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In the limit of vanishing viscosity, ν → 0, Kolmogorov’s two-thirds, 〈(�v)2〉 ∼ ε2/3r2/3,
and five-thirds, E ∼ ε2/3k−5/3, laws are formally equivalent. (Here 〈(�v)2〉 is the second-
order structure function, ε the dissipation rate, r the separation in physical space,
E the three-dimensional energy spectrum, and k the wavenumber.) However, for the
Reynolds numbers encountered in terrestrial experiments, or numerical simulations,
it is invariably easier to observe the five-thirds law. We ask why this should be. To
this end, we create artificial fields of isotropic turbulence composed of a random sea
of Gaussian eddies whose size and energy distribution can be controlled. We choose
the energy of eddies of scale, s, to vary as s2/3, in accordance with Kolmogorov’s 1941
law, and vary the range of scales, γ = smax/smin, in any one realization from γ = 25 to
γ = 800. This is equivalent to varying the Reynolds number in an experiment from
Rλ =60 to Rλ = 600. We find that, while there is some evidence of a five-thirds law
for γ > 50 (Rλ > 100), the two-thirds law only starts to become apparent when γ

approaches 200 (Rλ ∼ 240). The reason for this discrepancy is that the second-order
structure function is a poor filter, mixing information about energy and enstrophy,
and from scales larger and smaller than r . In particular, in the inertial range, 〈(�v)2〉
takes the form of a mixed power law, a1 + a2r

2 + a3r
2/3, where a2r

2 tracks the
variation in enstrophy and a3r

2/3 the variation in energy. These findings are shown
to be consistent with experimental data where the ‘pollution’ of the r2/3 law by the
enstrophy contribution, a2r

2, is clearly evident. We show that higher-order structure
functions (of even order) suffer from a similar deficiency.

1. Introduction
There are three diagnostic tools commonly used to give an impression of the

variation of energy with eddy size in isotropic turbulence. They are the three-
dimensional energy spectrum, E(k), the one-dimensional energy spectrum, F11(k),
and the second-order structure function, 〈(�v)2〉(r), defined as

E(k) =
1

π

∫ ∞

0

〈u · u′〉kr sin(kr) dr, (1.1)

F11(k) =
1

π

∫ ∞

0

〈uxu
′
x〉 cos(kr) dr, (1.2)

〈(�v)2〉 = 〈(u′
x − ux)

2〉, (1.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

09
92

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008000992


288 P. A. Davidson and P.-Å. Krogstad

where 〈u · u′〉(r) is the two-point velocity correlation measured at points separated
by the position vector r , r = |r |, and 〈uxu

′
x〉 is the longitudinal correlation function

measured at points separated by r êx . (Here êx is the unit vector in the streamwise
direction and u′

x − ux = ux(x + r êx) − ux(x).) However, it is well-known that all three
diagnostic tools give imperfect measures of the scale-by-scale energy distribution. For
example, consider an artificial field of turbulence composed of a sea of eddies (i.e.
blobs of vorticity) of fixed size �e. For simplicity we shall take the vortex blobs to
have a Gaussian velocity distribution,

u = Ωr exp
[
−2r2/�2

e

]
êθ ,

though the results would be little changed if we had chosen a different profile. (Here
êθ is the unit vector in the azimuthal direction.) If these eddies are randomly located
and orientated then we find (Davidson 2004)

E(k) =
〈u2〉�e

24
√

π
(k�e)

4 exp[−(k�e)
2/4]. (1.4)

Evidently, eddies of a given size contribute to all wavenumbers in E(k), their
contribution not being restricted to wavenumbers of order k ∼ 1/�e. Fortunately,
however, (1.4) is sharply peaked around k ∼ π/�e, and so this is a deficiency of E(k)
which is frequently overlooked. However, the shortcomings of F11(k) and 〈(�v)2〉
are not so readily dismissed. For example, it may be shown that (see, for example,
Monin & Yaglom 1975)

E(k) = k3 d

dk

[
1

k

dF11

dk

]
, (1.5)

F11(k) =
1

2

∫ ∞

k

[1 − (k/k∗)2]
E(k∗)

k∗ dk∗, (1.6)

and so F11(k) represents the weighted sum of E(k∗), integrated from k∗ = k to k∗ = ∞.
Thus F11(k) systematically and artificially shifts energy to small k, with F11(k) peaked
at k = 0. For example, for a random sea of Gaussian eddies of fixed size �e we find,
from (1.4) and (1.5),

F11(k) =
〈u2〉�e

6
√

π
exp[−(k�e)

2/4]. (1.7)

Evidently, in real turbulence, F11(k) provides a flawed measure of the distribution of
energy across the different eddy sizes.

The situation is no better with 〈(�v)2〉, where it is readily confirmed that, to a good
approximation, (Davidson 2004)

3

4
〈(�v)2〉(r) ≈

∫ ∞

π/r

E(k) dk + (r/π)2
∫ π/r

0

k2E(k) dk. (1.8)

In other words, 3
4
〈(�v)2〉 represents the energy held below scale r , plus (r/π)2 times

the enstrophy held above scale r . (See § 3, for a detailed discussion of this.) Thus
〈(�v)2〉 mixes information about energy and enstrophy, and information about scales
smaller and larger than r . So the usual interpretation of 〈(�v)2〉, as the cumulative
energy held below scale r (Townsend 1976; Landau & Lifshitz 1986) is, at best, a
crude approximation. More generally, we see that 〈(�v)2〉(r) is a very leaky filter,
admitting information from all scales.
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Of course, theoreticians, as well as those involved in numerical simulations, usually
work with E(k) or 〈(�v)2〉, while experimentalists are necessarily restricted to F11(k)
and 〈(�v)2〉, or similar one-dimensional quantities. In the limit of Reynolds number
Re → ∞, the differences between the various diagnostics is often unimportant in the
inertial range as a power law in E(k) gives rise to the same power-law exponent
in F11, and a corresponding power law in 〈(�v)2〉. For example, the five-thirds
law, E = αε2/3k−5/3, corresponds to F11 = α11ε

2/3k−5/3 and 〈(�v)2〉 =βε2/3r2/3, where
α = 0.761β = 55α11/9. However, at the finite values of Re encountered in numerical
simulations and experiments, a power law in E(k) need not correspond to clear power
laws in F11(k) or 〈(�v)2〉. So, in practice, one must be careful which diagnostic is
used. In boundary layer turbulence, for example, it has been shown that 〈(�v)2〉 is
significantly superior to F11(k) in identifying the range of eddies whose energy scales
on the shear velocity (Davidson, Krogstad & Nickels 2006).

In this paper we investigate the limitations of F11(k) and 〈(�v)2〉 in detecting
inertial-range energy distributions at finite Re. We also look at the limitations of
higher-order structure functions, such as 〈(�v)4〉. We start with a somewhat idealized
model problem, designed to expose the strengths and weaknesses of E(k), F11(k) and
〈(�v)2〉 as scale-by-scale measures of energy. We then examine experimental data
taken from grid turbulence, comparing the predictions of the model with the data.
The comparison is striking.

Our central finding is that, in the inertial range, 〈(�v)2〉 takes the form of a mixed
power law of the form

〈(�v)2〉 = a1 + a2r
2 + a3r

2/3, (1.9)

where a2r
2 tracks the scale-by-scale variations in enstrophy while a3r

2/3 follows the
variation in energy. The ‘pollution’ of the r2/3 law by a2r

2 is clearly evident in the
experimental data.

2. Deficiencies of the second-order structure function
2.1. An idealized model problem

In this section we examine a somewhat artificial model problem, designed to expose
the weaknesses in F11(k) and 〈(�v)2〉 which arise at finite Re. Consider an artificial
field of isotropic turbulence composed of a random sea of vortex blobs, which we
take to be Gaussian eddies, u = Ωr exp[−2x2/s2] êθ in (r, θ, z) coordinates. Let the
eddies be randomly but uniformly distributed in space, randomly orientated, and have
variable energy and size, s. Also, let Ê(s) be the energy density of the turbulence, in
the sense that Ê(s)ds gives the average kinetic energy held in the size range s → s+ds,
and

1

2
〈u2〉 =

∫ ∞

0

Ê(s) ds. (2.1)

Then it may be shown that (see Davidson 2004)

E(k) =

∫ ∞

0

Ê(s)s

12
√

π
(ks)4 exp[−(ks)2/4] ds, (2.2)

F11(k) =

∫ ∞

0

Ê(s)s

3
√

π
exp[−(ks)2/4] ds, (2.3)

3
4
〈(�v)2〉 =

∫ ∞

0

Ê(s)[1 − exp(−r2/s2)] ds. (2.4)
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Now we are interested in the consequences for E, F11 and 〈(�v)2〉 of truncating the
range of eddy sizes. Suppose, therefore, that the range of eddy sizes is restricted to
� < s < L, with a low L/� corresponding to a small value of Re, and a large L/� to
a high value of Re. Moreover, suppose that the kinetic energy held in each decade of
scale varies as the power law sn, i.e.

sÊ(s) =

{
κsn � < s < L

0, s < �, s > L.

Then (2.2)–(2.4) are readily integrated to give

I1(k) = E(k)/E∞(k) =
1

�(a)

∫ (kL/2)2

(k�/2)2
ta−1e−t dt, a = 1

2
(n + 5), (2.5)

I2(k) = F11(k)/F ∞
11(k) =

1

�(b)

∫ (kL/2)2

(k�/2)2
tb−1e−tdt, b = 1

2
(n + 1), (2.6)

3
4
〈(�v)2〉
〈u2〉/2 =

nrn

Ln − �n

∫ L/r

�/r

tn−1[1 − exp(−1/t2)] dt. (2.7)

where � is the gamma function. Here E∞(k) and F ∞
11(k) are the functional forms of

E and F11 in the limit of L/� → ∞ with � � k−1 � L:

E∞(k) =
2n+2κ�(a)

3
√

π
k−(n+1), (2.8)

F ∞
11(k) =

2nκ�(b)

3
√

π
k−(n+1). (2.9)

Since E∞ and F ∞
11 are merely power laws in k, we may regard I1 and I2 as so-called

compensated forms of E and F11, with I1 = I2 = 1 for L/� → ∞. In the remainder of
this section we shall take n= 2/3, corresponding to Kolmogorov’s 1941 law. In such
a case, E∞ ∼ F ∞

11 ∼ k−5/3.
There now arises the issue of how we might relate the size range, γ = L/�, to the

Reynolds number in an experiment, such as grid turbulence. Let L be the eddy size
at the top of the inertial range, � the eddy size at the bottom of the inertial range,
and η the Kolmgorov scale, (ν3/ε)1/4. Then we expect

ε = Au3/L, � = aη, (2.10)

where ε is the rate of dissipation of turbulent kinetic energy, A and a are dimensionless
coefficients, u =

√
〈u2

x〉, ν is the viscosity, and we have assumed that the integral scale
of the turbulence is of order L. We expect the coefficients A and a to be of order
unity, with a universal but A non-universal, i.e. different for different grid geometries.
In terms of the Taylor microscale, λ, we have

λ2 =
15νu2

ε
=

15νu2

Au3/L
, (2.11)

and combining (2.10) and (2.11) allows us to express γ in terms of the two Reynolds
numbers Re = uL/ν and Rλ = uλ/ν. After a little algebra we find

γ = L/� =
(
A1/4/a

)
Re3/4 =

(
A

153/4a

)
R

3/2
λ . (2.12)
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Figure 1. Compensated spectra I1 ∼ k5/3E(k) as a function of k�.
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Figure 2. Compensated spectra I2 ∼ k5/3F11(k) as a function of k�.

We shall see in § 4 that grid turbulence experiments suggest that A/a ≈ 0.34 → 0.45,
depending on the type of grid used. Taking a mean value of A/a = 0.4 we have
γ ≈ 0.0525R

3/2
λ .

Figures 1 and 2 show the three- and one-dimensional compensated energy spectra,
I1 ∼ k5/3E(k) and I2 ∼ k5/3F11(k), respectively, as a function of k� for γ = 25, 50, 100,
200 and 400. The vertical lines at π/γ and π indicate the range of eddies present in
each case. It is evident that, in this model problem, E(k) displays a clear k−5/3 law
(corresponding to I1 = 1) for γ � 50. The one-dimensional spectrum does less well,
systematically and artificially displacing energy to low wavenumbers, as expected.
Nevertheless, F11 shows evidence of a k−5/3 law for γ � 200 (i.e. Rλ � 240).

Figure 3 shows 〈(�v)2〉, normalized by 2u2, as a function of r/� for γ = 50, 200,
400 and 800, the arrows at r/� = 1 and r/� = γ indicating the range of eddies in each
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Figure 3. Normalized structure function, 〈(�v)2〉/2u2, as a function of r/�; γ =
50, 200, 400 and 800.

case. There is no clear r2/3 law at γ = 50 and we do not obtain a decade of r2/3 until
γ reaches ∼ 400 (Rλ ≈ 390). Notice also the 〈(�v)2〉 ∼ r2 region to the left of r/� = 1.
Clearly, in this model problem, 〈(�v)2〉 is an inferior diagnostic tool.

It is an interesting historical footnote that Kolmogorov’s 1941 two-thirds law was
inspired, in part, by the atmospheric boundary data of Gödecke (1935). Certainly
these data show a reasonable r2/3 power law. The Reynolds number in Gödecke’s
measurements was Re ∼ 2 × 104, corresponding to γ ∼ 400 in our model problem,
which is around the minimum value for γ required for a convincing r2/3 law.

2.2. The mixing of information about energy and enstrophy; mixed power laws

We have already suggested that this failure in 〈(�v)2〉 arises from the fact that the
second-order structure function mixes information about energy and enstrophy in
accordance with (1.8). We may confirm this as follows. The energy spectrum does a
reasonable job of tracking the energy distribution for γ � 50, so let us approximate
E(k) by E(k) = κk−5/3, π/L � k � π/�, while E(k) = 0 outside this range. Then (1.8)
yields

3
4
〈(�v)2〉
〈u2〉/2 ≈ 1 − γ −4/3

2(γ 2/3 − 1)

(r

�

)2

, r < �, (2.13)

3
4
〈(�v)2〉
〈u2〉/2 ≈ 3(r/�)2/3 − 2 − γ −4/3(r/�)2

2(γ 2/3 − 1)
, � < r < L, (2.14)

3
4
〈(�v)2〉
〈u2〉/2 ≈ 1, r > L, (2.15)

which is compared with the exact distribution of 〈(�v)2〉 in figure 4 for γ = 50.
Evidently, system (2.13)–(2.15) is a good approximation to (2.7), and it has the
advantage over the exact distribution in that it makes explicit the reason for the
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Figure 4. Comparison of 〈(�v)2〉/2u2 with approximation (2.13)–(2.15) for γ = 50.

failure of 〈(�v)2〉. Equation (2.13) shows that, for r < �, the structure function has
nothing to do with energy but, rather, reflects the total enstrophy of the population of
eddies. Conversely, for r > L, the structure function has nothing to do with enstrophy,
but rather measures the total energy. For � < r < L, there is a mixture of two power
laws, r2/3 and r2, with the former tracking the energy of the eddies and the latter
tracking the enstrophy in accordance with (1.8). Thus the failure of 〈(�v)2〉 to display
a clear r2/3 law at modest values of γ arises from the contamination of the structure
function by enstrophy, as measured by the second integral on the right of (1.8). Note
that, as γ → ∞ in (2.14), we recover the two-thirds law for r � L. However, rewriting
(2.14) as

3
4
〈(�v)2〉
〈u2〉/2 ≈ 3(r/L)2/3 − (r/L)2 − 2γ −2/3

2 − 2γ −2/3
(2.16)

it is clear that we still have mixed power-law behaviour when r/L is of order unity,
even in the limit of γ → ∞.

We note in passing that, if we had adopted the conventional interpretation of
〈(�v)2〉, as the cumulative energy held below scale r (Townsend 1976; Landau &
Lifshitz 1986), i.e. 3

4
〈(�v)2〉(r) ≈

∫ ∞
π/r

E(k) dk, then (2.14) simplifies to

3
4
〈(�v)2〉
〈u2〉/2 ≈ (r/�)2/3 − 1

γ 2/3 − 1
, � < r < L, (2.17)

and the mixed power law disappears. We shall compare both (2.14) and (2.17) with
experimental data in § 4. While (2.14) is an excellent fit to the data, (2.17) is not.

Finally we note that Batchelor (1951) suggested that 〈(�v)2〉 can be expressed as a
sort of hybrid power law of the form 〈(�v)2〉 ∼ ε2/3r2/3g(r/η), where g(x) = x4/3(1 +
δx2)−2/3 and δ is a constant. However, we emphasize that this is simply an interpolation
between the two expressions 〈(�v)2〉 = 〈(∂ux/∂x)2〉r2 and 〈(�v)2〉 =βε2/3r2/3 which
hold for r � η and r � η respectively in the limit Re → ∞.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

09
92

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008000992


294 P. A. Davidson and P.-Å. Krogstad

3. The implications for other even-order structure functions
We now consider the implications of our analysis for higher-order structure

functions. Our starting point is to return to (1.8). From a mathematical point of
view this expression originates from the exact relationship between 〈(�v)2〉 and E(k):

3
4
〈(�v)2〉 =

∫ ∞

0

E(k)H (kr) dk, (3.1)

where

H (χ) = 1 + 3χ−2 cosχ − 3χ−3 sin χ. (3.2)

Now a reasonable approximation to H (χ) is

Ĥ (χ) =

{
(χ/π)2, χ < π
1, χ > π,

(3.3)

and substituting Ĥ (χ) for H (χ) in (3.1) yields (1.8). From a physical perspective,
however, we can rationalise (1.8) as follows. Let us consider turbulence to be composed
of an ensemble of eddies of size s1, plus an ensemble of size s2 etc., from η up to
the integral scale L. Each ensemble is taken to be isotropic in its own right. If
si � r then the correlation length of these eddies will be much smaller than r and
the corresponding contribution to 〈(�v)2〉 is simply 〈(�v)2〉si

= 2〈u2
x〉si

= (2/3)〈u2〉si
,

where the subscript si indicates the contribution to 〈(�v)2〉 or 〈u2
x〉 from the eddies

of size si . Conversely, if si � r , then the contribution to 〈(�v)2〉 from these relatively
large eddies is 〈(�v)2〉si

= 〈(∂ux/∂x)2〉si
r2 = 1

15
〈ω2〉si

r2. In summary then,

3
4
〈(�v)2〉 = 1

2
〈u2〉s, s � r, (3.4)

3
4
〈(�v)2〉 = 1

2
〈ω2〉s

r2

10
, s � r. (3.5)

If we now classify all eddies as belonging to one or other group, which is clearly
unsatisfactory when s ∼ r , then we have

3
4
〈(�v)2〉(r) ≈ 1

2
[〈u2〉S + (r2/10)〈ω2〉L] (3.6)

where the superscripts S and L indicate the contribution to the energy and enstrophy
which comes from eddies smaller or larger than r , respectively. In terms of E(k) this
is written

3
4
〈(�v)2〉(r) ≈

∫ ∞

π/r

E(k) dk + (r2/10)

∫ π/r

0

k2E(k) dk. (3.7)

We have arrived back at (1.8), but with π2 replaced by 10.
Let us now apply the same reasoning to the higher-order structure functions. As

before, we take the contribution to �v from eddies smaller than r as
√

2 (ux)si
while

the contribution from eddies larger than r is r (∂ux/∂x)si
. Then we have

�v ≈
∑
si<r

√
2 (ux)si

+
∑
si>r

r(∂ux/∂x)si
. (3.8)

If we now assume that the contributions from scales larger than r are decorrelated
from those smaller than r , and that single-point velocity statistics are Gaussian, we
obtain

〈(�v)2〉 ≈ 2
〈
u2

x

〉S
+ r2〈(∂ux/∂x)2〉L, (3.9)
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which is the same as (3.6), and

〈(�v)3〉 ≈ r3〈(∂ux/∂x)3〉L, (3.10)

〈(�v)4〉 ≈ 12
[〈

u2
x

〉S]2
+ 12r2

〈
u2

x

〉S〈(∂ux/∂x)2〉L + r4〈(∂ux/∂x)4〉L, (3.11)

etc.
Now (3.8) is clearly an over simplification. Nevertheless (3.11) suggests that, just like

〈(�v)2〉, the fourth-order structure function is a very leaky filter, mixing information
about large and small scales, and about energy and velocity gradients. We note in
passing that (3.10) suggests that 〈(�v)3〉 does not share this difficiency, though it is
emphasized that (3.10) does not apply to 〈|�v|3〉.

Now one of the consequences of this smearing of information in 〈(�v)2〉 is
highlighted by (2.14): we do not obtain a single power law for 〈(�v)2〉, but rather
a mixture of two, one tracking the scale-by-scale variation in energy and the other
tracking the enstrophy. It is this combination of power laws which masks the two-
thirds law at modest values of γ . Estimate (3.11) suggests that there is a corresponding
problem for 〈(�v)4〉, and indeed for all even-power structure functions. This, in turn,
suggests that, for finite γ , an attempt to fit a single power law to 〈(�v)p〉 throughout
the inertial range will result in a systematic deviation from the Kolmogorov 1941
scaling (K41) 〈(�v)p〉 ∼ rp/3. Of course, this particular departure from K41 has
nothing at all to do with intermittency, but simply reflects the leaky nature of
structure functions.

We shall show data that suggest that higher-order structure functions do indeed
follow mixed power laws.

4. Comparison with experimental data
The model problem described in § 2.1 is much too idealized to be considered

representative of real turbulence. Nevertheless, the central notion embedded in (1.8),
that 〈(�v)2〉 mixes information about enstrophy and energy, is robust. We might
expect, therefore, that real turbulence exhibits a behaviour not unlike (2.13)–(2.15),
with a mixed power law in the inertial range.

In order to test this idea, a set of experiments was performed in grid-generated
turbulence. The measurements were performed in the large wind tunnel at The
Norwegian University of Science and Technology, which has a test section 2 m high
by 2.7 m wide, with a length of 11 m. Two grids were used. One was a conventional
grid made of square bars of 46 × 46 mm cross-section forming a square mesh with
a mesh size of 240 mm. In order to make the turbulent Reynolds number as high
as possible, a second grid was created from the first by blocking every alternate
mesh. This increased the grid solidity from 34.7 % to 67.3 %. The measurements
were performed at x =9.3 m from the grid, corresponding to x/M = 37.2. With the
conventional grid the tunnel speed was restricted to U = 18.5 m s−1. Owing to the
significant blocking caused by the second grid, this dropped to about U = 12 m s−1

when the modified grid was installed. Measurements were made for 180 � Rλ � 320
using the conventional grid and 290 � Rλ � 660 with the modified grid.

The measurements were taken using 2.5 µm single hot wires with a ratio of wire
length, w, to Kolmogorov length scale, η, ranging from w/η =0.9 to 2.9. From initial
measurements of the power density spectra at high sampling rates, the point where
electronic noise started to affect the dissipation spectrum was determined. The signal
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Figure 5. Mean velocity and turbulence intensity distributions across the flow at x/M = 37.2.

was then low-pass filtered at this frequency and the sampling frequency was set
slightly higher than twice this frequency.

The severe blocking of the second grid may raise concerns about the flow
homogenity. To check if the non-uniformity caused by the blocked grid had died
out at the measurement station, a number of spanwise traverses were made across
four meshes for both grids at x/M =37.2. Figure 5 shows an example of such a
traverse which demonstrates that the uniformity of both the mean velocity and the
turbulence intensity was about the same for both grids. Even though the turbulence
intensity does not show any spanwise inhomogenities, it is known that high grid
solidity may cause a flapping motion in the flow due to the interaction of the jets
formed by the grid. This will appear as isolated peaks of increased energy in the
low-frequency part of the spectrum. The shedding frequency is expected to depend
linearly on the flow velocity and should therefore be found in the power spectra at
increasing frequency as the velocity is increased. Figure 6 shows the low-frequency
part of the spectra for a range of mean velocities from about U =2.5 to 10 m s−1.
Assuming fflapping ∼ U/M we would expect the range of frequencies to be roughly
from 10 to 40 Hz. There are no indications of a velocity-dependent energy peak in
the plotted energy distributions. (The full-range power density spectra are shown in
figure 7.)

For each test condition the signal was sampled in six batches of about 4 × 106

samples to ensure that the full range of the energy spectrum was resolved. Figure 7
shows a selection of the measured Kolmogorov-scaled streamwise one-dimensional
spectra as function of Reynolds number for both grids. The collapse is seen to be
quite good and for the highest Rλ the inertial subrange covers about two decades of
k. The corresponding second-order structure functions are shown in figure 8.
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Figure 6. Low-frequency part of the power density spectra.
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Figure 7. (a) Power density spectra. (b) Compensated power density spectra.

The dissipation rate, ε, used to estimate the Kolmogorov scales, was obtained using
three independent methods. Assuming small-scale isotropy, ε was computed from

ε1 =
15ν

U 2
〈(∂u/∂t)2〉.

The second estimate was obtained by integrating the dissipation spectrum,

ε2 = 15ν

∫ ∞

0

k2
1F11(k1) dk1.

Finally, ε was estimated from the inertial subrange using

F11(k1) = C1ε
2/3
3 k

−5/3
1 .

The three estimates agreed for all cases to within ±10%; most of the time even better.
The issue now arises whether or not the measured structure functions exhibit a

mixed power-law behaviour of the form suggested by (1.8) and (2.13)–(2.15). In short,
does 〈(�v)2〉 take the form

〈(�v)2〉 ∼ a1 + a2r
2 + a3r

2/3 (4.1)
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Figure 8. Measured 〈(�v)2〉 scaled with Kolmogorov variables.

in the inertial subrange? Despite the naivity of the model problem outlined in § 2.1, it
seems natural to compare the data directly with predictions (2.13)–(2.15), which have
the advantage of containing only one free parameter, as we shall now show.

The right-hand sides of (2.13)–(2.15) contain the unknowns γ and �. However, these
are not independent as (2.13) must be compatible with

3
4
〈(�v)2〉
〈u2〉/2 → r2

2λ2
(4.2)

for r → 0, and this demands that

�2 =
1 − γ −4/3

γ 2/3 − 1
λ2 . (4.3)

Moreover we have seen that

γ = cR
3/2
λ /153/4, c = A/a, (4.4)

for some dimensionless coefficient, c, which should be of the order of, though
somewhat less than, unity. Thus, if c is specified, then (4.4) fixes γ and (4.3) determines
�. In comparing the data with (2.13)–(2.15), therefore, we need only settle on the value
of c.

Now A, and hence c, is non-universal and may vary from one geometry to another.
Indeed energy decay measurements for the two grids show that the ratio of A for
the conventional and modified grid is Acon/Amod = 1.33, and so we require c for
the conventional mesh to be 33 % higher than that for the modified grid. For the
present purposes, we have chosen c = 0.337 for the modified grid and c = 0.448 for
the conventional mesh.

Figures 9(a) to 9(d) show the comparison of (2.13)–(2.15) with the measured
structure functions for the modified grid (Rλ = 290, 440, 550 and 660), while
figures 10(a) and 10(b) show the comparison for the conventional grid (Rλ =250
and 320). Given the naivity of the model, the comparison is striking for both sets of
data, confirming the mixed power-law behaviour of 〈(�v)2〉 in the inertial range. In
order to emphasize the point, figures 9 and 10 also show the pure power-law estimate
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Figure 9. Comparison between the measured 〈(�v)2〉/2 and equations (2.13)–(2.15) for the
modified grid. Symbols are measurements and curves the theoretical predictions. The dashed
line represents the pure power law, equation (2.17). (a) Rλ = 290, (b) Rλ =440, (c) Rλ = 550,
(d) Rλ = 660.

of 〈(�v)2〉, (2.17), based on the traditional, but incorrect, interpretation of 〈(�v)2〉 in
which the enstrophy contribution is neglected, i.e.

3
4
〈(�v)2〉 =

∫ ∞

π/r

E(k) dk. (4.5)

The fit is much less satisfactory, as we would expect.
Note that, for large γ , (2.16) and (2.17) simplify to

3
4
〈(�v)2〉
〈u2〉/2 = 3

2
(r/L)2/3 − 1

2
(r/L)2, � � r < L, (4.6)

3
4
〈(�v)2〉
〈u2〉/2 = (r/L)2/3, � � r < L, (4.7)

which is independent of γ , and hence of c and Rλ. Thus the main differences
between the combined power-law form of 〈(�v)2〉, which is an excellent fit to the
data, and the spurious single power-law estimate of 〈(�v)2〉, which comes from (4.5),
are independent of the choice of the coefficient c. The single power-law estimate of
〈(�v)2〉 is clearly inferior.
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Figure 10. Comparison between 〈(�v)2〉/2 and equations (2.13)–(2.15) for the conventional
grid. Symbols are measurements. The dashed line represents the pure power law, equa-
tion (2.17). (a) Rλ = 250, (b) Rλ = 320.
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Figure 11. 〈(�v)4〉 and 〈(�v)6〉 plotted against 〈(�v)2〉 for Rλ = 660.

Finally we consider fourth-order structure functions. This time we cannot compare
the data directly with our simple model, since (3.11) contains the unknown quantity
〈(∂ux/∂x)4〉L. However, it is an empirical observation, which has yet to be explained,
that even-order structure functions are related by power laws of the type

〈(�v)p〉 ∼ 〈(�v)2〉αp , αp = constant,

throughout the inertial and dissipation ranges. This is the basis of the so-called
extended-self-similarity of the equilibrium range and is illustrated in figure 11. This
figure shows 〈(�v)4〉 and 〈(�v)6〉 for the modified grid at Rλ = 660, plotted against
〈(�v)2〉. Given that 〈(�v)2〉 exhibits mixed-power-law behaviour in the inertial range,
it seems inevitable that all higher-order structure functions of even-order must do the
same.
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5. A footnote: the deficiencies of one-dimensional spectra
So far we have focused on the deficiencies of 〈(�v)2〉 as an inertial-range diagnostic.

However, in § 1 and § 2 we saw that F11 is also a flawed diagnostic, and indeed this
has already been emphasized by Davidson et al. (2006) in the context of large-scale
eddies in boundary layers. We close with a brief discussion of the problems associated
with inertial-range measurements of F11.

The model problem of § 2.1 is somewhat artificial, designed mainly to expose the
deficiencies of 〈(�v)2〉. Let us now move to something closer to real turbulence and
consider a simple model of the equilibrium range. As before, our interest lies in
exposing the limitations of the various diagnostic tools. However, whereas we focused
on the deficiencies of the second-order structure function in § 2–§ 4, we now focus on
the weaknesses of F11.

According to Kolmogorov’s 1941 theory the skewness of (�v),

S = 〈(�v)3〉/〈(�v)2〉3/2, (5.1)

is constant across the inertial subrange. While subsequent refined models,
incorporating intermittency, suggest that S may vary with r , this predicted variation
lies within the scatter of the experimental data. Moreover, it is an empirical observation
that the skewness in the dissipation range is not very different to that in the inertial
range, varying from S ∼ −0.3 at the bottom of the inertial range to S ∼ −0.4 at the
Kolmogorov scale. Thus a very simple, but plausible, model of the equilibrium range
is Obukhov’s constant-skewness model. This takes the equilibrium-range version of
the Kármán–Howarth equation, where ∂〈(�v)2〉/∂t is neglected,

6ν
∂

∂r
〈(�v)2〉 − S〈(�v)2〉3/2 = 4

5
εr, (5.2)

and adds to it the closure hypothesis that S is constant for all r and equal to
its equilibrium-range value, S = − 4

5
β−3/2. Here β is Kolmogorov’s constant in the

two-thirds law: 〈(�v)2〉 =βε2/3r2/3. Introducing the scaled variables

y =
〈(�v)2〉

β(15β)1/2v2
, x =

r

(15β)3/4η
, (5.3)

where η and v are the Kolmogorov length and velocity scales, the resulting equation
for 〈(�v)2〉 is simply

1
2
y ′(x) + y3/2 = x, (5.4)

which is readily integrated. The predictions of this simple closure model are
surprisingly good, as indicated by Figure 6.19 in Davidson (2004), which compares
the integration of (5.4) with the direct numerical simulations of Fukayama et al.
(2001) at Rλ = 460. The corresponding form of the compensated energy spectrum is
also shown in Davidson (2004) in Figure 6.47. It clearly exhibits an overshoot, or
bump, at the junction of the inertial and dissipation ranges. This is the well-known
bottle-neck effect, which is a purely viscous phenomenon. The overshoot in E(k) is
around 40 % in the constant-skewness model and a bottle-neck of similar (though
slightly smaller) intensity is evident in the direct numerical simulations of Kaneda
et al. (2003) at Rλ = 1200. (See also the experiments of Davidson & Pearson 2005.)

Now we know that F11 artificially and systematically shifts energy to low k, so it is
of interest to look at the corresponding form of F11. It is readily confirmed that the
bottle-neck is largely suppressed in F11. This may be seen by looking at figure 7(b)
or at high-Re data of Saddoughi & Veeravalli (1994), where there is virtually no
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bottle-neck in F11. Alternatively, one can calculate F11 from 〈(�v)2〉 in the constant-
skewness model. Again, it is readily confirmed that the bottle-neck is largely
suppressed, with the excess energy transferred to lower k. (See, for example, Strobel
2005.) The net effect is that F11 gives the impression of an extended inertial range.

6. Conclusions
We have shown that the second-order structure function is a poor filter, in the sense

that it mixes information from large and small scales and information about energy
and enstrophy. One consequence of this is that, in the inertial range, it takes the form
of a mixed power law of the form

〈(�v)2〉 ∼ a1 + a2r
2 + a3r

2/3

with r2 tracking the enstrophy of the eddies and r2/3 tracking the energy. This is
the reason why Kolmogorov’s two-thirds law is harder to realize than the equivalent
spectral five-thirds law. We have illustrated this with a simple model problem which
gives a surprisingly good fit to measurements made in grid turbulence.

We emphasize that it is not just the second-order structure function which suffers
from this problem, all even-order structure functions mix information from large
and small scales, and this calls into question the physical interpretation of measured
anomalous scaling exponents for higher-order structure functions.

The authors would like to thank Tim Nickels for useful discussions during the
preparation of this work and the referees for valuable inputs that have improved the
quality of the paper.
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