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Dynamics of fluid tori in slow viscous flow is studied. Such tori are of interest as
future carriers of biological and medicinal substances and are also viewed as potential
building blocks towards more complex particles. In this study the immiscible ambient
fluid is subject to a compressional flow (i.e., bi-extensional flow), and it comprises a
generalization of our earlier report on the particular case with viscosity ratio λ = 1
(see Zabarankin et al., J. Fluid Mech., vol. 785, 2015, pp. 372–400), where λ is
the ratio between the torus viscosity and that of the ambient fluid. It is found that,
for all viscosity ratios, the torus either collapses towards the axis of symmetry or
expands indefinitely, depending on the initial conditions and the capillary number, Ca.
During these dynamic patterns the cross-sections exhibit various forms of deformation.
The collapse and expansion dynamic modes are separated by a limited deformation
into a deformed stationary state which appears to exist in a finite interval of the
capillary number, 0 < Ca < Cacr(λ), and is unstable to axisymmetric disturbances,
which eventually cause the torus either to collapse or to expand indefinitely. The
characteristic dimensions and shapes of these unstable stationary tori and their
dependence on the physical parameters Ca and λ are reported.
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1. Introduction
Since Plateau’s experiments involving toroidal drops in a rotating fluid (Plateau

1857), the formation and evolution of toroidal structures in fluid dynamics have
attracted much interest. Furthermore, such structures are not restricted to a single
phase. Some ubiquitous occurrences (but not limited to) in daily life include the
toroidal cloud of small bubbles emitted by dolphins and the toroidal-shaped smoke
exhaled by cigarette smokers into the air. An interesting phenomenon is the evolution
of spherical swarms of particles in a viscous fluid into toroidal shapes under the
influence of gravity (Machu et al. 2001a,b; Bosse et al. 2005). It has been found to
be important in the characterization of rising mantle plumes and flows of bubbles
in molten rock. Although these swarms have practically zero surface tension, they
behave dynamically as drops composed of an immiscible different phase.

One significant characteristic of toroidal, as compared to spherical drops, is the
relatively large surface to volume ratio for the former. This has led to recent interest
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in non-trivial forms of fluid particles. Sparked by novel applications of non-spherical
microparticles, they were found to have potential as building blocks for self-assembled
materials, including clustering of cells, imaging probes for therapy, drug carriers
(Champion, Katare & Mitragotri 2007; Dean et al. 2007; Nurse, Freund & Youseff
2012) and more.

One of the advanced methods to produce microparticles of complex shapes is
solidification of drops deformed by the flow in microfluidic devices (Chen et al.
2009; Shum et al. 2010; Szymusiak et al. 2012). Another method of mass production
of toroidal forms with sizes in the micrometre to millimetre range via vortex ring
freezing was most recently demonstrated by An et al. (2016), with particular potential
for encapsulating DNA segments, cells and bacteria – an application that was also
proposed by Chang et al. (2015).

Toroidal drop formation has also been generated and observed in a variety of
contexts. One of the earliest seminal works we wish to highlight in this area was
conducted by Kojima, Hinch & Acrivos (1984). They investigated the deformation of
drops settling in a quiescent fluid and obtained analytical solutions for toroidal-shaped
drops, upon the application of interfacial instability induced by a finite surface
perturbation. We next mention a few works here to highlight the significance of
studying such phenomena and their wide applicability: evolution of the free fall of
a drop in an immiscible fluid (Baumann et al. 1992; Sostarecz & Belmonte 2003),
splashing in an immiscible medium (Sharma et al. 2012), impact of a droplet with
a superhydrophobic surface (Renardy et al. 2003), head-on collision of two drops
(Menchaca-Rocha et al. 1996), and deformation of a drop in electric (Deshmukh &
Thaokar 2013; Ghazian, Adamiak & Castle 2013) and magnetic fields (Texier et al.
2013).

Stone & Leal (1989), followed by Zabarankin et al. (2013), reported numerical
simulations of the deformation of a drop embedded in an ambient bi-axial (compress-
ional) flow of an immiscible viscous fluid. The drop shape is governed by the
viscosity ratio and by a capillary number Ca, the latter characterizing the ratio of
viscous to surface tension forces (see definition in § 2). It was shown that if the
capillary number does not exceed a certain critical value, the drop obtains a flattened
form. At supercritical capillary numbers, such a drop becomes unstable and continues
to deform until the width of the centre flat layer becomes so small that it can break
up by centre pinching and a liquid torus is formed. Such tori, embedded in viscous
compressional flow, are the focus of our paper.

Pairam & Fernández-Nieves (2009) performed an experimental study of the breakup
of glycerol tori suspended in silicone oil and observed that a torus can either shrink
to a single droplet or break down into multiple droplets, depending on the thickness
of the torus relative to its circumference. Mehrabian & Feng (2013) suggested a
theoretical model of the capillary breakup of liquid toroidal drops.

Zabarankin, Lavrenteva & Nir (2015) investigated the deformation of an immiscible
toroidal drop embedded in axisymmetric compressional Stokes flow in the case of
equal viscosity. Analytic solutions were obtained using conformal mapping methods
when the cross-section of the torus was nearly circular. Numerical simulations via
the boundary integral formulation were performed for the evolution of the deforming
toroidal drop with a circular cross-section as the initial condition. Quasistationary
dynamic simulations demonstrated that when the viscous forces are relatively weak
compared with the surface tension, three different scenarios of drop evolution are
possible: indefinite expansion of the liquid torus, contraction towards the centre, and
a stationary toroidal shape.
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Evolution and stationarity of toroidal drop in compressional Stokes flow 3

When the intensity of the ambient flow is low, the stationary shapes were shown
to be close to circular tori. Once the outer flow strengthens, the cross-section of
the stationary torus assumes an almost elliptic shape. As the flow further intensifies,
the cross-section deforms to an egg-like shape. For capillary number greater than a
critical value, toroidal stationary shapes were not found. In the equal viscosity case,
the stationary shapes obtained are all unstable. Any infinitesimal disturbance will
cause the torus either to collapse or expand indefinitely.

Recently, Zabarankin (2016) studied toroidal drops in compressional flow with
an arbitrary viscosity ratio using conformal mapping methods. The fundamental
assumption employed in this work is that the stationary toroidal shapes are restricted
to having circular toroidal cross-sections. This assumption allows the solution via
conformal mapping and the transformation of this complicated problem to an inverse
optimization problem involving two parameters: capillary number Ca and the initial
toroidal radius R, making it more mathematically tractable. However, this assumption
is restrictive, and exists in practice only in the limiting case of extremely highly
expanded tori, as was also reported by Zabarankin et al. (2015) for the case of equal
viscosity.

The purpose of this work is to study the deformation of an immiscible toroidal drop
embedded in an axisymmetric compressional Stokes flow with an arbitrary viscosity
ratio, thus generalizing the work done in Zabarankin et al. (2015). In § 2, the problem
of the dynamic and stationary deformation of a drop in linear compressional viscous
flow is formulated, and the numerical method is described and validated. Section 3
outlines numerical results showing the dynamic evolution of the toroidal drops, and
the conditions in which stationary drops are obtained for the various viscosity ratios.
A detailed study of stationary states is presented in § 4. A discussion of the results is
given in § 5.

2. Problem formulation and method of solution

Consider a drop of volume 4πa3/3 (equal to that of a sphere with radius a) and
viscosity µ that is embedded in an unbounded compressional viscous flow of viscosity
µ∗. The ratio µ/µ∗ will be denoted by λ. The surrounding fluid, in the absence of
the drop, is subject to an undisturbed flow

u∞i = E ijxj (2.1)

where the shear rate tensor E is given by E11 = E22 =G, E33 =−2G and E ij = 0 for
i 6= j, with G being a constant characterizing the flow intensity.

Let V denote the closed domain occupied by the drop and V∗ the open domain
occupied by the ambient fluid, with S being the interface between them. Let the
velocity and pressure in V and V∗ be denoted as u, p and u∗, p∗, respectively. As we
assume creeping flow conditions, these fields satisfy the stationary Stokes equations

∂σij

∂xj
= 0,

∂uj

∂xj
= 0 in V (2.2a,b)

and
∂σ ∗ij

∂xj
= 0,

∂u∗j
∂xj
= 0 in V∗ (2.2c,d)

where σij =−pδij +µ((∂ui/∂xj)+ (∂uj/∂xi)), with a similar expression in V∗.
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The velocity is continuous at the interface

ui = u∗i on S (2.3)

while u∗i = u∞i and p∗ = 0 at infinity.
The stress balance across the interface is of the form

(σ ∗ij − σij)nj = γ
∂nj

∂xj
ni on S, (2.4)

with the interfacial tension γ being constant. n is a unit normal pointing outwards
into the ambient phase and ∇ · n is the surface curvature. The kinematic condition
denoting the surface deformation is given by

Un = un on S, (2.5)

with Un denoting the velocity of the interface in the normal direction.
In what follows, throughout the paper, length, time, and the velocity and pressure

fields are scaled with a, 1/G,Ga and µ∗G, respectively and the capillary number, Ca,
is formally defined to be

Ca=
µ∗Ga
γ

. (2.6)

Note that, for the purpose of brevity, the same notation is used henceforth for scaled
variables.

For a given shape of the drop, the stationary Stokes equations (2.2) with boundary
conditions (2.3) and (2.4) can be reduced to a system of integral equations for the
surface of the viscous drop, S, given by:

ui (x) =
(

2
λ+ 1

)
u∞i (x)+

2(1− λ)
λ+ 1

{

Sy
Kijk (x− y) uj (y) nk (y) dSy

−
1

Ca(λ+ 1)

{

Sy
Jij(x− y)nj(y)

∂nk

∂xk
(y) dSy, (2.7)

where the kernels are given by

Kijk(r)=−
3

4π

rirjrk

|r|5
, Jij(r)=

1
4π

(
δij

|r|
+

rirj

|r|3

)
, r= x− y. (2.8a−c)

Given the axial symmetry of the toroidal drop under consideration, we can employ a
cylindrical coordinate system (r, ϕ, z) with basis (er, eϕ , ez) and note that the z-axis is
the same as the x3-axis defined earlier. In this coordinate system, the undisturbed flow
velocity is u∞ = rer − 2zez, and G= 1 can be assumed without loss of generality. In
the axisymmetric case, i.e. when velocity and pressure are independent of the angular
coordinate ϕ, the integral equations (2.7) can be integrated over the angular coordinate
and reduced to expressions containing curvilinear integrals over the cross-section of
the drop interface S. The resulting expressions for the kernels can be found, for
example, in Pozrikidis (1992) [29].

In this paper, we present numerical simulations of the quasistationary dynamic
deformation of a drop starting from a certain set of initial shapes, in the form of tori
with circular cross-section with various major radii (see figure 1). Here, we briefly
summarize the general scheme for the quasistationary deformations as follows.
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FIGURE 1. (Colour online) An axisymmetric toroidal drop.

(1) At time τ the initial shape is given by Sτ .
(2) Divide Sτ into N (evenly distributed) boundary elements and represent each

element by a cubic spline parametrized by the arclength. Typically, N = 200 on
a half cross-section yielded sufficient accuracy and was adopted.

(3) Express the normal unit vector n and the curvature in terms of the cubic spline
coefficients explicitly.

(4) The integral equation (2.7) is solved iteratively with numerical evaluation of
the boundary integrals based on Gauss–Legendre quadrature with singularity
subtraction (Pozrikidis 1992).

(5) Evaluation of ‖un‖, where

‖un‖ =
1
S

{

S
|un| dS. (2.9)

If ‖un‖6 ε, with a specified accuracy ε, then terminate the routine. Otherwise, for
a given time step dτ update the position of the interface, making use of the kinematic
condition (2.5): the point x at the interface is moved to the position x+ u dτ and the
new time is set as τ + dτ . Go to step (2) above.

As mentioned earlier, the initial shape of the toroidal drop in this procedure is a
circular cross-section with major radius R. In the scaled variables introduced above,
the volume of the torus equals 4π/3 and this gives a minor radius of

√
2/(3πR).

There are only very limited experimental results to which a simulation of toroidal
drop dynamics at these viscous conditions can be compared. Pairam & Fernández-
Nieves (2009) followed the collapse dynamics of a low-viscosity torus with initial
circular cross-section in a quiescent viscous fluid. Zabarankin et al. (2015) presented
a comparison of these experimental data with the results of their calculation at λ= 1,
after an appropriate time rescaling, and obtained good agreement for the initial stages
of the process. Here we present the results of a new calculation with low viscosity
ratio. In figure 2, the inner radius of the droplet normalized by its initial value is
plotted versus dimensional time. The initial ratio of the torus major and minor radii
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FIGURE 2. (Colour online) The dynamic collapse of an axisymmetric toroidal drop in
the absence of external flow. Experimental data (diamonds) are quoted from Pairam &
Fernández-Nieves (2009). Solid and dotted curves obtained numerically in this work with
λ = 0.01, denote deformation with Rmin calculated at |z| > 0 and z = 0, respectively.
Dashed–dotted and dashed curves were reported by Zabarankin et al. (2015) for the
above-mentioned calculation of Rmin.

was chosen to be 1.4. It should be noted that this was the only condition that exhibited
axisymmetric dynamics in the experiment (Pairam & Fernández-Nieves 2009). The
experimental data points taken from Pairam & Fernández-Nieves (2009) are presented
by diamond symbols. Two definitions of the inner radius are used: minimum distance
of the toroidal surface to the z-axis (solid curve λ=0.01, dashed curve λ=1 with time
rescaled) and minimum distance of the cross-section at the plane z= 0 to the origin
(dotted curve λ = 0.01, dashed–dotted curve λ = 1 with time rescaled). These two
definitions coincide for circular tori and also during the period of torus deformation
before the region of converted curvature is formed. It is evident that, during the initial
period, when none of the computed shapes exhibit a dimple, all the curves agree well.
As the torus contracts, the results computed with λ=1 deviate from the data of Pairam
& Fernández-Nieves (2009), while those computed with λ = 0.01 are in excellent
agreement with the experimental measurement during the entire period that these are
available. However, since the numerical procedure does not allow for drop coalescence,
the computations demonstrate that a slow deformation proceeds, relatively a long time
after the collapse is seen in the experiment, and a belated small region of converted
curvature appears following this deformation. Note that the earlier appearance of a
dimple reported by Zabarankin et al. (2015), when using the time scaling at λ= 1, is
not supported by the experimental observations.

Before proceeding, we need to define the parameters that are used to characterize
the drop deformation throughout this paper. The major radius R(τ ) and the Taylor
deformation factor of the torus D(τ ) are defined to be

R(τ )= (Rmin(τ )+ Rmax(τ ))/2,D(τ )= (Rmax − zmax)/(Rmax + zmax), (2.10)
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Evolution and stationarity of toroidal drop in compressional Stokes flow 7

where Rmin and Rmax are the minimum and maximum distances of the drop interface
from the z-axis, respectively, and zmax = maxx∈S z. Also following Zabarankin et al.
(2015), we define the Taylor deformation factor for the torus cross-section

D1(τ )=
Rmax − Rmin − 2zmax

Rmax − Rmin + 2zmax
. (2.11)

3. Dynamics

In this section we study the dynamics and evolution of axisymmetric toroidal drops
at various capillary numbers, Ca, and viscosity ratios, λ. The initial structure is a
torus with a circular cross-section, and at time τ = 0 it is subject to the axisymmetric
compressional viscous flow.

The dynamic deformation of the initially circular viscous toroidal drop in a
compressional flow is governed by three types of forcing: the external flow tends
to expand the torus; the surface tension tends to shrink the torus and to make its
cross-section circular; the viscosity of the drop slows down its deformation. Since the
external flow is linear, ur = r, its dragging effect grows with the radius of torus. The
shrinking effect of the surface tension is inversely proportional to the major radius
of the torus, R. Thus, it can be anticipated that the tori with high R will expand
indefinitely, while those with small R will collapse. For a certain critical value, Rc

(Ca, λ), a third type of evolution is expected where, after initial limited deformation,
a relatively long period of almost stationary state is conceivable. These dynamic
evolutions patterns were reported by Zabarankin et al. (2015) for the case of equal
viscosity, λ= 1, and are observed also for λ 6= 1 as long as Ca is not too large.

Examples of the dynamic evolution at Ca= 0.08 are shown in figure 3 for relatively
low and high viscosity ratio. The case λ = 0.1 is demonstrated in figure 3(a,b). In
panel (a), where the initial radius is R = 1.1 (see figure 1), we observe the torus
collapsing towards the centre. Its radius, R, is shrinking while its cross-section area
is growing. In the initial stages, the circular cross-section deforms and becomes oval.
When collapse progresses and the centre gap, occupied by the external fluid, narrows,
the inner part of the cross-section of the torus flattens. As the torus approaches
the final stages of collapse, the squeezing of the external viscous fluid from the
ever-narrowing centre gap results in high local normal stresses, thereby inducing a
circular interfacial dimple in the vicinity of the plane z = 0. As a result, the first
interfacial collapse may either occur at z = 0 or at some vertical distance, |z| > 0,
with a finite volume of the external fluid being trapped. Similar patterns are obtained
for smaller initial toroidal radii. However, when the initial R is increased there is a
critical value, Rc (Ca, λ) beyond which the evolution is different. In panel (b), we
see an example of an evolution that starts when the torus initial radius is somewhat
higher, R= 1.4. Here the dynamics evolves in an opposite manner. The torus radius, R,
expands while the area of the cross-section becomes smaller. The initial deformation
of the circular cross-section into an oval shape is again evident. However, as the
dynamic evolution progresses and the interfacial forces become more and more
dominant over the deforming viscous stresses, the circularity of the cross-section
is gradually regained. Indeed, if the axisymmetric stability of the toroidal shape is
maintained it is expected that the cross-section becomes circular as R→∞.

In the case λ= 10, depicted in figure 3(c,d), similar evolution patterns are evident,
i.e. collapse towards the centre for the smaller initial value of R and an indefinite
expansion when the dynamic starts at the higher value of R. As in the previous

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.752


8 B. K. Ee, O. M. Lavrenteva, I. Smagin and A. Nir
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10 2 3 10 2 3 4 5

r r

(a) (b)

(c) (d )

FIGURE 3. (Colour online) Dynamic deformation of toroidal drop, initially with circular
cross-section. Ca= 0.08. (a) λ= 0.1, R= 1.1; (b) λ= 0.1, R= 1.4; (c) λ= 10, R= 1.1;
(d) λ= 10, R= 1.4. The origin of the abscissa coincides with the axis of symmetry.

case, a critical initial torus radius, Rc, is anticipated, where transition from the
collapse mode to the expansion mode occurs. There are differences in the evolution
dynamics between the cases of low and high drop viscosity. The collapse time in
the λ = 10 case is longer, the radius of the interfacial dimple is smaller, and the
cross-section at collapse is more elongated in the r direction. During the expanding
dynamics, the cross-section of both high- and low-viscosity tori deform to an oval,
and thereafter regain the circular shape. However, in contrast to the contraction case,
the low-viscosity torus (λ= 0.1) expands more slowly than the high-viscosity one.

In order to understand this unexpected behaviour, consider the dynamic change
of characteristic geometric parameters during the toroidal expansion at Ca = 0.08
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FIGURE 4. (Colour online) Evolution of Rmax (a) and Rmin (b) in the process of inde-
finite expansion for various values of the viscosity ratio. Ca= 0.08, initial radius R= 1.4.

and various value of λ that is shown in figures 4 and 5. All tori start at an initial
radius R = 1.4 which is higher than Rc for the depicted λ cases. In figure 4(a) we
plot the evolution of the outer radius of the torus, Rmax, with time for the various
viscosity ratios. Naturally, Rmax monotonically increases with time for all the cases.
For short time shown, in the inset, it grows faster for a lower viscosity ratio, as can
be anticipated. However, for the low-viscosity torus, the increase of Rmax first slows
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.02

 0.04

0.06

 0.08

0.10

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.64

0.66

0.68

0.70

0 0.1 0.2 0.3

D

(a)

(b)

FIGURE 5. (Colour online) Evolution of the Taylor deformation parameters in the process
of indefinite expansion for various values of the viscosity ratio. Ca = 0.08, R = 1.4. (a)
Toroidal deformation parameter. (b) Cross-section deformation parameter.

down and then accelerates again. In contrast to this, for higher viscosity ratios no
deceleration is observed: Rmax initially increases at an almost constant rate and then
accelerates. As a result, with the passage of time the curves corresponding to lower
λ (λ 6 O(1)) and higher λ intersect and high-viscosity tori become more extended
than low-viscosity tori, as is evident also in figure 3. Note again that for λ > O(1),
the extension does not slow down and these curves retain their initial order. Thus, at
advanced stages, Rmax becomes a non-monotonic function of the viscosity ratio that
is determined by the capillary number and the initial torus radius. For example, for
the case presented in figures 3 and 4 (Ca = 0.08, R(0) = 1.4), the torus with λ = 2
appears to be the most extended one.

In figure 4(b) we plot the evolution of the inner radius of the torus, Rmin, with time
for various viscosity ratios. For short time, there is a different dynamics for cases of
low and high viscosity ratio. This is depicted in the inset. When λ 6 O(1) there is
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a short transition stage where Rmin first diminishes since the inward motion of the
deforming inner surface due to capillary force overrides the outward motion of the
torus cross-section induced by the outer flow. The viscosity slows down this motion,
and for lower-λ cases, the initial motion of the interface towards the axis of symmetry
is more pronounced.

For the higher-viscosity-ratio cases, with λ > O(10), the deformation is not fast
enough to exhibit such a transition stage with inward motion. Nevertheless, the
viscosity slows down the outward motion as well. As a result, the curve corresponding
to λ= 20 is located below the one corresponding to λ= 10. Note that, initially, the
outer part of the interface (Rmax) moves outwards and at high λ it moves faster
than the inner part (Rmin). As a result, at the initial stage of the process, the torus
cross-section assumes the form of an oval shape elongated in the r direction (see
figure 3). As time progresses and all tori are expanded, the growth of Rmin and Rmax
becomes exponential for all λ cases, thus, reflecting the convective dominance of the
ambient linear flow, ur = r.

Figure 5(a,b) shows the evolution of the Taylor deformation parameter of the
torus, D, defined by (2.10) for various values of the viscosity ratio. In all of the
presented cases, D grows monotonically with time, exhibiting four distinct periods.
During the initial period shown in the inset of figure 5(a), the lower is λ, the faster
is the deformation. Then the deformation slows down, with this effect being more
pronounced for low-viscosity cases. Further on, the deformation rate increases again,
and finally it slows down as the torus radius grows indefinitely and the deformation
factor approaches 1. Figure 5(b) shows the evolution of the Taylor deformation
parameter of the torus cross-section, D1, defined by (2.11), for various values of
the viscosity ratio. Evidently, D1(0) = 0 for all cases, reflecting the initially circular
form of the cross-section. Then it grows, with the deformation rate being higher
for lower λ. After reaching maximum values, it decreases and tends to zero as the
cross-section regains its circular shape with τ →∞. The maximum deformation is
higher and it is achieved faster for lower values of the viscosity ratio. Nevertheless,
the non-monotonic dependence of the deformation process on λ is retained.

A somewhat different evolution is found when Ca is significantly larger. An
example is shown in figure 6 for Ca = 0.5. When the torus inner circle is initially
very close to the axis of symmetry, the torus deforms until a total collapse occurs,
with or without a centre dimple, as is depicted in figure 6(a,c), for the low- and
high-λ cases, where the initial radius is R = 0.64. Recall that this value is close to
the minimum R for a torus, of volume 4π/3, having a circular cross-section, which is
R= 0.5965. If such a collapse during the initial deformation does not occur, the torus
expands without bound, as is shown in panels (b) and (d), where the initial radius
is R= 0.68. Thus, in such cases, no critical initial radius exhibiting some stationarity
was found.

The evolution during the expansion at Ca = 0.5 is demonstrated in figure 6 for
the cases λ = 0.1 and λ = 10 (see also Zabarankin et al. 2015 for λ = 1). In these
examples it is evident that, during the expansion, the oval shapes lose their fore-and-
aft symmetry about the cross-section middle point, r = R, with the region pointing
towards Rmin becoming sharper. Furthermore, in cases where λ6O(1), when the torus
is at this expanding mode of evolution there are stages where the cross-section width
reduces to a slender shape that is susceptible to possible local capillary disturbances
endangering the toroidal structure (see, e.g. Mehrabian & Feng 2013). Nevertheless,
if the torus prevails, the circular cross-section is slowly regained as the expansion
continues towards R→∞. Similar patterns are expected to occur at all λ. For these

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.752


12 B. K. Ee, O. M. Lavrenteva, I. Smagin and A. Nir

10 3

10 2 3

10 2 3 4 5 6

10 2 3 4 5 6

30 31

21 22

22 23

rr

(a) (b)

(c) (d )

FIGURE 6. (Colour online) Dynamic deformation of toroidal drop, initially with circular
cross-section at relatively high capillary number Ca= 0.5. (a) λ= 0.1, R= 0.64; (b) λ=
0.1, R = 0.68; (c) λ = 10, R = 0.64; (d) λ = 10, R = 0.68. The origin of the abscissa
coincides with the axis of symmetry.

initial conditions, the expansion of low-viscosity torus is considerably faster than the
high-viscosity one.

The dynamic behaviour presented above suggests that, for all viscosity ratios, there
are basically two patterns of motion and deformation. If the initial radius of the torus
is small enough, the toroidal drop deforms and collapses towards a closed shape. If
the initial radius is large enough, the torus deforms and expands indefinitely. This
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λ
Ca 0.01 0.1 0.5 1∗ 2 10

0.04 2.02158 1.99532 1.92118 1.86969 1.81799 1.73989
0.06 1.62756 1.60059 1.52696 1.45649 1.42794 1.35517
0.08 1.39671 1.3686 1.2942 1.24584 1.19978 1.13385
0.1 1.24405 1.21455 1.13904 1.09327 1.051 0.99335
0.12 1.13575 1.10445 1.0298 0.98637 0.94866 0.89992
0.14 1.0555 1.02305 0.94876 0.90906 0.8764 0.8362
0.16 0.9937 0.96005 0.88769 0.85236 0.84868 0.79197
0.18 0.94488 0.91022 0.84119 0.8108 0.78808 —
0.2 0.90563 0.8701 0.8059 — — —
0.22 0.87342 0.83728 — — — —
0.24 0.84657 0.81026 — — — —
0.26 0.82389 — — — — —

TABLE 1. Critical initial radius of the torus.

behaviour occurs at capillary numbers that are smaller than some critical value for
each viscosity ratio, Cacr (λ). When this critical state is surpassed the intact torus only
expands. Hence, it is expected that, in the finite range 0<Ca<Cacr (λ), for each Ca
and λ there will be a value of R=Rc (Ca, λ) at which the transition between the two
patterns of dynamics occurs. A collection of calculated Rc values is given in table 1.

It is interesting to examine these cases and observe if they can indicate a map of
possible stationary states in which the torus cross-section only deforms, but the torus
does not collapse or expand, and the drop maintains its position with the deformed
cross-section indefinitely. This is addressed in the next section.

4. Stationary states

The search for Rc (Ca, λ) in cases of a dynamically deforming interface is a tedious
process involving multiple evaluation of numerical solutions of the boundary integral
equation (2.7) for each choice of the parameters λ and Ca. Indeed, when it is assumed
that the cross-section shape is given – as it is in Zabarankin (2016), who considered a
family of circular cross-sections throughout the dynamic evolution – it is possible to
define an inverse problem by searching for Ca=Ca(Rc) where the boundary integral
equation (2.7) assumes some criterion of stationarity. However, such an approach is
not applicable in the general case. Thus, the procedure adopted here is as follows:
for given λ and Ca choose R and follow the dynamic change of the parameters R,
Rmin and D1. The search is accepted as a stationary result, i.e. R = Rc if the three
parameters assume constant asymptotic values.

An example is depicted in figure 7, where λ = 10, Ca = 0.15. The value of
Rmin decreases, while the values of R and the deformation parameter increase as the
cross-section deforms to an oval shape. It then assumes constant values for a relatively
long stretch of dimensionless time. Nevertheless, after that time it is evident that Rmin

and R either grow or reduce, indicating that the torus starts expanding or collapsing,
respectively. The deformation parameter follows a similar evolution dynamics but lags
somewhat behind. As the cross-section flattens, the deformation parameter increases
until it achieves a constant value that lasts a similar considerable time, beyond
which the deformation proceeds. We conclude that the torus in this period with
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FIGURE 7. (Colour online) Evolution of R, Rmin and cross-section deformation parameter
D1 to a stationary torus, initially with circular cross-section and R∼Rc,Ca= 0.15, λ= 10.

no observed evolution is a stationary state. Indeed, the stretch of time exhibiting
stationary parameters can be extended by calculating Rc to more significant figures.
However, it was found that, no matter what accuracy of Rc is approached, the torus
eventually either collapses or expands. It follows that the numerically calculated
stationary shape is sensitive to any small disturbance. Thus, we conclude that the
calculated tori have stationary but unstable states.

The length of the time stretch during which a stationary torus exists depends
also on the capillary number and on the viscosity ratio. In the previous section we
demonstrated that there exist relatively high capillary numbers for which there is
no critical Rc (see figure 6). Thus, for each value of λ, there is a limiting value of
the capillary number, Cacr(λ), for which the existence of a stationary, yet unstable,
shape can be anticipated. However, the numerical detection of a transition point at
Cacr is inaccurate; thus, only sub- and near-critical data are reported in this work.
The existence of a critical capillary number, Cacr, which is a bifurcation point where
a stable solution and unstable solution diverge from each other, has been shown
and discussed for drops embedded in extensional and bi-extensional viscous flows
(e.g. Acrivos & Lo 1978, Zabarankin et al. 2013) or for drops in a linear electrical
field (Karyappa, Deshmukh & Thaokar (2014) and others cited therein). However,
the dynamics studied here is somewhat more complex. In this case each value of
Ca<Cacr presents a supercritical bifurcation point in which the unstable solution can
separate to either a collapsing dynamics or an indefinite expansion.
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FIGURE 8. (Colour online) The dependence of Rc on the capillary number (a) and on the
viscosity ratio (b). Ca<Cacr for all λ.

A summary of the dependence of Rc on the parameters λ and Ca is given in figure 8
(see also table 1). In panel (a) the change with Ca is depicted for various values of
λ and in panel (b) the change with λ is depicted for various values of Ca. Note that
for all Ca the changes between λ= 2 and λ= 10 are relatively small.

A collection of results showing stationary states for various values of λ is depicted
in figure 9, where the Taylor deformation parameter of the torus, D, (see equation
(2.10)) is plotted against Ca. In general, in all cases of λ, all the curves start from D=
1 when Ca=0, indicating that in this limit the radius of the torus is infinitely extended
and that the cross-section has a vanishingly small circular area. As Ca increases, the
torus radius decreases and the cross-section area becomes slightly deformed, but it still
can be approximated by a circle in the region Ca� 1. This change is reflected by
D reducing in value. Depending on λ, at various intermediate values of the capillary
number, 0.1 . Ca . 0.17, the decrease in D reaches a minimum. In this region the
cross-sections of the various tori are oval, with fore-and-aft symmetry about the centre,
and the shape can be approximated as ellipsoidal. At further increase of Ca, towards
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FIGURE 9. (Colour online) Taylor deformation factor of unstable stationary state toroidal
drops. 0<Ca<Cacr(λ).

the limiting value for each λ, D is increasing, indicating a decrease in the cross-section
thickness. Note that due to the growing numerical inaccuracy that is encountered as
Ca→ Cacr(λ), in all λ cases, the plotted curves are truncated when the inner circle
radius, Rmin, is very small, short of reporting exact values for the various Cacr (λ). It
is remarkable that the near-critical values of D are very similar for all λ, D∼ 0.72.

Typical cross-section shapes in these three regions are shown in figure 10. In
figure 10(a) we show the close to circular cross-section of drops having various λ
values at Ca= 0.04. Note that the more viscous the drop is, the shorter is the torus
major radius and the larger is the cross-section radius (which is approximately its
minor radius). At high λ values, the viscous drag induced by the ambient flow is
larger than at lower λ values. Thus, a shorter torus radius is needed to increase
a stronger portion of surface tension force that resists the drag. This difference is
reflected in the order deformation values depicted in figure 9 for small Ca – where
the smaller is λ, the larger is D. In figure 10(b) we show cross-sections typical to
the intermediate Ca values, Ca = 0.14, where evidently all have an almost perfect
ellipsoidal shape with similar thickness and with centres ‘crowded’ in a small range
of distances r ∼ 0.9 from the axis of symmetry. At this intermediate-Ca region, all
deformation factors, depicted in figure 9, are close to their minima. In figure 10(c)
we assembled the cross-sections of tori at capillary numbers close to the upper limit
ones. It is evident that the tori are not at complete collapse, as their values of the
various Rmin are still of O(0.01). There are several structural phenomena to signify
in this region. The symmetric elliptic shapes are lost and the sections assume oval
forms that resemble egg shapes. When λ&O(1), the sharper portion of the oval form
is directed towards the centre of the torus, reflecting the reaction to the squeezing
effect of the relatively higher viscous drag in these cases. When λ� 1, the form is
reversed, as the viscous drag is grossly diminished, and the surface shapes are mainly
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FIGURE 10. (Colour online) Cross-section shapes of unstable stationary tori. (a) Near-
circular cross-sections, Ca= 0.04. (b) Oval cross-section, Ca= 0.14. (c) Highly deformed
cross-section at near-critical Ca, D∼ 0.72. The origin of the abscissa coincides with the
axis of symmetry.

dictated by competition of opposing normal forces, i.e. pressure and capillary. Note
that the values of Rmax and the torus thickness in all the cases are almost identical,
as is reflected in similar near-critical values of D. This effect is opposite to that
shown in figure 9(a) when Ca� 1. In this region, at constant Ca, the deformation
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FIGURE 11. (Colour online) Tangential velocity component on the interface of deformed
tori at near-critical Ca. The origin of the abscissa coincides with the axis of symmetry.

parameter increases with an increase of the viscosity ratio, opposite to what is shown
in figure 9 when Ca� 1.

The change of shape near the critical conditions, which depends on the viscosity
ratio, raises the question if a related effect can be observed in the streamlines structure
in the ambient fluid or within the torus. In particular, one can expect the formation of
close streamline regions near the axis of symmetry, as reported in Zabarankin (2016)
for ‘stationary’ tori with circular cross-section. Should this be the case, stagnation
points would appear on the cross-section profile other than the two along the r axis
at z = 0. We have calculated the tangential velocity along the surface for high and
low values of λ, and found no such stagnation points, irrespective of the deformation
pattern. Several examples, spanning a wide range of the viscosity ratio, are shown in
figure 11. Thus, we conclude that the stationary external flow fields contain only open
streamlines, as is the undisturbed flow in the absence of the drop.

This observation is supported by the patterns of open and close streamlines that
are depicted in figure 12. Here, it is clearly evident that the outer streamlines are
open for low and high λ, as was also reported earlier by Zabarankin et al. (2015) for
the case λ = 1. Furthermore, the stationarity is also demonstrated, where both outer
open lines and inner closed vortices become tangent to the deformed cross-section and
the surface is a streamline as well. Note that the inner region of the torus contains
two vortices, moving in opposite directions, in contrast to the single vortex that exists
when the torus translates along the line of axial symmetry (e.g. as is shown in Machu
et al. 2001a).
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FIGURE 12. (Colour online) Streamlines patterns of unsteady stationary tori at
intermediate and high (near collapse) capillary numbers. (a) λ=0.1, Ca=0.14; (b) λ=0.1,
Ca= 0.245; (c) λ= 10, Ca= 0.14; (d) λ= 10, Ca= 0.172.

It is interesting to compare our stationary tori results with those obtained recently
by Zabarankin (2016) for tori having a circular cross-section. Of course, only relevant
parameters should be compared as the tori in Zabarankin (2016) are not permitted to
deform, and therefore they exist as stationary only in the limit Ca→ 0. Recall the
procedure described above and illustrated in figure 7, where the stationary tori were
determined numerically from tori with circular cross-section that deform but do not
collapse or expand. The initial radius of such a torus Rc can be compared to the radius
of Zabarankin’s ’stationary’ torus, which is taken from his table 1. The comparison
is depicted in figure 13 for several values of the viscosity ratio λ. In this figure
the results of Zabarankin (2016) are shown as full circles and our numerical results
include both Rc and R, the actual radius of the centre of the deformed cross-section.

It is clearly evident that in the region of very small capillary number, Ca < 0.05,
there is an agreement, implying that the almost perfect circular cross-sections, obtained
via the numerical algorithm used in this work, are in good agreement with those
obtained analytically via conformal mapping. However, as Ca increases, the results
predicted by the two methods diverge, reflecting the shape difference between the
deformed and circular cross-section in the respective cases. As the torus deforms from
its initial circular cross-section shape, both Rc and R deviate from the ideal case as
well as from each other. The actual R of the deformed stationary torus always exceeds
Rc (see also figure 7). Note, that Zabarankin (2016) ‘stationary’ torus R provides a
very good approximation of Rc, especially for λ> O(1).

Another comparison can be made between the near-critical Ca obtained in this work
for the deforming tori and the critical Ca estimated by Zabarankin (2016) for tori
with circular cross-section. This comparison is given in figure 14, where three cases
are depicted. The near-critical Ca and Zabarankin’s critical Ca for the existence of
stationary tori are shown by solid and dashed–dotted curves, respectively. In addition
we show the critical capillary number for the simply connected flat drop under a
similar compressional flow reported by Zabarankin et al. (2013) (dashed line).
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FIGURE 13. (Colour online) A comparison of stationary tori with deformed cross-section
with ‘stationary’ tori having circular cross-section (dots, Zabarankin 2016). Rc, solid lines,
R, dashed lines.
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FIGURE 14. (Colour online) Critical capillary number as a function of the viscosity ratio.

The difference between the critical condition which applies to tori with circular
cross-section and tori with deformed cross-section is evident. At small viscosity ratio
the stationary deformed tori exist for higher Ca values, while at high λ the order is
reversed, and the transition occurs at some λ of O(1). In addition, the similarity of
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near-critical stationary deformed tori and the critical flat simply connected drops, that
emerge from the same problem, defined by equations (2.2)–(2.4) subject to un= 0, is
striking. They are separated by a small gap, which deserves separate special attention.

5. Concluding remarks

In this communication we report on a study of the dynamic behaviour and stationary
states of toroidal drops embedded in a viscous fluid under a slow compressional flow.
The study employed numerical evaluation via a boundary integral representation and
the main focus was on the effect of the viscosity ratio, λ, of the two immiscible
fluids. The case of equal viscosity, λ= 1, studied earlier by Zabarankin et al. (2015),
is incorporated as a particular case of the general results. The dynamic deformation
of drops initiated from tori with circular cross-section, was studied for short and
long time. For relatively large initial radius the torus expands to infinity and the
cross-section first deforms to an oval or flattened shape, before eventually regaining
a circular form. In the initial stages, more viscous tori expand faster than less
viscous tori. However, an interplay of viscous and surface tension forcing on the
drop of complex toroidal geometry may result in a non-monotonic dependence on
the expansion level at advanced stages.

Increasing the inner viscosity increases λ with no change in Ca. As the drop
becomes more ‘solid like’, higher resistance and slower deformation can be expected.
One of the most interesting findings of the paper is that this is not always the case.
An example is shown in figure 5, and a possible explanation is as follows: there
are stationary states in the system. Naturally, close to a steady state the dynamic
shape-changes slow down (at the steady state the shape does not change at all). A
change of the viscosity ratio affects also the stationary shape. Thus, a shape that is
close to a steady one for a certain λ, can be further off stationarity and deform faster
when λ increases. When a certain shape is far from stationarity for two values of λ,
the deformations changes are slower for a higher viscosity ratio, as is evident in the
case presented in figure 3.

For small initial R the torus collapses towards the axis of symmetry and the cross-
section deforms, and in some cases the interface develops a circular dimple around the
axis. Our general viscosity model is also compared with the experimental results of
Pairam & Fernández-Nieves (2009), and it is shown that the collapse of axisymmetric
low-viscosity tori, after quenching the flow, is modelled correctly by applying the
numerical model at small viscosity ratio.

At relatively low capillary number, in between these two zones, there exists a
critical radius, Rc, at which the torus initially deforms and maintains a constant
position and deformation for a considerable duration of time before deviating from it
towards expansion or collapse. This dynamic behaviour applies to all viscosity ratios.

The dynamic behaviour initiated at Rc suggested the existence of stationary yet
absolutely unstable tori. A summary of such unstable stationary states spanning a wide
range of low to high viscosity ratio is depicted in figures 9 and 10. For each viscosity
ratio there is a critical capillary number Cacr beyond which a stationary state does not
exist. For such supercritical values of Ca, the torus either experiences collapse during
the initial deformation or, if it does not collapse, it departs to expansion and a critical
radius, Rc, is not found.

The stationary deformation patterns of the toroidal cross-section are similar to those
obtained in the particular case of λ= 1 – i.e. at relatively small Ca the cross-section is
nearly circular, at intermediate Ca it is nearly oval, while at higher capillary numbers
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it resembles egg shapes. It is also demonstrated that in all λ cases there exists no
stagnation point on the interface except on the plane z = 0 and, hence, the external
and internal flows contain no separation of the streamlines patterns.

It should be stressed that the numerical study shows that, at all viscosity ratios,
stationary tori always deform from the circular shape and that circular cross-sections
exist only as the tori are expanded to infinity. Indeed, the comparison with the
theoretical results, obtained by Zabarankin (2016) via conformal mapping techniques,
shows an interesting agreement when the numerical evaluation of the cross-section
deformation is nearly circular, i.e. at small Ca, while deviations are evident as the
capillary number increases, when the cross-section shapes deviate as well.

Finally, it should be noted that the near-critical capillary numbers reported in
this study are very similar to the critical capillary number reported by Zabarankin
et al. (2013) for steady deformation of a singly connected flat drop in the same
forcing compressional flow. Indeed, the two cases result from the same problem,
i.e. equations (2.2a)–(2.4) subject to un = 0 at S, and thus comprise two branches
separated only by the pattern of deformation. The connectivity between these branches
and the possible existence of yet a third branch is currently under investigation.
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