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Abstract

Burmese amber continues to provide unique insights into the terrestrial biota inhabiting tropi-
cal equatorial forests during mid-Cretaceous time. In contrast to the large amount and great
diversity of terrestrial species retrieved so far, aquatic biota constitute rare inclusions. Here
we describe the first freshwater snail ever preserved in amber. The new species Galba prima
sp. nov. belongs in the family Lymnaeidae, today a diverse and near globally distributed family.
Its inclusion in terrestrial amber is probably a result of the amphibious lifestyle typical of
modern representatives of the genus. The finding of a freshwater snail on the Burma
Terrane, back then an island situated at some 1500 km from mainland Asia, has implications
for the dispersal mechanisms of Mesozoic lymnaeids. The Cenomanian species precedes the
evolution of waterfowl, which are today considered a main vector for long-distance dispersal.
In their absence, we discuss several hypotheses to explain the disjunct occurrence of the new
species.

1. Introduction

Amber fossils provide a unique window into the geological past of the Earth’s biosphere. The
exceptional preservation of fossils in amber frequently provides access to the finest morphologi-
cal details and occasionally even the shapes of organic material such as soft bodies or feathers
(e.g. Poinar & Hess, 1985; Henwood, 1992; Grimaldi et al. 1994; Xing et al. 2019, 2020; Wang
et al. 2020).

Burmese amber in northern Myanmar has provided among the most abundant fossils from
amber deposits. Descriptions of amber inclusions dating back to the early 20th century
(Cockerell, 1916) indicate that the region has been mined for over 100 years. Since the turn
of the century, scientists have become increasingly aware of the outstanding potential of
Burmese amber to advance palaeontological research. Burmese amber has provided a rare
insight into mid-Cretaceous terrestrial forest environments that were creeping, crawling and
slithering with insects, arachnids, myriapods, crustaceans, nematodes, annelids, snails, amphib-
ians and reptiles (Ross, 2019). Particularly over the last decade, the excavation of exceptional
fossils has attracted researchers worldwide and sparked a major wave of species discoveries
(Ross, 2019). Approximately 1200 species of animal and plants have been described and many
more are awaiting description (Ross, 2019; Sokol, 2019). In addition, a number of marine ani-
mals have been recorded trapped in the treacherous resin (Smith & Ross, 2018; Xing et al. 2018a;
Yu et al. 2019).

Here, we present a novel finding of two freshwater snails of the family Lymnaeidae preserved
in Burmese amber. We describe a new species and discuss the implications of this record for
palaeoecology and biogeography of the Lymnaeidae. We propose five hypotheses to explain
the disjunct occurrence on an island in the mid-Cretaceous Tethys Sea.

2. Materials and methods

Thematerial derives from a former amber mine near Noije Bum in Tanaing Township in north-
ernmost Myanmar. We are aware of the toxic situation associated with the mining of Burmese
amber, involving armed conflict and civilian casualties since November 2017. While we clearly
condemn the actions violating international human rights and humanitarian law, we argue in
line with Haug et al. (2020) that our specimens were mined legally before November 2017 and
do not qualify as “blood amber”.
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Dating of zircons embedded in the volcanoclastic matrix con-
taining the amber yielded a maximum age of c. 99 Ma (Shi et al.
2012). This agrees with biostratigraphic data based on ammonites
found in the amber-bearing beds and within the amber, indicating
a late Albian – early Cenomanian age (Cruickshank & Ko, 2003;
Yu et al. 2019).

The amber pieces containing the two shells are translucent
yellow. The specimens were photographed using a Zeiss AXIO
Zoom V16 microscope system with the stacking function at the
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing
Institute of Geology and Palaeontology, Chinese Academy of
Sciences (NIGPAS). The final images are composites of approxi-
mately 50 individual focal planes that were combined with the
software Helicon Focus 6.

Additionally, the holotype and paratype individuals were
scanned with a ZEISS Xradia 520 versa 3D X-ray microscope at
the micro-CT lab of NIGPAS. A charge-coupled device detector
and a 0.4× objective, providing isotropic voxel sizes from
0.5 mm with the help of geometric magnification, were used to
obtain high resolution. The running voltage for the X-ray source
was set at 50 kV (for NIGP1) and 60 kV (for NIGP2), and a thin
filter (LE2) was applied to avoid beam-hardening artefacts. A total
of 2001 projections over 360° were collected and the exposure time
for each projection was set at 2 s (for NIGP1) and 2.5 s (for NIGP2)
to obtain a high signal-to-noise ratio. Volume data were processed
with the program VGSTUDIO MAX 3.0 (Volume Graphics,
Heidelberg, Germany). Images were edited and arranged using
the CorelDraw Graphics Suite X8.

Shell measurements include shell height (H), greatest width of
shell perpendicular to height (D), aperture height parallel to shell
height (h) and aperture width perpendicular to aperture height (d).
All specimens are stored at the collection of NIGPAS. The publi-
cation and the nomenclatural act contained here are registered
under http://zoobank.org/urn:lsid:zoobank.org:pub:6A5BFAA2-
D508-4D63-861A-6DDDB071B689.

3. Systematic palaeontology

Class GASTROPODA Cuvier, 1795
Subclass HETEROBRANCHIA Burmeister, 1837
Superorder HYGROPHILA Férussac, 1822
Superfamily LYMNAEOIDEA Rafinesque, 1815
Family LYMNAEIDAE Rafinesque, 1815
Genus Galba Schrank, 1803
Type species. Galba truncatula O. F. Müller, 1774; type by
subsequent designation; Recent, Europe.

Galba prima sp. nov.

(Fig. 1)
ZooBank LSID: urn:lsid:zoobank.org:act:095524C3-D5A1-

4DC5-A26B-5142A2D39B5A
Derivation of name. The species epithet refers to it being the

first freshwater gastropod species found in amber.
Holotype. NIGP173920.
Paratype. NIGP173921.
Type locality and horizon. Former amber mine near Noije Bum

Village, Tanaing Township, Myitkyina District, Kachin State,
northern Myanmar (26° 15' N, 96° 33' E); unnamed horizon,
mid-Cretaceous, lower Cenomanian, c. 99 Ma.

Diagnosis. Small shell with slightly coeloconoid spire, weakly
stepped whorls separated by deep suture, large and inflated body

whorl, slender ovate aperture, nearly straight columella without
fold, and small, circular umbilicus.

Description. Shell small, consisting of about 6–6.5 whorls.
Height:width ratio is 1.66 (paratype) and 1.84 (holotype).
Protoconch blunt, low domical; no surface details visible. Spire
slightly coeloconoid, spire angle 60–65°. Whorls stepped, with
straight-sided or weakly convex lower part and strongly convex
upper part; whorls separated by deep suture; spire whorls increase
gradually in height, with the last whorl being broad, slightly
inflated and 71–78% of total shell height. Columella not twisted,
forming almost straight pillar from apex to umbilicus. Peristome
thin and sharp all around aperture; columellar lip slightly reflected
towards umbilicus. Umbilicus small, circular, c. 0.25 mm in diam-
eter. Aperture slender ovoid, adapically angulated, not expanded;
height of aperture attains 57–63% of total height. Surface smooth
except for faint, weakly prosocline growth lines.

Measurements. Holotype: H= 7.89 mm, D = 4.28 mm,
h= 4.34 mm, d= 2.38 mm; paratype: H= 6.19 mm, D= 3.74 mm,
h= 3.69 mm, d= 1.61 mm.

Remarks. Modern genus classification of extant Lymnaeidae is
largely based on anatomical characteristics and molecular data
(e.g. Correa et al. 2010; Vinarski 2013), while fossil shells can only
be distinguished based on general morphology, sculpture and pro-
toconch characteristics.We attribute the species to the genusGalba
due to the small shell with stepped whorls, the inflated and
expanded body whorl, the comparatively small, non-expanded
aperture, the thin peristome without columellar fold (Fig. 1c,
g, h) and the presence of an umbilicus (Fig. 1f).

Species of Aenigmomphiscola Kruglov & Starobogatov, 1981,
Hinkleyia Baker, 1928, Ladislavella Dybowski, 1913, Omphiscola
Rafinesque, 1819, Stagnicola Jeffreys, 1830 and Walterigalba
Kruglov & Starobogatov, 1985 have more elongated shells, often
with cyrtoconoid spires, and columella folds, while Ampullaceana
Servain, 1882, Peregriana Servain, 1882 and RadixMontfort, 1810
species are typically more globular with broader apertures
(Vinarski & Grebennikov, 2012; Vinarski et al. 2017, 2020a;
Glöer, 2019). Even the more slender representatives of Radix, such
as Radix labiata (Rossmässler, 1835), can be well distinguished
from Galba prima sp. nov. by their expanded apertures. Lymnaea
s.s. species are much larger and have a twisted axis (Vinarski, 2015;
Anistratenko et al. 2018; Glöer, 2019). Similarly, shells of Bulimnea
Haldeman, 1841 have a twisted columella and lack an umbilicus
(Baker, 1911). The AustralianAustropepleaCotton, 1942 also bears
a more expanded aperture and no umbilicus (Dell, 1956; Ponder
et al. 2020).

Some species of Orientogalba Kruglov & Starobogatov, 1985, a
genus native to Asia, have a similar shell habitus with inflated body
whorl and short spire, such as O. viridis (Quoy & Gaimard, 1833–
1835) and O. ollula (Gould, 1859), but they lack the umbilicus
(Vinarski et al. 2020a). Also, O. viridis has an expanded aperture
(Vinarski et al. 2020a). Orientogalba lenaensis (Kruglov &
Starobogatov, 1985), in turn, is much more slender and has a high
spire (Sitnikova et al. 2014).

The fossil Mesozoic genus Proauricula Huckriede, 1967,
which was tentatively considered a basal basommatophoran and
predecessor of modern Lymnaeidae by Bandel (1991), has a more
slender shell with columellar plicae and distinct spiral striation on
the teleoconch (Huckriede, 1967; Bandel, 1991; Pan & Zhu, 2007).
In fact, the overall shape and especially the distinct columellar
plicae make a relationship to Lymnaeidae very unlikely. The shape
and apertural characteristics are more similar to Ellobiidae, where
the genus was originally placed by Huckriede (1967) and which
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was also adopted by Pan & Zhu (2007). Here, we accept this
original classification and place Proauricula tentatively in the
Ellobiidae. That family was well represented during the Mesozoic
Era by several genera and species (Yen, 1951, 1952a, b, 1954;
Bandel, 1991; Bandel & Riedel, 1994; Pan & Zhu, 2007; Isaji, 2010).

Of the 13 mid-Cretaceous lymnaeids, only two species are cur-
rently classified inGalba, that is,G. yongkangensis Yü in Yü & Pan,
1980 and G. meikiensis Yü in Yü & Pan, 1980 from the Albian
Guantou Formation in China. The former is more elongate
and has a cyrtoconoid spire, while the latter can be distinguished

from Galba prima sp. nov. by its higher last and penultimate whorl
(Yü & Pan, 1980). Similarly, Radix undensisMartinson, 1956 from
Aptian–Albian strata of Siberia has a higher, globular last whorl
and a very short spire. The four Cenomanian species from
France, introduced in the genus “Limnaea” by Repelin (1902),
are more slender and have higher spires; only some specimens
of L. munieri Repelin, 1902 have a similar morphology, but the
species clearly differs from G. prima sp. nov. in having convex,
non-stepped whorls. The American “Lymnaea” nitidula (Meek,
1860), “Lymnaea” ativuncula White, 1886 and “Lymnaea”

Fig. 1. (Colour online) Galba prima sp. nov. (a–d, g, h, j, k) holotype (NIGP173920). (e, f, i, l–n) paratype (NIGP173921); note the spire is slightly deformed. (c, d, g, j, m, n) are
microtomographic reconstructions; (h) shows surface rendering with transparency. All scale bars represent 1 mm.
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tengchieni Kadolsky, 1995 (= L. cretacea Yen, 1951, non Thomä,
1845) are distinctly more slender, while “Lymnaea” sagensis
Yen, 1946 has a globular shell and more reminiscent of a viviparid
than a lymnaeid. An unidentified ?Austropeplea sp. from
Albian–Cenomanian strata of New Zealand is only incompletely
preserved, but the species appears to be broader and bears spiral
microsculpture.

4. Discussion

Unsurprisingly, amber mostly preserves terrestrial biota, but a
number of freshwater organisms are also known from amber
deposits, including arthropods, nematodes and amoebae (Gray,
1988; Schmidt et al. 2004; Yu et al. 2019). The species described
herein is the first freshwater snail ever recorded in amber. This
mode of preservation is likely due to the species’ lifestyle and
aquatic niche: several extant members of the Lymnaeidae, includ-
ing species of Galba, are amphibious (Dillon, 2000). For example,
Galba truncatula (Müller, 1774) is commonly found outside the
water and can withstand droughts for an extensive period of time;
some individuals have been found surviving for over a year in aes-
tivation (Kendall, 1949). However, extensive droughts were rather
unlikely in the Cenomanian tropical forests of the Burma Terrane
(Poinar et al. 2007; Xing et al. 2018b; Yu et al. 2019). Rather, the
snail might have been captured in resin flowing down or dropping
from trees close to a water body. Since extant Galba is typically
found in stagnant and often temporary water bodies, such as lakes,
ponds, ditches, mires and puddles (Kendall, 1949; Økland, 1990),
we assume a similar aquatic biome close to the place of deposition.

The present finding also has implications for the biogeography
of the family Lymnaeidae. Galba prima sp. nov. is among the few
fossil Lymnaeidae known from early Late Cretaceous time. The
only other relatives of similar age have been reported from
Cenomanian strata of France (Repelin, 1902) and the Albian–
Cenomanian deposits of New Zealand (Beu et al. 2014; see also
Section 3 above on Systematic Palaeontology). Slightly older
records have been documented from Aptian–Albian strata of
North America (White, 1886; Yen, 1946, 1951, 1954), Russia
(Martinson, 1956) and China (Yü & Pan, 1980; Pan & Zhu, 2007).

However,Galba prima sp. nov. is not the earliest member of the
genus; alleged records of Galba date back to the Middle Jurassic
Epoch of China (Pan, 1977; Yü & Pan, 1980). Their attribution
to the genus (and in some cases even to the family Lymnaeidae)
has not yet been confirmed with certainty and requires a detailed
reassessment of the respective species.

The disjunct distribution of the family and particularly the iso-
lated occurrence ofGalba prima sp. nov. on the Burma Terrane are
striking – how did a freshwater snail reach an island at least
1500 km from the nearest mainland (Fig. 2)? In the following,
we propose five hypotheses that could explain the disjunct occur-
rence. Some of these hypotheses may also serve as an explanatory
model for the existence of terrestrial and other freshwater biota on
the Burma Terrane. All hypotheses rely on the recently published
tectonic model for the Burma Terrane as an island in the
Cenomanian Tethys Ocean (Westerweel et al. 2019; Fig. 2).

(1) Modern Lymnaeidae, as well as many other freshwater snails,
are commonly distributed via waterbirds (Green & Figuerola,
2005; Kappes & Haase, 2012; van Leeuwen & van der Velde,
2012; van Leeuwen et al. 2012, 2013; Vinarski et al. 2020b).
Although some species may occasionally be transported by
song birds (e.g. Zenzal et al. 2017), this seems to be the

exception rather than the rule. Passive transport of snails
via travelling and migrating birds provides a unique opportu-
nity for long-distance dispersal across watersheds. Snails travel
attached to feathers or feet and can survive ingestion and
defecation. Dispersal via waterfowl has been hypothesized to
explain many a disjunct fossil occurrence in Cenozoic strata
(Harzhauser et al. 2016; Aksenova et al. 2018; Esu &
Girotti, 2018) and likely contributed markedly to the already
large distribution of the family in Mesozoic strata. However,
waterfowl (Anseriformes) did not evolve before latest
Cretaceous time, and even the oldest neognathe bird is youn-
ger than the new Cenomanian Lymnaeidae (c. 85 Ma accord-
ing to Claramunt & Cracraft, 2015). Little is known about the
flight capabilities of Mesozoic birds. Early Cretaceous orni-
thurines already possessed anatomical features similar to those
of modern migratory birds, such as a keeled sternum (Falk,
2011). Based on the appearance of the same types of bird
routes across great distances, Falk (2011) suggested that
ornithurine birds might have evolved long-distance migration
in or before the Early Cretaceous Epoch, but clear evidence is
lacking. Enantiornithines, a group widely represented in the
global Cretaceous fossil record, have been recorded several
times in Burmese amber (Xing et al. 2016, 2017, 2019,
2020). Their plumage would likely have been suitable for
transporting the tiny snail, but current knowledge indicates
that this group was only capable of flap-gliding and bounding
flight (e.g. Liu et al. 2017; Serrano et al. 2018). Probably, enan-
tiornithines were already present on the Burma Terrane before
it detached from Gondwana during the Jurassic Period
(Matthews et al. 2016).

(2) An alternative winged animal group existing during
the Cenomanian Age were pterosaurs (Order Pterosauria).
So far, they have not been considered potential dispersal agents
for invertebrates, but previous studies suggest that Cretaceous
pterosaurs may have dispersed angiosperm seeds (Fleming &
Lips, 1991). In addition to the aforementioned ornithurine
birds, pterosaurs were likely capable of long-distance travels

Fig. 2. (Colour online) Reconstruction of the Burma Terrane during the Cenomanian
Age (95 Ma). Modified from Westerweel et al. (2019).
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(Witton & Habib, 2010). Some species probably fed on
molluscs (Bestwick et al. 2018). Pterosaurs may therefore have
dispersed freshwater snails via ingestion or by attachment to
the feet or scales on the legs or tail, comparable to similar
occurrences in modern birds. However, no pterosaur fossil
has so far been retrieved from Burmese amber deposits that
could potentially support this hypothesis. Other animal
groups, such as amphibians or larger insects, which have
occasionally been found carrying freshwater molluscs
(e.g. Walther et al. 2008; Kolenda et al. 2017), are unlikely
to play a significant role in long-distance dispersal.

(3) Driftwood is known to be a potential transoceanic vector for
terrestrial and amphibious animals (e.g. Trewick, 2001;
Measey et al. 2007) as well as brackish-water gastropods, such
as Littorinidae (Reid, 1986) or estuarine Neritidae (Kano et al.
2013). While these brackish-water snails have a marine larval
phase facilitating wider dispersal, Lymnaeidae are restricted to
freshwater environments. We cannot exclude that Galba
prima sp. nov. boarded driftwood in a river or estuary and
survived the long journey (perhaps during aestivation),
but we believe it is fairly unlikely given the great distance
and ecological constraints. However, driftwood (or any kind
of drifting islands) may have facilitated dispersal of
Cenomanian land snails (compare Dörge et al. 1999), which
may have had a higher chance of long-term survival due to
their ability to close the shell with an operculum or epiphragm
(Ożgo et al. 2016).

(4) Several studies have indicated the possibility of dispersal via
wind, particularly strong storms. Numerous examples of
“raining fishes” exist from the recent past as well as historical
documents worldwide, where storms carried both marine and
freshwater fishes over large distances (Rees, 1965). A case of
freshwater Anodonta, a genus of unionid bivalves, raining
down over Germany after a storm was reported in the 19th
century (Rees, 1965). Ożgo et al. (2016) demonstrated land
snail dispersal by strong storms in northern Europe. They con-
cluded that wind currents associated with storm cells may also
facilitate long-distance dispersal. A similar hypothesis was
proposed by Vagvolgyi (1975) explaining how land snails
could colonize remote Pacific islands. The terrestrial ecosys-
tems in the area that comprises Southeast Asia today were also
likely perturbed by tropical storms as long ago as during the
Cenomanian Age. Considering the overall high temperature
in the Cretaceous greenhouse (Mills et al. 2019), storm fre-
quency and intensity were probably higher than today
(Ghosh et al. 2018). The prevailing wind stress reconstructed
for the mid-Cretaceous period by Poulsen et al. (1998) points
from mainland Asia towards the Tethys Ocean, matching the
required dispersal direction. Since the Burma Terrane was
south of the equator during the Cenomanian Age according
to the latest palaeogeographic model (Westerweel et al.
2019), the only storms that could potentially transport the
snails towards the Burma Terrane would have originated in
the southern Woyla Arc or the southern Sundaland Block
and moved westwards along the Southern Hemisphere trade
winds (Fig. 2). However, no fossil record is available to support
this hypothesis.

(5) Finally, Lymnaeidae may have reached the Burma
Terrane when it was still attached to Gondwana prior to the
opening of the Neotethys Ocean during latest Jurassic time
(Matthews et al. 2016) and they survived there until the
Cenomanian Age (without fossil record). However, this still

leaves open how the family got there in the Jurassic Period,
when their fossil record was limited to the Northern
Hemisphere. Despite the patchiness of the fossil record, espe-
cially for freshwater habitats during the Mesozoic Era, the lack
of any evidence makes this, in our opinion, the least plausible
hypothesis.

Given the uncertainties involved in many of these hypotheses, we
do not support a particular explanation model. However, consid-
ering the great distance and ecological constraints, we believe
airborne dispersal – whether via ornithurine birds, pterosaurs or
storms – is the most plausible means.
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