
PRACTICUM PAPER

Prediction of stress in fillet portion of spur gears using
artificial neural networks

M.S. SHUNMUGAM AND N. SIVA PRASAD
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

(RECEIVED January 17, 2005; ACCEPTED February 5, 2007)

Abstract

A fillet curve is provided at the root of the spur gear tooth, as stresses are high in this portion. The fillet curve may be a
trochoid or an arc of suitable size as specified by designer. The fillet stress is influenced by the fillet geometry as well
as the number of teeth, modules, and the pressure angle of the gear. Because the relationship is nonlinear and complex,
an artificial neural network and a backpropagation algorithm are used in the present work to predict the fillet stresses. Train-
ing data are obtained from finite element simulations that are greatly reduced using Taguchi’s design of experiments. Each
simulation takes around 30 min. The 4-5-1 network and a sigmoid activation function are chosen. TRAINLM function is
used for training the network with a learning rate parameter of 0.01 and a momentum constant of 0.8. The neural network is
able to predict the fillet stresses in 0.03 s with reasonable accuracy for spur gears having 25–125 teeth, a 1–5 mm module,
a 0.05–0.45 mm fillet radius, and a 158–258 pressure angle.

Keywords: Artificial Neural Network; Backpropagation Algorithm; Fillet Geometry; Finite Element Method; Spur Gear;
Taguchi Method

1. INTRODUCTION

Artificial intelligence (AI) is a branch of computer science
that primarily deals with innovative software technology to
capture human intelligence. Significant contributions have
been made in various fields like medical diagnostics and
treatments, military and space applications, learning and
teaching, industrial applications, robotics, and so forth. An
overview of tools and techniques used in AI and their poten-
tial for different industrial applications was presented by
Tanzer (1991). Jeong et al. (1993) developed an AI-based
GearCAD system using artificial neural networks (ANNs) for
estimating initial gear size and an expert system for allowing
changes in the parameters. A multilayer NN with a back-
propagation (BP) training algorithm has been used by Reddy
(1996) to design bearings and spur gears, taking training data
from various charts, tables, and textbook examples.

Dobre et al. (1997) described an intelligent design environ-
ment based on AI tools for mechanical engineering design,
and brought out an application involving gear transmission
design. An attempt to simulate the design process by com-

bining ANN and a knowledge-based system (KBS) along
with multimedia (MM) capability has been reported by Su
(2000). The KBS handles clearly defined design knowledge,
the ANN captures knowledge that is difficult to quantify, and
the MM provides a user-friendly interface to input informa-
tion and to retrieve the results during the design process.
Wen (2002) developed a BP NN to arrive at an axial load
distribution coefficient of cylindrical gears in terms of hard-
ness of the tooth flank, layout in structure, face width, and so
on. The above-mentioned applications use the data from the
conventional design procedures to train the ANN. Because
several design procedures are available and they yield differ-
ent results, the relative success depends on the correctness of
the design procedures.

Mao et al. (2002) used the results of the finite element
method (FEM) for the first time to train BP NNs, and they
found an optimal solution for large parts of a machine tool.
An Internet-based collaborative design approach was re-
ported by Amin and Su (2003) for gear design optimization.
The optimization was carried out by a genetic algorithm that
was integrated with an ANN based on an improved BP-
learning algorithm for speedy execution.

From the above study of the literature, the gear design has
always remained in the focus in mechanical engineering
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design, because the gears are widely used for transmission of
power and motion between shafts. A spur gear is used as an
example in this paper. In the design of spur gears, prediction
of the fillet stress is an important step. The fillet geometry is
determined by a cutting tool geometry and generation
method. Complete analysis on the effect of tool geometry
on the cut gears is available in the works of Buckingham
(1963) and Merritt (1971). If the cutter geometry and genera-
tion method are known a priori, the fillet geometry can be
found by the designers. Available standard codes like AGMA
(1997), ISO (1996), and so forth, estimate the maximum fillet
stress, considering the fillet curve to be a trochoid generated
with a basic rack having a certain tip radius. As the radius
of the trochoidal curve changes continuously, these standards
calculate the fillet stress at a specified location considering
the radius at that location. The calculation also includes the
factors that account for abrupt changes in the tooth section
and stress concentration at the fillet. Many researchers have
attempted to determine the fillet stresses using both theoretical
and experimental methods. Geometric modeling of a gear tooth
is done using computer graphics (Hefeng et al., 1985; Huston
et al., 1994) and the FEM is applied to estimate the fillet stress
in the spur gear teeth (von Eiff et al., 1990; Filiz & Eyercioglu,
1995). Although FEM estimates stresses with reasonable accu-
racy, it is time consuming and requires a high-end computer
system. Hence, there is a need to explore a new method that
will minimize time while maintaining the accuracy of results.

In the preliminary stages of the present research work, it is
also realized that the designer may like to specify the radius
of the fillet in the first instance and know the value of fillet
stress with that radius. This would require a new computer-
aided approach for modeling the gear tooth with a fillet as an
arc of the specified radius. The value of the fillet stress for
this gear tooth model with the arc as a fillet can be evaluated
by FEM. Because the fillet stress has a nonlinear and complex
relationship with the fillet radius and other gear parameters, the
potential of the ANN is exploited in the present work. The NN
also requires a training data set. The training data set in the pre-
sent work is generated by FE simulation. The literature reveals
that the number of experiments can be reduced by the design of
the experiments following Taguchi’s method (Park, 1996). In
the present work, FE simulations are carried out according to
Taguchi’s orthogonal array so that the training data as well
as the time required for training the NN are reduced consider-
ably. A multilayer feedforward NN based on a BP algorithm is
used to train the network, and the predicted values of the fillet
stress are verified using the results obtained with FEM.

2. A MODEL OF THE SPUR GEAR TOOTH
WITH THE CIRCULAR-ARC FILLET

In the first step, an involute profile is obtained from the first
principle as the locus of a point on a tangent line rolling over
the base circle without slipping, and the spur gear tooth flank
is obtained by rotation of this profile through a half-tooth
angle. With the gear center as the origin and the centerline of

the tooth as a reference (Fig. 1), polar angle ui of a point on
the flank at radius Ri is given by

ui ¼ u0 þ inva0 � invai, (1)

where u0 ¼ p/2z and ai ¼ cos21(Rb/Ri), z is the number of
teeth on the gear, a0 is the design pressure angle, and Rb

represents the base circle radius. The radius Ri is varied from
the tip circle to the base circle in an incremental manner (Dr)
to construct the complete involute profile. For cases where
the root circle is inside the base circle, the profile is further
extended by a radial line up to the root circle.

In the next step, a circular arc is placed such that it is tan-
gential to the involute curve as well as the root circle (Subba
Rao et al., 1993). This is done using a computer-aided
approach as described below. The arc with a radius (rf ) is
divided using the same incremental radius (Dr) as shown in
Figure 1, and angles subtended fi are calculated using

cosfi ¼
(Rr þ rf )2 þ (Rr þ rf � si)2 � r2

f

2(Rr þ rf )(Rr þ rf � si)
: (2)

In the next step, the angle ui of the involute profile and corre-
sponding fi of arc are added. The maximum angle umax is
obtained with respect to the tooth centerline as

umax ¼ max (ui þ fi): (3)

The radius Rmax corresponding to umax yields a point at which
the arc is tangential to the involute. To establish the circular
arc below the tangential point corresponding to Ri, the angle

Fig. 1. The arc placed tangential to the involute.
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ci is calculated as follows

ci ¼ umax � fi: (4)

To compare the proposed fillet with the trochoidal fillet, the
tooth flank along with the trochoidal fillet is generated using
a basic rack with a tip radius Rc. Analytical equations to arrive
at coordinates of points on the trochoidal curve are well docu-
mented in the literature (Buckingham, 1963; Reddy et al.,
2004b), and hence, are not included here. It is important to
know that the fillet stress is calculated considering the radius
of rf at a critical section, as the radius of the trochoidal curve
continuously changes. This specific point is obtained as a
contact point between a tangent drawn at an angle of 308
with reference to the centerline of the tooth and the fillet curve
(Merrit, 1971). Figure 2 shows the relation between the fillet
radius (rf ) and cutter tip radius (Rc), as the number of teeth (z)
on the gear varies.

A program is written in MATLAB (MathWorks, 2001) to
generate the involute flank along with fillet curves for a given
number of teeth (z), module (m), pressure angle (a0), and
fillet radius (rf ). Figure 3 shows a comparison of the tooth fil-
lets obtained with the arc of a specified radius and trochoid
generated by the corresponding tip radius of the cutter for a
different number of teeth.

3. EVALUATION OF FILLET STRESS

The ISO code can be used for calculating the fillet stress at a
specified point on the trochoidal fillet only. However, the

fillet stress can be evaluated by FEM for both models of
the tooth (Reddy, 2005).

3.1. FE analysis of the gear tooth

A two-dimensional three-tooth gear model is generated using
two-dimensional eight-noded PLANE 82 elements for the
profiles obtained with the fillet arc and trochoidal curve,
and the stress analysis is done using a general purpose FE
program ANSYS (2001). Table 1 indicates the geometric
parameters used for the gear tooth geometry and material
properties for FEM computations. The rim thickness of the
spur gear (tmin) is taken as 5m (von Eiff et al, 1990).

Boundary conditions are specified by fixing the sides and
inside surface of the gear rim for all degrees of freedom. The
FEM model is considered as a plane stress problem with the
unit width of the gear teeth. Figure 4 shows the typical FE
mesh employed for the analysis. A fine mesh is provided in
the fillet area for the profiles obtained by the arc and trochoi-
dal curve. The normal tip load Fna is resolved into a tangential
load Fta using a pressure angle aan at the tip, as shown in
Figure 4. The radial component of the normal tip load is
not considered, as the ISO (1996) code neglects the effect
of the compressive stress because of the radial component
of load. The model is analyzed for the fillet stresses taking
the tangential load (Fta) for a unit tip load (Fna) normal to
the involute on the middle tooth. The maximum principal
stress (s1) at the surface of the root fillet is considered as the
fillet stress in the present work, taking the maximum
principle stress as a failure criterion in the spur gear design.
Convergence study has been carried out on the three-tooth

Fig. 2. The relation between the fillet radius (rf , mm) and the cutter tip radius (Rc, mm); pressure angle (a0) ¼ 208, module (m) ¼ 1 mm,
addendum (b1) ¼ 1.25 m.
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model, and an optimum mesh pattern in the tooth model is
obtained.

3.2. Comparison of fillet stresses

Fillet stress values obtained with the fillet arc are compared
with the results obtained from the trochoid as the fillet. In
addition, a comparison of the FEM results is made with the
stresses values obtained using ISO formulae for the calcula-
tion of the tooth bending stress. Table 2 shows a comparison
of the fillet stresses obtained by ISO formulae and those
obtained by the FEM for the arc and trochoid. The table also
includes the cutter-tip radius (Rc) with respect to the number
of teeth for a fillet radius of 0.35 mm.

The ISO (1996) approach uses an approximation that the
critical section at the fillet is located at an angle of 308

tangential to the fillet. For calculating the stresses based on
ISO, the tip load (Fta) has to be converted to an equivalent

Fig. 3. A comparison of the fillet curves; pressure angle (a0) ¼ 208, module (m) ¼ 1 mm, fillet radius (rf ) ¼ 0.35 mm.

Table 1. Parameters used for gear tooth
sector in finite element method computations

Parameter Value

Addendum 1.0m
Dedendum 1.25m
Face width 1m
Rim thickness 5m
Fillet radius 0.05–0.45m
Normal tip load (N) 1
Modulus of elasticity (GPa) 200
Poisson’s ratio 0.3
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load (Ft) at the reference (pitch) diameter and the fillet radius
(rf ) to the corresponding tip radius (Rc) of the cutter. The equa-
tion for bending stress also includes the tooth form factor and
the stress concentration factor, which can be obtained from the
charts or using the formulae given in the ISO standards.

4. TAGUCHI’S METHOD OF EXPERIMENTAL
DESIGN

Taguchi’s parameter design is an important tool for robust
design of high-quality systems. Taguchi’s method utilizes spe-
cial sets of the array called orthogonal arrays to study the entire
parameter space with only a small number of experiments. The
conclusions obtained from the small number of experiments
are valid over the entire experimental region. A number of stan-
dard orthogonal arrays tables have been constructed to facilitate
the design of the experiments. An appropriate orthogonal array
is selected on the basis of a number of factors and levels in-

volved in the experiment. It is a matrix of numbers arranged
in rows and columns, where each row represents a level of fac-
tors in each run and each column represents a specific factor
that can be changed for each run (Park, 1996).

A selection of factors is more problem specific. In the gear
standards, the tip radius of the basic rack is expressed in terms
of the module. For the present investigation, the fillet radius is
taken as an independent parameter. The stresses developed at
the fillet portion are found to vary with the pressure angle,
module, fillet radius, and number of teeth. Therefore, these
four parameters (pressure angle, module, fillet radius, and
number of teeth) are taken as control factors. The values of
the normal tip load (Fna) and face width (b) are taken as the
unity. For each control factor, five levels having equal spacing
are selected, as shown in Table 3. If the traditional experimen-
tal procedure is followed with five levels for each variable, a
total of 54 ¼ 625 experiments are needed to generate the data
set. Instead, by using Taguchi’s orthogonal array, the number
of data sets gets reduced. However, the results obtained from
the small number of experiments are valid over the entire ex-
perimental region. A standard Taguchi L25 (56) orthogonal
array (Park, 1996) chosen for the present investigation re-
duces the number of data sets to 25. Although the chosen

Table 3. Control factors and their levels for Taguchi method

Levels

Factors Unit 1 2 3 4 5

Pressure angle Degree 15 17.5 20 22.5 25
Module Millimeter 1 2 3 4 5
Fillet radius Millimeter 0.05 0.15 0.25 0.35 0.45
No. of teeth 25 50 75 100 125

Fig. 4. The finite element mesh of a three-tooth model.

Table 2. Comparison of fillet stresses

No. of
Teeth

Tip
Radius
(mm)

Stress Based on
ISO Formula (1)

Max. Principal Stress by FEM

Fillet as
Arc (2)
(MPa)

Fillet as
Trochoid (3)

MPa % Error MPa % Error

25 0.018 4.894 18.43 6.000 5.906 1.56
40 0.106 4.444 11.79 5.030 5.260 24.57
60 0.171 4.238 9.05 4.660 4.864 24.39
80 0.209 4.144 7.68 4.489 4.644 23.45
100 0.234 4.068 7.54 4.400 4.523 22.79

Pressure angle¼ 208, module¼ 1 mm, face width¼ 1 mm, tip load¼ 1 N,
fillet radius¼ 0.35 mm, % error¼ 100[(2) 2 (1)]/(2) or 100[(2) 2 (3)]/(2).
FEM, finite element method.
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orthogonal array consists of six columns at five levels, only
four columns are considered for the selected parameters.
For all possible combinations of design parameters present
in the orthogonal array, the FE simulations are carried out
and the fillet stress values obtained are recorded. The results
obtained for the given set of parameters may be analyzed fur-
ther by statistical methods to bring out their contributions.
The interpretations thus obtained are valid for the entire ex-
perimental region. However, in the present work, the data
set generated according to Taguchi’s orthogonal matrix
(Table 4) are used to train the ANN.

5. ANNs

An ANN is a massively distributed parallel processor consist-
ing of small information processing units, namely artificial
neurons (Ham & Kostanic, 2001). The artificial neuron is a
simple processor, which takes one or more inputs and has a
summing up junction and an activation function. Each input
into the neuron has an associated synaptic weight that deter-
mines the intensity of the input. The summing junction per-
forms the weighted sum of inputs by multiplication of each
of the inputs by its respective weight, and produces an output
according to an activation function as shown in Figure 5. The

output obtained from activation function is multiplied with a
specific weight and transferred to the next node. Mathemati-
cally, the operation of the artificial neuron can be represented
by the following pair of equations.

vk ¼
Xn

j¼1
wkjxj þ uk , (5)

yk ¼ f (vk), (6)

where x1, x2, . . . , xn are the input signals; wk1, wk2, . . . , wkn are
the synaptic weights of neuron k; vk is the linear combiner out-
put because of the input signals; uk is the bias; f(.) is the acti-
vation function; and yk is the output signal of the neuron. The
bias uk has the effect of increasing or lowering the net input to
the activation function. The output of the neuron is calculated
depending on the nature of the activation function. The activa-
tion function is also called the squashing function as it squashes
the permissible amplitude range of the output signal to some
finite value. The sigmoid and tansigmoid are the commonly
used activation functions because of their simple derivative,
which is useful for the development of the learning algorithm,
continuous output data, and simplifying the fundamental
mathematics involved in the calculation of individual weights.
In the present work, the sigmoid activation function is used and
the output of the neuron using the sigmoid function is given as

yk ¼ f (vk) ¼ 1
1þ e�(vk )

� �
: (7)

Among the multilayer network used for modeling a process,
the simplest type of network is a three-layer network with
one input layer, one hidden layer, and one output layer, as
shown in Figure 6. Four input parameters (pressure angle,
module, fillet radius, and number of teeth) are considered in
the present work, and these are fed to four neurons in the input
layer. A single neuron in the output layer is considered to
represent maximum stress in the fillet. The number of neurons
in the hidden layers is ascertained by trial and error method,
because there is no specific rule or procedure for deciding
the number of neurons in the hidden layers (Reddy et al.,
2004a). After a number of trials with various initial weights
and bias, the 4-5-1 configuration is found to be the most
suitable network for the present work (Fig. 6). An NN has
to adjust its parameters such that the output node produces
the given output for a set of given input parameters. The pro-
cess of adjusting the weights of a network, for a set of given
input and output values, is known as the training of the net-
work. The BP algorithm is the most popular and commonly
used algorithm for training.

5.1. BP algorithm

The BP algorithm consists of two phases through the different
layers of the network, namely, the forward phase and the
backward phase, as explained below.

Table 4. Training data set based on Taguchi L25 orthogonal
array

Exp.
No.

Pressure
Angle

(8)
Module
(mm)

Fillet
Radius
(mm)

No. of
Teeth

Max. Fillet
Stress by FEM

(MPa)

1 15 1 0.05 25 17.974
2 15 2 0.15 50 4.595
3 15 3 0.25 75 2.128
4 15 4 0.35 100 1.345
5 15 5 0.45 125 0.963
6 17.5 1 0.15 75 7.305
7 17.5 2 0.25 100 2.746
8 17.5 3 0.35 125 1.592
9 17.5 4 0.45 25 1.492

10 17.5 5 0.05 50 2.785
11 20 1 0.25 125 4.887
12 20 2 0.35 25 3.003
13 20 3 0.45 50 1.459
14 20 4 0.05 75 2.302
15 20 5 0.15 100 1.270
16 22.5 1 0.35 50 4.304
17 22.5 2 0.45 75 1.885
18 22.5 3 0.05 100 2.468
19 22.5 4 0.15 125 1.416
20 22.5 5 0.25 25 1.221
21 25 1 0.45 100 3.344
22 25 2 0.05 125 3.073
23 25 3 0.15 25 2.275
24 25 4 0.25 50 1.094
25 25 5 0.35 75 0.736

FEM, finite element method.
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5.1.1. Forward phase

During the forward phase, input vectors in the training set
are applied in a feedforward manner and the actual output for
the given input training pattern is determined by computing
the output of the neuron in the hidden layer. The connection
weights are initialized to small random values. The output of
every neuron is computed using Eqs. (1) and (3).

5.1.2. Backward phase

The difference between the desired output and the com-
puted output from the output neuron is used to obtain the
equivalent error. This error is cumulative and computed
over all the training data set. In the backward phase, the error
is subsequently backpropagated from the output layer to the
hidden layers for an update of weights leading to the neurons
in a hidden layer. The process is repeated for the large number
of iterations (epochs) until the output error converges to a
minimum and optimum sets of the weights are obtained in
proportion to the negative gradient of error with respect to
the weight. The mean square error (MSE) is used as a way

of measuring the best fit to the data:

E ¼ 1
2

XP
p¼1

XK
k¼1

T pk � O pk

� �2
, (8)

where P is the number of training patterns in the training data
set, K is the number of output nodes, Tpk is the target output
for pth pattern of output node k, and Opk is the computed out-
put for the pth pattern.

The connection weights between the neurons of adjacent
layers are modified repeatedly based on the gradient descent
optimization criteria to minimize the above squared error. The
change in weight is given as

DWkj ¼ �h
@E

@Wkj
: (9)

The weight increment is given by the relation

Wkj(nþ 1) ¼ Wkj(n)þ DWkj(n): (10)

Fig. 6. The neural network model for the prediction of the fillet stresses of the spur gear tooth.

Fig. 5. The artificial neural network model (Haykin, 2001).
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Considering the activation function as sigmoid, the output
vector of the NN is calculated. After simplification, the fol-
lowing expressions for error terms are obtained:

@ok ¼ (Tk � Ok)Ok(1� Ok) (11)

for the output nodes and

@oj ¼ Oj(1� Oj)
XK
k¼1

@okWkj (12)

for the hidden nodes. The weights connecting the neurons
in the hidden layer to those in the output layer are adjusted
according to

Wkj(nþ 1) ¼ Wkj(n)þ h(Oj@ok)þ a[DWkj(n� 1)] (13)

for the output neurons. The weights connecting the neurons in
the input layer to those in the hidden layer are adjusted as

Wji(nþ 1) ¼ Wji(n)þ h(Oi@oj)þ a[DWji(n� 1)] (14)

for the hidden neurons, where Wkj is the weight connecting
neuron j in the hidden layer to the neuron k in the output layer
and Wji is the weight connecting neuron i in the input layer to
j in the hidden layer. The second term on the right-hand side
of Eqs. (9) and (10) is the learning term, and h is the learning
rate parameter, which must be set to a value between 0 and
1. The higher learning rate will generally lead to oscillation
around the region of the minima, whereas the low learning
rate will result in a slower rate of convergence. Use of the mo-
mentum term (third term) ensures quicker convergence with-
out oscillation. The subscript n indexes the presentation num-
ber, and 0 � a , 1 is a momentum constant (Yegnanarayana,

1999). The momentum term reduces the effects of the local
minima of the error surface and accelerates the gradient
descent to the global minimum of the error surface. In the
present work, the learning rate parameter h is taken as 0.01
and the momentum constant a as 0.8.

Because the modification of weights proceeds backward
from the output to the input, this algorithm is called the BP
algorithm. The standard BP algorithm for training of a multi-
layer feedforward NN is based on the steepest descent algo-
rithm applied to the minimization of the energy function
representing the MSE (Rumelhart et al., 1986).

For the prediction of the fillet stresses in the gear tooth, the
chosen 4-5-1 network is trained using 25 sets of input data
and the corresponding stresses obtained by FEM (Table 4). Be-
fore training, all the inputs and outputs are normalized with re-
spect to the corresponding maximum and minimum values so
that the normalized values lie between 0 and 1. A network train-
ing function known as TRAINLM (MathWorks, 2001) that up-
dates weights and bias values in a BP algorithm according to
Levenberg–Marquardt optimization is used in the present work.

An MSE of 1026 is taken as the desired goal, and the network
is trained until the desired accuracy of error is reached. Figure 7
shows the pattern of convergence during the training with the five
hidden neurons. After completion of the training, the weights are
stored along with the network architecture for further use.

Finally, the performance of the NN is evaluated with FE
simulations of the testing data set and the results are given
in Table 5.

6. RESULTS AND DISCUSSION

In the present work, a circular arc is considered as the fillet for
modeling the gear tooth, and a computer-aided approach is

Fig. 7. The convergence characteristics during training of the five hidden neurons.
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described to construct a spur gear tooth from the first princi-
ple. In practice, the designer can specify the fillet radius first,
without any need for a priori knowledge of manufacturing
method. The manufacturer can select later a suitable manufac-
turing method to arrive at the required geometry. In general,
depending on the generation cutting method selected, a
suitable cutter geometry with an appropriate tip radius can
be chosen to produce a fillet curve with a specified radius
at the critical section of the tooth. For a cutter having a ge-
ometry as a basic rack profile, a tip radius can be selected
from Figure 2. In specific cases, for example, the proposed
geometry on cold forging or powder compacting dies can be
obtained directly using a wire electro-discharge machine.

Tooth profiles obtained with an arc of a specified radius
and a trochoidal fillet generated by a corresponding tip radius
of a cutter are shown in Figure 4 for 25, 40, 80, and 100 teeth.
A continuous change in the radius of the trochoidal curve
from a root circle to a limiting circle can be very well ob-
served for a smaller number of teeth at a higher magnification.
On comparing the profiles, it is observed that for a smaller

number of teeth, a fillet arc lies inside the trochoid. Although
an attempt has been made to get the corresponding fillet
radius, the radius obtained is valid only for a specified point
at the critical section. The tangency conditions between the
involute profile and these two curves are also different.
Because of these two reasons, the profiles obtained by the
arc of a specified radius and trochoid deviate marginally.
With an increase in the number of teeth, the curves tend to
merge and the fillet curve obtained with an arc is in good
agreement with trochoidal curve for a larger number of teeth.

From Table 2 it can be observed that the FEM values are
higher than the corresponding values obtained by the ISO
method. This trend is similar to those already published
(von Eiff et al., 1990). This may be because of the assumption
made in the ISO about the critical point at which maximum
stress occurs. Taking the values obtained by the FEM with
an arc of a specified radius as a reference, the percentage of
error is calculated for the stresses obtained by ISO and
FEM with the trochoid. From Table 2 it is observed that per-
centage of error for a 25-tooth gear is larger, as the fillet arc

Table 5. Testing of neural network with finite element method (FEM) results

Sl.
No.

Pressure
Angle

(8)
Module
(mm)

Fillet
Radius
(mm)

No. of
Teeth

Max. Fillet Stress (MPa)

Error
(%)

Neural
Network (1)

FEM
(2)

1 20 1.25 0.30 60 3.861 3.937 1.930
2 15 3 0.20 70 2.408 2.389 20.795
3 25 3 0.375 60 1.298 1.361 4.628
4 25 3 0.20 80 1.525 1.533 0.522
5 22.5 2 0.40 90 1.952 1.923 21.508
6 20 1.25 0.375 64 3.542 3.602 1.665
7 15 3 0.325 70 1.844 1.944 5.144
8 17.5 1.25 0.25 100 4.451 4.395 21.274
9 25 1.25 0.20 40 4.036 3.956 22.022

10 20 1.25 0.215 80 4.319 4.308 20.255
11 25 4 0.40 92 0.886 0.870 21.839
12 20 3 0.35 65 1.521 1.535 0.912
13 22.5 3 0.30 55 1.510 1.491 21.274
14 22.5 2 0.45 80 1.865 1.874 0.480
15 20 3 0.42 62 1.418 1.449 2.139
16 25 2 0.38 72 1.870 1.805 23.601
17 20 1.25 0.30 105 3.753 3.69 21.707
18 22.5 4 0.32 85 1.071 1.037 0.033
19 20 5 0.30 45 0.965 0.980 1.530
20 22.5 3 0.20 60 1.694 1.731 2.137
21 20 5 0.44 110 0.789 0.810 2.592
22 20 2 0.35 45 2.351 2.451 4.079
23 17.5 1 0.35 90 4.767 4.913 2.972
24 20 1 0.25 90 4.986 5.034 0.953
25 20 1.5 0.325 85 3.064 3.055 20.294
26 22.5 4 0.275 74 1.137 1.115 21.973
27 25 1 0.25 40 4.753 4.567 23.913
28 20 2 0.38 90 2.152 2.159 0.324
29 22.5 1.5 0.30 85 2.912 2.830 22.897
30 20 1 0.25 120 4.899 4.903 0.081

Average of absolute deviation from FEM results (%) 1.849

% error ¼ 100[(2) 2 (1)]/(2).
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results in a narrower tooth near the root. As the number of
teeth increase, the difference in the magnitude of the fillet
stresses obtained for the arc and trochoid reduces to 3%.
The percentage of error for the stresses based on the ISO for-
mulae varies from 7 to 19%.

The present investigation is done with four parameters at
five levels using the Taguchi orthogonal array L25 (56).
Although the number of training data gets reduced to 25,
the results obtained from such a small number of experiments
are valid over the entire experimental region. To ascertain
whether the trained NN is exhibiting good generalization ca-
pability, a set of 30 test data other than the training set is taken,
fed to the trained NN, and the fillet stresses are obtained as the
output. For the test set, the fillet stress values are also obtained
by the FE simulation. Comparison of the results of the NN
and FEM are shown in Table 5. It can be observed that the dif-
ference between the values predicted by NN and FEM varies
from 23.123 to 5.144%, and for 25 out of 30 test data values
the error is within 3%. The average absolute deviation of the
testing data set from FEM simulations is 1.849%. This estab-
lishes confidence in the predictive capabilities of the NN
model.

Although statistical methods are available for the devel-
opment of an empirical relationship between the various
interacting factors, these are often complex and circuitous,
particularly for nonlinear relationships. There is no need
to specify a mathematical relationship between the input
and output variables if ANN modeling is used. In the
FE approach, each case takes around 30 min for the tooth
modeling, meshing, and analysis. Even though the train-
ing of the NN takes about 14.5 h (12.5 h for the FE anal-
ysis of the 25 training sets and 2 h for the training), it is
able to predict the fillet stresses within 0.03 s for each
case. Once trained, the NN is able to predict the fillet
stresses with reasonable accuracy and faster than the FEM
simulations. Therefore, the proposed ANN approach can
be used for routine and repetitive applications for the pre-
diction of fillet stress in the spur gears having 25–125 teeth,
a 1–5 mm module, a 0.05–0.45 mm fillet radius, and a 158–
258 pressure angle. For critical applications, the gear pa-
rameters selected on the basis of stress predicted by the
ANN can be confirmed by FEM simulation. The results
thus obtained can be used in addition to train the network,
and the prediction accuracy would improve when more
such data sets are available with time.

7. CONCLUSIONS

In this study, generation of the fillet for the spur gear tooth has
been made easy using a computer-aided approach by consid-
ering the fillet as an arc of the specified radius. The method is
applicable to a practical situation where designers can specify
the fillet radius independently and the manufacturer can
select the generation method, cutter geometry, and tip radius
suitably.

The new approach employed for modeling of the tooth pro-
file avoids complex analytical relations, and the values of the
fillet stress depend only on the fillet radius. The design carried
out considering the arc as a fillet curve can be considered
safer, as the root is slightly broader and the stress values ob-
tained are slightly lower beyond a certain number of teeth.
Below this limiting number of teeth, the arc radius can be
slightly increased to bring down the stresses to a safer value.

In the present work, Taguchi and ANN methodology is
proposed for prediction of the fillet stresses of the spur gear
tooth. Four input parameters (pressure angle, module, fillet
radius, and number of teeth) are considered, and the Taguchi
method of orthogonal arrays is used for selection of a suitable
input data set, thereby reducing the number of experiments.
For the selected input set, the fillet stresses are evaluated
using FE simulation and the results are used for training the
NN. The effects of the module, pressure angle, fillet radius
at the critical section, and number of teeth on the fillet stress
are included in the ANN without any need for complex math-
ematical or empirical formulae.

The ANN can be successfully applied for the prediction of
the fillet stresses of the loaded spur gear tooth. Once trained,
the prediction is done faster, maintaining the desired accu-
racy. The ANN approach for prediction of the fillet stress is
more suitable for routine use, as the result is obtained in
0.03 s. The L25 orthogonal array was used here to demonstrate
the combined methodology. One can use a large orthogonal
array and train the network to improve the prediction accu-
racy. However, the ANN was applied for spur gears within
the parameter ranges for which it was developed. Different
networks have to be developed for different gear types and
parameter ranges.
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