fact that
the ideal includes all possible algebraic combinations with all possible smooth
functions still ensures thatd F1, d F2∈ I . Again, as outlined next, integrability
conditions exist for this setting that are defined in terms of thestructureof the
ideal.

Exterior derivative. As the simpler equation (16) suggests, we must suspect
that integrability conditions are expressed in terms of the higher derivative con-
ditions. This is because, although the first-order derivatives describe the tangent
plane, the second-order conditions describe how these planes move. As such, it is
clear that some combination of these derivatives is needed to capture the required
stacking condition of a foliation.

In general, integrability conditions involve theexterior derivative, which is
defined as follows [see, e.g., Spivak (1970), Warner (1970), and Flanders (1989)]:
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Given a formω= ∑n
j=1 aj (x) dxj , define

dω =
n∑

j=1

[daj (x)] ∧ dxj (27)

where, from equation (19),

daj (x) =
n∑

i=1

∂aj (x)
∂xi

dxi .

Applying this exterior derivative toω = d F leads to

dω = d2F = d

[
∂F(x)
∂x1

]
∧ dx1+ · · · + d

[
∂F(x)
∂xn

]
∧ dxn

=
∑
i< j

(
∂2F

∂xi ∂xj
− ∂2F

∂xj ∂xi

)
dxi ∧ dxj . (28)

Because the mixed partials must agree, we haved2F ≡ 0. In other words, the
orientation rule of the wedge product, along with the fact that mixed partials are
equal, forces all of the terms to cancel. This leads to the valuable fact thatd2≡ 0.

Important for our considerations is the fact that the converse of thed2F ≡ 0
assertion also is true;if

dω ≡ 0, (29)

then, at least locally,ω = d F for some function F.This is just the integrability
condition (16) expressed in terms of differentials.

To indicate how this ideal structure provides a simpler way to find the more
general integrability conditions, start with the weaker integrable situationω =
h(x) d F(x)where bothh(x) 6= 0 andF are unknown functions. The new problem,
then, is to identify when a givenω can be expressed as

ω = h(x) d F(x). (30)

For intuition, start with the desired setting of equation (30) and differentiate.
According to the product rule,

dω = dh∧ d F + hd2F = dh∧ d F.

Unfortunately,dω still involves the unknown functionsh and F . To find an ex-
pression not dependent uponh andF , use the assumptionω= h(x) d F to obtain
d F= h−1ω, or that

dω = (h−1d F) ∧ ω. (31)

So, if dω has the equation (31) form, we must expect the existence of unknown
functionsh andF that satisfy equation (30). Unfortunately, equation (31) also de-
pends upon the unknown functions, and so, to eliminate them from the expression,
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represent(h−1(x) d F(x)) as an unknown one-formβ. Thus, with the resulting new
representation of equation (31), we must expect that ifdω can be represented as

dω = β ∧ ω (32)

for some one-formβ, then there exist appropriate functions allowing equation (30)
to hold.

However, determining whether equation (32) holds can still involve consider-
able, nontrivial algebraic computations. The wedge product, however, helps to
avoid these difficulties. For intuition, notice thatβ ∧ω represents an area element
that includes the direction associated withω. Therefore, the three-dimensional
volume determined byβ ∧ ω andω must be zero. This observation is supported
by the computation

ω ∧ dω = ω ∧ (h−1dh∧ ω) = −h−1dh∧ (ω ∧ ω) ≡ 0

(Recall thatω∧ω ≡ 0; this is becauseω∧ω corresponds to an area element of a
degenerate parallelogram.)

The important fact is that the converse holds;if ω= ∑n
j=1 aj (x) dxj satisfies

ω ∧ dω ≡ 0, (33)

then, at least locally, equation(30) holds. Namely, if equation(33) holds, there
exist functions h(x), F(x), so that, at least locally, one has the integrable setting
h(x)ω= d F.

To illustrate, to determine whetherω = 2yz dx+ 3xz dy+ 4xy dzdefines a
two-dimensional foliation, it suffices to determine whetherω ∧ dω ≡ 0. Because
dω = z dx∧ dy+ 2y dx∧ dz+ x dy∧ dz, a direct computation proves that this
is true.

Note that equation (33) is a compact representation that includes as a special case
a standard integrability condition used in economics. To see this for the special case
of n= 3 and a vector fieldp(x)= (p1(x), p2(x), p3(x)), the associated one-form
isω= ∑3

j=1 pj dxj . The integrability conditions from equation (33) become the
standard

p3

(
∂p2

∂x1
− ∂p1

∂x2

)
+ p2

(
∂p1

∂x3
− ∂p3

∂x1

)
+ p1

(
∂p3

∂x2
− ∂p2

∂x3

)
= 0

requirements found in, for example, Samuelson (1950), Varian (1978), etc.

Differential ideals. It remains to express conditions of equation (33) and its
generalization to any dimensions in terms of the structure of ideals. This is accom-
plished by adding a generalized form of condition (33) to the earlier structure of
an ideal.
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DEFINITION 4. A k-dimensional ideal I=〈ω1, . . . , ωk〉 is called a differential
ideal if the k-form independence condition

r = [ω1 ∧ ω2 ∧ · · · ∧ ωk] 6= 0 (34)

is satisfied along with the following integrability condition:

dω j ∧ r = dω j ∧ [ω1 ∧ ω2 ∧ · · · ∧ ωk] ≡ 0 for j = 1, . . . , k. (35)

The importance of Definition 4 is that it completely characterizes (smooth)
foliations.

THEOREM 3 (Frobenius).Associated with a smooth p-dimensional foliation
in a(smooth)m-dimensional manifold M is a k= (m− p)dimensional differential
ideal I . Each one-form in I can be identified with a vector field that, at each point,
is orthogonal to a leaf in the foliation.

Conversely, a smooth k-dimensional differential ideal I defines a p=m− k
dimensional foliation. Each one-form in I can be identified with a vector field
that, at each point, is orthogonal to a leaf in the foliation.

This important conclusion is a differential-form version of the Frobenius theo-
rem. See Spivak (1970) or Warner (1970) for a proof.

Example. To illustrate the use of Theorem 3, suppose the goal is to determine
whether the two vector fields

w1 = (5yzu, 2xzu, 3xyu, 6xyz), w2 = (3yu, 2ux, 0, 4xy)

define the normal bundle for each point of a two-dimensional foliation. Because
neither vector satisfies condition (16) use Theorem 3 by representing these vector
fields as the differentials

ω1 = 5yzu dx+ 2xzu dy+ 3xyu dz+ 6xyz du,

ω2 = 3yu dx+2ux dy+ 4xy du.

To determine whetherI = 〈ω1, ω2〉 is a differential ideal, notice that because

r = ω1 ∧ ω2 = 4xyzu2 dx∧ dy− 9xy2u2 dx∧ dz+ 2xy2zu dx∧ du

− 6x2yu2 dy∧ dz− 4x2yzu dy∧ du+ 12x2y2u dz∧ du

is nonzero, the independence condition is satisfied. Because

dω1 = −3zu dx∧ dy− 2yu dx∧ dz+ yz dx∧ du+ xu dy∧ dz

+ 4xz dy∧ du+ 3xy dz∧ du,

a computation proves that

dω1 ∧ r = [(−3)(12)− (−2)(−4)+ (1)(−6)+ (1)(2)− (4)(−9)

+ (3)(4)]x2y2zudx ∧ dy∧ dz∧ du≡ 0.
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Similarly, becausedω2=−u dx∧ dy+ y dx∧ du+ 2x dy∧ du, a computation
proves thatdω2 ∧ r ≡ 0.

Thus, because〈ω1, ω2〉 is a differential ideal, it follows from Theorem 3 that the
two vector fieldsw1,w2 define a two-dimensional foliation. (The space{w1,w2}
span at each point contains all possible normal vectors.) Indeed,w1= 2yv1 +
zv2, w2 = v2 from equation (26), so the foliation is defined by the intersections of
the level sets of the two functions in equation (25).

5. APPLICATIONS

Certain applications of Theorem 3 follow immediately just from dimensional con-
siderations. A particularly important setting involves the design of one-dimensional
foliations in Rn—a setting closely related to dynamical systems. This is because
specifying a vector at each point is equivalent to specifying an(n−1)-dimensional
space of normal vectors. When the basis vectors are expressed in terms of the
one-forms and the idealI = 〈ω1, . . . , ωn−1〉, the dimensional condition requires
r = ω1∧· · ·∧ωn−1 to be a nonzero(n−1)-form. It remains to determine whether
I is a differential ideal.

Proving thatI is a differential ideal is immediate simply because eachdω j is a
two-form. Consequently,dω j ∧ r is an(n+ 1)-form. Because it is impossible to
have a nondegenerate(n+ 1)-dimensional element of measure in ann-dimensional
space, we have that

dω j ∧ r ≡ 0 for all j = 1, . . . ,n− 1.

In other words, the conditions of Theorem 3 are satisfied because of dimensional
considerations. Therefore, it follows that if the original vector field is smooth, then
it defines a one-dimensional foliation.

COROLLARY 1. For an n-dimensional manifold M, suppose there is a set of
(n− 1) smooth vector fields{v j (x)}n−1

j=1 (where eachvi (x) is in the tangent space
of M) so that at eachx ∈ M they span an(n− 1)-dimensional space. There exists
a one-dimensional foliation of M that is orthogonal to eachv j (x) at eachx ∈ M.

Geometrically, Corollary 1 means that the careful stacking problem required
for a foliation does not occur for one-dimensional foliations. However, it is easy
to use Theorem 3 to create examples where the same assertion fails even for
two-dimensional foliations or for co-dimension-one foliations. As an immediate
example, consider the vector field

v(x) = (y, z, x), (36)

which has a cyclic flavor. The corresponding one-form isω= x dz+ z dy+ x dz.
Even thoughv(x) andω are smooth, by usingdω = −dx∧ dy− dy∧ dz+
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dx∧ dz, it follows that

dω ∧ ω = (x + y+ z) dx∧ dy∧ dz 6= 0,

which proves thatI =〈ω〉 is nota differential ideal. Consequently, the associated
tangent planes defined by the normal vectorv(x) do not line up in a manner to
permit a two-dimensional foliation. Instead, the twist provided by the cyclic nature
of v(x) prohibits the planes from allowing solution manifolds.

5.1. WARP and SARP

Theorem 3 and Corollary 1 shed light on the widely discussed differences be-
tween the weak and strong axioms of revealed preferences. Recall how Samuelson
(1938) argued that decisions made by individuals capture their preferences. More
precisely, if at pricep1, bundlex1 was selected over bundlex2, which was afford-
able because(x2, p1) ≤ (x1, p1), then this individual has revealed the preferences
x1 Â x2.Consequently, a way to express the WARP is that ifp2 should be the price
associated with bundlex2, thenx1 is not selected only because it is too expensive;
that is,

x1 6= x2 and (x2, p1) ≤ (x1, p1)⇒ (x2, p2) < (x1, p2). (37)

In the special setting of two commodities, Samuelson (1950) showed how this
structure determines at each point (each commodity bundle)x a tangent line. He
then appealed to the theory of differential equations to establish the existence of
utility functions. To redescribe this formulation in terms applicable to Theorem 3,
notice that the tangent line throughx (the budget line) can be used to determine
the normal line at eachx; it is the line defined by the associated pricep(x). Just
from dimensional considerations, it now follows from Corollary 1 that in a two-
commodity setting, a smoothp(x) defines a co-dimension-one foliation–the leafs
of the foliation are the desired level sets of the utility function.

Can this same approach be used for higher dimensions? Samuelson’s arguments
show that, for any number of commodities, for eachx an associated pricep(x) is
defined which, in turn, defines the budget plane. However, doesp(x) or WARP
suffice to ensure the existence of the foliation? Houthakker (1950) claimed that
it does not “for although [Samuelson’s condition] can be derived from utility
considerations it does not entail integrability, which is an essential property of
utility functions.” Houthakker replaced Samuelson’s WARP with a Strong Axiom
of Revealed Preferences (SARP) requiring

If for every finite t and T(t = 1, 2, . . . , T) the inequality(pt−1, xt ) ≤ (pt−1, xt−1)

holds, and if there are numbers i and j such that0≤ i < j ≤ T andxi 6= x j , then
(pT , xT ) ≤ (pT , x0).

Houthakker then showed how replacing WARP with the stronger WARP estab-
lishes the existence of utility functions.
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Although SARP does establish the existence of utility functions, doubt remains
about Houthakker’s assertion that WARP is a necessary condition, but not suf-
ficient to satisfy the needed integrability conditions [e.g., Arrow (1959)]. Gale
(1960) resolved this question by constructing an example of a demand function
that satisfies WARP but is not integrable.

Without resorting to details, I now use Theorem 3 to offer intuition why WARP
works for two commodities but not for more. As described above by use of Corol-
lary 1, dimensional considerations combined with the smoothness ofp(x) imme-
diately ensure that the integrability conditions are satisfied for two commodities.
However, for three or more commodities, the stacking conditions require more of
p(x) as specified by the second derivative conditions.

The important point is that WARP is abinary condition; it compares two situa-
tions. Thus, as in the definition of a derivative

∂v(x)
∂xj

= lim
h→0

v(x+ hej )− v(x)
h

, (38)

whereej is the vector with unity in thej th position,binary comparisonscan be used
to approximate tangent vector positions. Indeed, this observation and equation (38)
are consistent with the spirit of Samuelson’s argument.

However, separated binary comparisons cannot be used to approximate second-
derivative conditions. This is because, to obtain such approximations, more terms
are needed. To see what they are, by usingh and−h with

v(x+ hej )− v(x) = h
∂v(x)
∂xj
+ h2

2

∂2v(x)

∂x2
j

+ O(h3)

and adding the results leads to

∂2v(x)

∂x2
j

= lim
h→0

v(x+ hej )− 2v(x)+ v(x− hej )

h2/2
.

(Similar expressions can be derived for the other partial derivatives.) The extra
comparisons needed to approximate the higher-order derivative terms are ensured
by SARP; indeed, this observation also is in the spirit of Houthakker’s argument
(but which used integrability conditions different from Theorem 3). So, although
WARP provides information aboutp(x), not enough terms are involved to deliver
the required information about the change inp(x); that is, aboutdp(x). The added
information required to use results such as Theorem 3 requires the added terms
of SARP. I return to these differences between WARP and SARP in the brief
“foliation” outline of Arrow’s impossibility theorem (Section 5.3).

5.2. Statistics, Debreu, and Continuous Foliations

At this point, I should correct any thought that the differential approaches over
smooth surfaces are the only way to create useful foliations. One important example

https://doi.org/10.1017/S1365100599012055 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100599012055


FOLIATIONS 417

to the contrary comes from sufficient statistics, where the goal is to find an estimator
θ̂ for parameterθ ∈ Ä, which applies simultaneously for a given classP = {Pθ }
of distributions of a given random variableX.

By viewing this concern from the perspective of foliations, an approach becomes
clear. Because the object is to determine theθ value, we treat the distributions as
functions that implicitly defineθ as a function of the observations of the random
variable. However, once we recognize that a function can be defined, we know that
we should search for a foliation. This converts the goal to finding a foliation, or a
mappingT : Rm→Ä, whereT(x)= θ is based on observationsx= (x1, . . . , xm) ∈
Rm of the random variables. By construction, each leaf of the resulting foliation is
identified with a specificθ value. Thus, the characterization of the leaf identifies
the sufficient statistic. For instance, to find the probability of heads by spinning
a coin 200 times, each leaf has all possible ways that the same number of heads
occurs.

It remains to characterize these leafs, or sufficient statistics. According to The-
orem 3, we should seek an answer in terms of a differential expression. Unfortu-
nately, many of the data spaces do not admit the clean differentials of Theorem 3.
However, by using generalized versions of derivatives and the structure of folia-
tions, we should anticipate that the widely usedfactorization criterionis expressed
with derivative conditions related to those of Theorem 3. [See Savage (1954) and
Lehmann (1986) for the precise statements.]

Another important example illustrating the importance of nondifferentiable fo-
liations comes from Sonnenschein’s (1972, 1973) concern about whether an ag-
gregate excess demand must satisfy properties other than the usual Walras laws.
The importance of this question can be seen from the usual “Invisible Hand Story,”
if this story is true, then all aggregate excess demand functions must satisfy ap-
propriate conditions, or, to prevent the price mechanism from experiencing highly
chaotic behavior, the aggregate excess demand function must satisfy appropriate
properties.

Mantel (1974) improved upon Sonnenschein’s results, and then Debreu (1974)
found a particularly sharp result for this Sonnenschein–Mantel–Debreu conclu-
sion, which asserts that, essentially, with at least as many agents as commodities,
the aggregate excess demand function can be anything; it need not satisfy any other
conditions. Thus, all of the negative scenarios that I suggested can occur.

THEOREM 4 [SMD; Debreu (1974)]. Assume that there are c≥ 2 commodi-
ties and assume that the prices are normalized to have Euclidean length1. Let
f (p) be a continuous, tangential vector field on Sc−1

+ . For anyε >0, an example
can be created of an initial endowment and convex preferences for each of a≥ c
agents so that for any pricep, where each pj ≥ ε, the aggregate excess demand
functionξ(p) equals f(p).

The “continuity” assumption of Theorem 4 makes the result more difficult
to prove; namely, rather than designing utility functions that generate asmooth
foliation, Debreu tackled the more challenging task of designing utility functions
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that determinecontinuousfoliations. Because smoothness is explicitly not as-
sumed, the tools of Theorem 3 are not applicable.

It is worth outlining the approach that Debreu created to construct the needed
foliation. To understand the first step, start by considering three agents, where the
initial endowment for each is all of one of the three commodities. Thus, at any
price, each agent’s demand is some combination of the other two commodities.
Therefore, by adjusting the individual demands, it is easy to show that the sum
can be made to agree with any desired aggregate vector. In the reverse direction,
by treating a vector as a sum of individual demands coming from agents of this
type, it becomes possible to take a given demand function and construct individual
excess demands with a simpler structure.

With technical arguments of this type, individual demands can be constructed
from a given demand function, which have certain desired properties such as
WARP. The important fact is that each pointx on the individual excess demand
function is identified with a uniquep(x). So, the first step of designing a utility
function is to consider the surface of a sphere passing throughx, where the center
of the sphere is sufficiently far in the directionp(x). The radius is chosen to ensure
that the surface does not hit the demand function in any other place. Then, more
complicated arguments involving smaller spheres are used to ensure that the level
sets do not cross.

So, the Sonnenschein–Mantel–Debreu result implies that anything can occur.
For instance, rather than converging to an equilibrium, the usual “supply and de-
mand” story captured by the equation

p′ = ξ(p)

can be far wilder than Scarf’s example; it can exhibit any desired chaotic behavior
(which is allowed by the dimensionc− 1 of the unit price sphere). On the other
hand, if we know the aggregate excess demand function for the economy ofc
commodities, then what does this tell us about the associated economy of(c− 1)
commodities? (Assume that there is a commodity that each agent must hold for,
possibly, individual consumption; or, going in the opposite direction, assume that
we are comparing the “before” and “after” story when a new commodity is offered
on the market.) For instance, if the original economy is well behaved in the sense
thatξc(pc) (where the subscript identifies the number of commodities) satisfies the
highly restrictive “gross substitutes” condition, can the associated but restricted
economy become highly random in the sense that the solution to

p′c−1 = ξc−1(pc−1)

is highly chaotic? It can.

THEOREM 5 (Saari 1992).For c≥ 3 commodities, let S1, S2, . . . , S2c−(c+1)

denote all possible subsets of two or more commodities. For set Sj , let fSj (pSj )

be a continuous, tangential vector field on the unit price sphere for commodities
in Sj ; j = 1, . . . ,2c − (c+ 1). For anyε >0, an example can be created of an
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initial endowment and convex preferences for each of a≥ c agents so that for each
subset of commodities Sj and any pricepSj , where each pj ≥ ε, the aggregate
excess demand functionξSj (pSj ) equals fSj (pSj ).

In other words, once there are at least as many agents as commodities, there need
not be any relationship whatsoever among the aggregate excess demand functions
of the different subsets of commodities! Although the proof of this theorem is
technically difficult, by appealing to the structure and theory of foliations, The-
orem 5 becomes a natural, even expected, extension of Theorem 4. To explain,
notice that Debreu’s construction specifies the position of only one point for each
leaf (each indifference set); Consequently, away from the specified point, the rest
of the leaf is free to be molded to satisfy a large class of other conditions. So, by
using this freedom to use a Debreu-type construction to design the other portion of
the leafs in a manner that ensures that the aggregate excess demand for each subset
of commodities is the desired one, we have to expect a result like Theorem 5. All
that remains is to develop a global, connecting argument that glues the different
portions together into one foliation structure.

5.3. Discrete Foliations and Arrow’s Theorem

The social sciences also uses foliations that are more general than the continuous
ones described earlier. For instance, a major social choice goal is to discover a wel-
fare function that satisfies appropriate properties. Whenever the desired function
exists, it defines a foliation. Each leaf is one of the level sets of the social welfare
mapping. If the domain of voters’ preferences is a discrete space, then adiscrete
foliation results.

So, a first step in this social choice goal of finding a social welfare function is to
determine whether an appropriate foliation exists. In a setting of smooth foliations,
tools such as the Frobenius result can be used. However, although Theorem 3 is
not applicable when the underlying space is discrete, the structure of foliations can
provide valued assistance. To illustrate, I outline a foliation approach to analyze
Arrow’s impossibility theorem (1963). [Details are in Saari (1995b).]

THEOREM 6 [Special case of Arrow (1963)].Suppose there two voters,
each of whom has a complete, strict, transitive ranking of the three alternatives
{A, B,C}. Suppose they use a decision rule F that satisfies the following:

(i) The societal ranking of the three alternatives always is transitive.
(ii) For each pair, if the two voters rank the pair in the same way, then that is the societal

ranking of the pair.
(iii) In fact, the societal ranking of each pair is strictly determined by each voter’s relative

ranking of the pair.

The only procedure satisfying this condition is where the outcome is strictly deter-
mined by one of the voters.

In designing a proof, notice that the third condition allows the desired mapping
F to be described in terms of three mappings{FA,B(p), FB,C(p), FA,C(p)},where
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FIGURE 5. Foliation for Arrow’s theorem.

each map defines the societal ranking for the indicated pair of alternatives. This
means that each leaf ofF is defined by the intersection of the appropriate leafs of
each of the three binary outcome functions. To represent these rankings, the three
equilateral triangles of Figure 5 are used. The ranking identified with a point in
the triangle is determined by its distance to each of the labeled vertices, where
“closer is better.” Thus, each of the six smaller triangles within each large triangle
corresponds to a particular strict, transitive ranking of the alternatives; for example,
the small triangle on the right with a 1 representsA Â B Â C, whereas the ranking
with a 4 representsC Â B Â A.

The two possible societal rankings for{A, B} define two leafs in the foliation
determined byFA,B. For instance, the second condition requires the leaf associated
with the societal outcomeA Â B to contain the setting where each agent has this
same ranking. For either agent, thisA Â B region is the large right triangle where
one leg is the vertical bisector.

The leaf structure is influenced by assuming that not one agent makes all deci-
sions. It means that for each agent, a situation exists in which the agent determines
the societal outcome for a particular pair. Without loss of generality, assume that
when agent 2 prefersBÂ A, then agent 1’s preferences determine the{A, B}
outcome. Similarly, assume that when agent 1 prefersBÂC, then agent 2’s pref-
erences determine the{B,C} outcomes.

This assumption specifies properties of leafs for two pairs of alternatives. Tak-
ing their intersections, we find, as indicated by the arrows in Figure 5, that both
conditions can be satisfied simultaneously. For instance, if the first agent moves
between the two indicated ranking regions, she keeps theB Â C ranking, but
changes her{A, B} ranking to change the{A, B} societal outcome. Similarly, by
the second agent moving between the two indicated rankings, he satisfies the spec-
ified conditions while changing the{B,C} societal outcome. Two facts about this
foliation are important:

(1) Each agent can change rankings independent of what the other agent does.
(2) The moves for each agent stay in the same{A,C} ranking region, and so, by the third

condition, the societal{A,C} outcome remains fixed for any combination of these
changes.

To complete the proof, choose preference (on the arrows) where the first agent
forces anAÂ B societal outcome at the same time the second agent forces a
BÂC conclusion. According to Figure 5, the intersection of these two regions
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requires the societal ranking to beAÂ BÂC, as indicated by 1. Similarly, there
are other preferences where each voter forces the opposite conclusion; this forces
the societal outcome to be in region 4, or to have aCÂ BÂ Aconclusion. However,
even though each voter kept the{A,C} ranking fixed, the outcome changed. This
contradiction means that some voter is a dictator in the societal decisions.

As a parting comment, note that the third condition prevents sufficient infor-
mation from being used to ensure a transitive societal outcome. The reason, as
true with WARP, is that binary information is not sufficient to capture the desired
structure. In fact, for almost the same conceptual reasons that WARP needed to be
replaced by SARP, once the binary assumption in Arrow’s theorem is replaced by
adding some information about other alternatives, positive conclusions occur.

5.4. Who Says What to Whom?

As a final, somewhat more complicated, example of how Theorem 3 can be used
to identify the kinds of information needed to achieve a desired goal, I use the
message systems introduced by L. Hurwicz [e.g., see Hurwicz (1960, 1986)] and
advanced by Mount and Reiter (1974) and many others. As an oversimplification,
consider the solutions concepts based on the parameters of the agents; for example,
the set of Walrasian equilibria is determined by individual preferences and initial
endowments. An idealized setting describes the outcomes as a mapping

P : Rk1 × · · · Rka → RA (39)

whereRkj is thekj -dimensional space of parameters characterizing thej th agent,
j = 1, . . . ,a; RA is the space of allocationn; and theperformance function P
identifies the agents’ characteristics with the desired allocation (as given by the
solution concept).

The question is to understand how this outcome can be realized. Clearly, the
agents need to convey information about their individual characteristics, but what
information, and to whom? Moreover, the type and kind of information needed
from each agent changes with the performance functionP. So, relative to the
choice ofP, we need to characterize “who says what to whom” in a manner that
allows theP outcome to be achieved.

At this stage, the kinds of information as well as the manner in which the
information is to be conveyed remain unknown. To provide structure that suggests
how to tackle this issue, letm j be the yet-to-be-determined message that thej agent
communicates about his characteristicsx j ∈ Rkj . This message belongs to a yet-
to-be-determined message spaceM . Althoughm j must depend upon the agent’s
characteristicsx j ∈ Rkj , it also may depend upon what the other agents say. So,
assume thatm j is implicitly defined from the yet-to-be-determined equation

G j (x j ;m1, . . . ,m j , . . . ,ma) = 0, j = 1, . . . ,a. (40)

In other words, what thej th agent communicates about his characteristics,
m j is implicitly determined by (the unknown)G j . The message spaceM is the
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FIGURE 6. Mount–Reiter message diagram.

set of all possible(m1, . . . ,m j , . . . ,ma). Notice how this structure can generate a
dynamic; this is a natural consequence of the fact that what one agent communicates
can change another agent’s message. So, concentrate on theequilibrium messages
(m1, . . . ,m j , . . . ,ma) ∈ M , which simultaneously satisfies all equationsG j , j =
1, . . . ,a, in system (40).

If the equilibrium message is to achieve its purpose, it must determine the
“correct” allocation; Thus, for this communication structure to achieve the stated
goal, there must exist a mappingH : M → RA so thatH(m1, . . . ,m j , . . . ,ma) =
P(x1, . . . , xa). In terms of a diagram, we seek mappings{G j }, an appropriate
message spaceM , and a mappingH so that the natural diagram [of a type probably
first used by Mount and Reiter (1974)] in Figure 6 commutes.

Even for a relatively simple choice of a performance functionP, it is not clear
how to design the associated message system [(G1,G2, . . . ,Ga),M, H ]. How-
ever, guidance comes from Figure 6:

(1) The level sets ofP define a foliation for the product spaceRn1 × Rn2 × · · · × Rna . In
particular, each leaf identifies all appropriate combinations of agents’ characteristics
that give rise to the specified allocation.

(2) HoweverH may be defined, it generates a foliation on the (yet to be determined)
message spaceM . Each leaf identifies all possible equilibrium messages that give
rise to the specified allocation.

(3) According to equation (40), eachG j defines a foliation inRnj . Each leaf is the set
of the j th agent’s characteristics that give rise to the messagem j . So, each leaf from
this foliation identifies the kind of information needed from this agent to realize the
performance functionP; it identifies all of the agent’s characteristics that provide the
same outcome.

(4) Condition 3 provides an interpretation for the messagem j ; it is nothing more than a
label identifying the particular leaf of characteristics of thej th agent. This, however,
introduces a technical problem. If a message just identifies a leaf of thej th agent’s
characteristics, and if [as allowed by equation (40)] each message can depend upon
other agents’ messages, then, rather than residing inRnj , the j th agent’s foliation is
in the product spaceRn1 × Rn2 × · · · × Rna . In turn, conditions must be imposed
to ensure that each agent’s message depends upon the agent’s characteristics and not
that of the other agents. Hurwicz (1960) calls thisprivacy preserving.

(5) The agents’ characteristics define both theP outcome and the messages that each
agent conveys, and so, that each leaf defined by eachG j is in the appropriate leaf ofP.
This connection among the foliations captures the assertion that Figure 6 commutes.

Because this structure can be described with foliations, this suggests that in-
formation about the unknown message network can be discovered by using the
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differential approach for the design of foliations. This approach was started by
Hurwicz et al. (1978) [also see Saari (1995a) for some of the history] with the
distribution approach; that is, our earlier arguments used the tangent-plane ap-
proach. What I outline next is a later approach using differential ideals and The-
orem 3 that was developed in Saari (1984, 1995a). Because my goal here is to
illustrate the use of foliations, I only outline how to incorporate the main aspects
of the model.

A foliation needs to be determined for each of thea agents, and so, letI j , j =
1, . . . ,a, denote the ideal that determines thej th agent’s foliation. The design
problem is to determine the entries in eachI j . A first entry reflects that the purpose
of the message system is to realize the performance function; thus condition 5
requires

d P = (d P1, . . . ,d PA) ∈ I j , j = 1, . . . ,a. (41)

This condition forces each agent’s message to be related to the specified goal of
P.

Next, we need to ensure the privacy-preserving condition that thej th agent’s
messages are independent of the other agents’ characteristics. To be independent,
the characteristics of the other agents must be orthogonal to each leaf of thej th
agent’s foliation. Thus, ifxi

k is a component of another agent’s characteristics, then
dxi

k ∈ I j . So, if [dx] j denotes the set of differentials of all coordinate functions
exceptthose of thej th agent, then

I j ⊃ 〈[dx] j 〉. (42)

Because any linear combination of entries in an ideal are also in the ideal, condi-
tions 42 and 43 allow for a reduction. To explain by usingd P = (d P1, . . . ,d PA) ∈
I j , recall that each coordinate function, for example,d P1, is a sum involving the
differentials of coordinates for thej th agent’s characteristics and a sum involving
differentials of all other coordinates:

d P1 =
∑

k

∂P1

∂xk
j

dxk
j +
∑

i

∑
s

∂P1

∂xs
i

dxs
i .

Because the second summation is a linear combination of privacy-preserving terms
[dx] j already entered intoI j , this summation can be eliminated. Thus, only the
sum ∑ ∂P1

∂xk
j

dxk
j

has any relevance forI j . Denote this sum asdj P1, and letdj P = (dj P1, . . . ,dj PA).

We then have
I j ⊃ 〈dj P; [dx] j 〉. (43)

So far, the design only describes conditions for each agent, but it imposes no
conditions ensuring aneffective interaction; for example, a condition is needed to
ensure that thej th agent’s message helps and coordinates with the other agents’
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messages in realizingP. Because this coordination is intended to capture the
sense of how agent’s messages interact in condition (40), it requires the foliations
from the different agents to define another foliation. To understand the associated
condition, notice that each agent’s foliation corresponds to the level sets ofG j ,
so the foliation for alla agents must correspond to a foliation defined by the set
[G1,G2, . . . ,Ga]. This places emphasis on the ideal

I = ∩n
k=1Ik. (44)

Based on the entries determined for eachI j , so far we have thatI ⊃ 〈d1P, . . . ,
dn P〉.

Finally, equation (40) requires the message systems to be based on theG j

functions, and so, the appropriateintegrability conditionsmust be imposed to
ensure that the ideals define foliations. This means that{I j }nj=1 and I need to be
differential ideals. It is easy to show that ifI is a differential ideal, then so are
the idealsI j . Therefore, the mechanism design problem hinges on whetherI is
a differential ideal. This is not a mere technical detail; as I indicate next, it is the
crux of the design problem. After all, the integrability ofI determines whether or
not it is possible to coordinate the agents’ messages to realizeP.

It is overly optimistic to believe that just the preceding entries suffice. The more
common experience is thatI isnota differential ideal. When this happens, it means
that the information needed from the agents is so interconnected that, rather than
just a single message from each agent, several are needed; for example,m j is a
vector rather than a scalar. From a technical approach, this obstacle requires adding
more one-forms to appropriateI j ideals. This is as far as the analysis is carried
out here. However, although it is not immediate how to find the new entries, notice
that we already have discovered information about the complexity of the message
system and that the search for these extraω forms is assisted by conditions already
imposed on the ideals, such as requiring them to be differential ideals. [A more
detailed discussion of this point and how to discover the appropriateω forms is in
Saari (1995a), where ideas from Gardner (1968) are used.] When theseω forms
are found, then the associated consequences are specified in the following basic
conclusion. [A related result described in terms of distributions is in Hurwicz et al.
(1978).]

THEOREM 7 [Privacy-Preserving Characterization Theorem, Saari (1984)].
Let

P :
a∏

j=1

Rkj → RA

be a smooth performance function. The following are necessary and sufficient
conditions that a privacy-preserving message system with a message space of
dimension

dim(M) =
n∑

j=1

nj
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exists that realizes P in a neighborhood ofx ∈∏ Rkj .

(i) For each j, there is a differential ideal Ij =〈dj P, ω j,1, . . . , ω j,sj ; [dx] j 〉, which is of
dimension nj +

∑
i 6= j ki . Theω j,i are smooth one-forms.

(ii) The set I= ∩n
j=1 I j is a differential ideal of dimension

∑n
j=1nj .

All sorts of extensions are possible. For instance, it now is possible to char-
acterize what happens if some information is shared among certain agents, or if
certain agents must pass their information to other specified agents, or if we wish
to model a dialogue in which some agents respond only after they receive further
information. [See, e.g., Saari (1984, 1988, 1990, 1995a).]

6. SUMMARY

We started with the assertion that foliations are almost everywhere. They are, and
this adds to their importance. This is because, by understanding when an issue is
a foliation, we also uncover new tools and ways to analyze the concerns.
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