
Proceedings of the Royal Society of Edinburgh, 142A, 501–524, 2012

Convergence of equilibria of thin elastic rods under
physical growth conditions for the energy density

Elisa Davoli and Maria Giovanna Mora
Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265,
34136 Trieste, Italy (davoli@sissa.it; mora@sissa.it)

(MS received 4 October 2010; accepted 1 June 2011)

We study the asymptotic behaviour of the equilibrium configurations of a nonlinearly
elastic thin rod as the diameter of the cross-section tends to zero. Convergence
results are established assuming physical growth conditions for the elastic energy
density and suitable scalings of the applied loads that correspond at the limit to
different rod models: the constrained linear theory, the analogue of the von Kármán
plate theory for rods, and the linear theory.

1. Introduction and statement of the main result

A classical question in nonlinear elasticity is the derivation of lower-dimensional
models for thin structures (such as plates, shells or beams) starting from the three-
dimensional theory. In recent years this problem has been approached by means
of Γ -convergence. This method guarantees, roughly speaking, the convergence of
minimizers of the three-dimensional energy to minimizers of the deduced models.
In this paper we discuss the convergence of three-dimensional stationary points,
which are not necessarily minimizers, assuming physical growth conditions on the
stored-energy density. In particular, we extend the recent results of [13] to the case
of a three-dimensional thin beam with a cross-section of diameter h and subjected
to an applied normal body force of order hα, α > 2. These scalings correspond
at the limit to the constrained linear rod theory (2 < α < 3), the analogue of
von Kármán plate theory for rods (α = 3), and the linear rod theory (α > 3).

We first review the main results of the variational approach. Let Ωh = (0, L)×hS
be the reference configuration of a thin elastic beam, where L > 0, S ⊂ R

2 is a
bounded domain with Lipschitz boundary and h > 0 is a small parameter. Without
loss of generality we shall assume that the two-dimensional Lebesgue measure of S
is equal to 1 and∫

S

x2 dx2 dx3 =
∫

S

x3 dx2 dx3 =
∫

S

x2x3 dx2 dx3 = 0. (1.1)

Let fh ∈ L2(Ωh, R3) be an external body force applied to the beam. Given a
deformation v ∈ W 1,2(Ωh, R3) the total energy per unit cross-section associated to
v is defined as

Fh(v) =
1
h2

∫
Ωh

W (∇v) dx − 1
h2

∫
Ωh

fh · v dx,
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where the stored-energy density W : M
3×3 → [0, +∞] is assumed to satisfy the

following natural conditions:

(H1) W is of class C1 on M
3×3
+ ;

(H2) W (F ) = +∞ if detF � 0; W (F ) → +∞ if detF → 0+;

(H3) W (RF ) = W (F ) for every R ∈ SO(3), F ∈ M
3×3 (frame indifference);

(H4) W = 0 on SO(3);

(H5) there exists C > 0 such that W (F ) � C dist2(F, SO(3)) for every F ∈ M
3×3;

(H6) W is of class C2 in a neighbourhood of SO(3).

Here
M

3×3
+ = {F ∈ M

3×3 : det F > 0}

and
SO(3) = {R ∈ M

3×3 : RTR = Id, det R = 1}.

In particular, condition (H2) is related to non-interpenetration of matter [6] and
ensures local invertibility of C1 deformations with finite energy.

The study of the asymptotic behaviour of global minimizers of Fh as h → 0 can be
performed through the analysis of the Γ -limit of Fh (see [7] for an introduction to Γ -
convergence). To do this, it is convenient to rescale Ωh to the domain Ω = (0, L)×S
and to rescale deformations according to this change of variables by setting

y(x) := v(x1, hx2, hx3)

for every x ∈ Ω. Assuming for simplicity that fh(x) = fh(x1), the energy functional
can be written as

Fh(v) = J h(y) =
∫

Ω

W (∇hy) dx −
∫

Ω

fh · y dx,

where we have used the notation

∇hy :=
(

∂1y

∣∣∣∣∂2y

h

∣∣∣∣∂3y

h

)
.

Now let yh be a global minimizer of J h subject to the boundary condition

yh(0, x2, x3) = (0, hx2, hx3) for every (x2, x3) ∈ S. (1.2)

The asymptotic behaviour of yh as h → 0 depends on the scaling of the applied
load fh in terms of h. More precisely, if fh is of order hα with α � 0, then
J h(yh) = O(hβ), where β = α for 0 � α � 2 and β = 2α−2 for α > 2, and yh con-
verges in a suitable sense to a minimizer of the Γ -limit of the rescaled functionals
h−βJ h as h → 0 [3,9–11,16,17]. In particular, it has been proved in [11,17] that if
fh is a normal force of the form hα(f2e2 + f3e3), with α > 2 and f2, f3 ∈ L2(0, L),
then

yh → x1e1 in W 1,2(Ω, R3).
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In other words, minimizers converge to the identity deformation on the mid-fibre
of the rod. This suggests the introduction of the (averaged) tangential and normal
displacements, respectively given by

uh(x1) :=

⎧⎪⎪⎨
⎪⎪⎩

1
hα−1

∫
S

(yh
1 − x1) dx2 dx3 if α � 3,

1
h2(α−2)

∫
S

(yh
1 − x1) dx2 dx3 if 2 < α < 3,

(1.3)

vh
k (x1) :=

1
hα−2

∫
S

yh
k dx2 dx3 for k = 2, 3 (1.4)

for a.e. x1 ∈ (0, L), and the (averaged) twist function, given by

wh(x1) :=
1

µ(S)
1

hα−1

∫
S

(x2y
h
3 − x3y

h
2 ) dx2 dx3 (1.5)

for a.e. x1 ∈ (0, L), where

µ(S) :=
∫

S

(x2
2 + x2

3) dx2 dx3.

As h → 0, one has

uh → u in W 1,2(0, L),

vh
k → vk in W 1,2(0, L) for k = 2, 3,

wh ⇀ w in W 1,2(0, L),

where (u, v2, v3, w) is a global minimizer of the functional Jα given by the Γ -limit
of h−2α+2J h. If α = 3, the Γ -limit J3 corresponds to the one-dimensional analogue
of the von Kármán plate functional. For α > 3 the functional Jα coincides with
the linear rod functional, while for 2 < α < 3 the limiting energy is still linear but
is subject to a nonlinear isometric constraint (see § 2 for the exact definition of the
functionals Jα).

In this paper we focus on the study of the asymptotic behaviour of (possibly
non-minimizing) stationary points of J h as h → 0. The first convergence results
for stationary points have been proved in [12, 14, 15]. We also point out the recent
results [1,2] concerning the dynamical case. A crucial assumption in all these papers
is that the stored-energy function W is everywhere differentiable and its derivative
satisfies a linear growth condition. Unfortunately, this requirement is incompatible
with the physical assumption (H2). At the same time, if (H2) is satisfied, the con-
ventional form of the Euler–Lagrange equations of J h is not well defined and the
extent to which minimizers of J h satisfy this condition is not even clear (we refer
the reader to [5, 13] for a more detailed discussion).

Following [13], we consider an alternative first-order stationarity condition, intro-
duced by Ball in [5]. Towards this aim, we require the following additional assump-
tion:

(H7) there exists k > 0 such that |DW (F )FT| � k(W (F )+1) for every F ∈ M
3×3
+ .

This growth condition is compatible with (H1)–(H6) [5].
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Definition 1.1. We say that a deformation y ∈ W 1,2(Ω, R3) is a stationary point
of J h if it satisfies the boundary condition y(0, x2, x3) = (0, hx2, hx3) for every
(x2, x3) ∈ S and the equation∫

Ω

DW (∇hy)(∇hy)T : [(∇φ) ◦ y] dx =
∫

Ω

fh · (φ ◦ y) dx (1.6)

for every φ ∈ C1
b (R3, R3) such that φ(0, hx2, hx3) = 0 for all (x2, x3) ∈ S.

In the previous definition and in the following C1
b (R3, R3) denotes the space of

C1 functions that are bounded in R
3, with bounded first-order derivatives.

Assuming (H1)–(H7), one can show that every local minimizer y of J h, subject
to the boundary condition y(0, x2, x3) = (0, hx2, hx3) for every (x2, x3) ∈ S, is
a stationary point of J h in the sense of definition 1.1 [5, theorem 2.4]. Indeed,
condition (1.6) corresponds to the requirement that the derivative of J h along
external variations of the form y+εφ ◦ y is zero at ε = 0. Moreover, when minimizers
are invertible, (1.6) coincides with the equilibrium equation for the Cauchy stress
tensor.

In [13] it has been proved that stationary points in the sense of definition 1.1
converge to stationary points of the Γ -limit Jα in the case of a thin plate and for
the scaling α � 3 (corresponding to von Kármán and to linear plate theory). In
this paper we extend this result to the range of scalings α > 2 in the case of a thin
beam. Our main result is the following.

Theorem 1.2. Assume that W satisfies (H1)–(H7). Let f2, f3 ∈ L2(0, L). Let α >
2 and let Jα be the functional defined in (2.3), (2.5) and (2.6). For every h > 0 let
yh be a stationary point of J h (according to definition 1.1) with fh := hα(f2e2 +
f3e3). Assume there exists C > 0 such that∫

Ω

W (∇hyh) dx � Ch2α−2 (1.7)

for every h > 0. Then,

yh → x1e1 in W 1,2(Ω, R3). (1.8)

Moreover, let uh, vh and wh be the scaled displacements and twist function intro-
duced in (1.3)–(1.5). Then, up to subsequences, we have

uh ⇀ u in W 1,2(0, L),

vh
k → vk in W 1,2(0, L) for k = 2, 3,

wh ⇀ w in W 1,2(0, L),

where (u, v2, v3, w) ∈ W 1,2(0, L) × W 2,2(0, L) × W 2,2(0, L) × W 1,2(0, L) is a sta-
tionary point of Jα.

The proof of theorem 1.2 is closely related to [13] and uses as a key tool the rigidity
estimate proved in [8]. The main new idea with respect to [13] is the construction
of a sequence of suitable ‘approximate inverse functions’ of the deformations yh

(see lemma 2.7), which allows us to extend the results of [13] to the range of
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scalings α ∈ (2, 3). This construction is based on a careful study of the asymptotic
development of the deformations yh in terms of approximate displacements and
uses in a crucial way the fact that the limit space dimension is equal to 1.

2. Preliminary results

In this section we recall the expression of the Γ -limits Jα identified in [11, 17] and
we prove some preliminary results.

We start by introducing some notation. Let

Q3 : M
3×3 → [0, +∞)

be the quadratic form of linearized elasticity:

Q3(F ) := D2W (Id)F : F for every F ∈ M
3×3.

We shall denote by L the associated linear map on M
3×3 given by L := D2W (Id).

Let
E := min

a,b∈R3
Q3(e1|a|b), (2.1)

and let Q1 be the quadratic form defined on the space M
3×3
skew of skew-symmetric

matrices given by

Q1(F ) := min
β∈W 1,2(S,R3)

∫
S

Q3(x2Fe2 + x3Fe3|∂2β|∂3β) dx2 dx3 (2.2)

for every F ∈ M
3×3
skew. It is easy to deduce from the assumptions (H1)–(H6) that E

is a positive constant and Q1 is a positive definite quadratic form.
The functionals Jα are defined on the space

H := W 1,2(0, L) × W 2,2(0, L) × W 2,2(0, L) × W 1,2(0, L)

and are finite on the class Aα, which can be described as follows:

Aα := {(u, v2, v3, w) ∈ H : u′ + 1
2 [(v′

2)
2 + (v′

3)
2] = 0 in (0, L)

and u(0) = vk(0) = v′
k(0) = w(0) = 0 for k = 2, 3}

for 2 < α < 3, and

Aα := {(u, v2, v3, w) ∈ H : u(0) = vk(0) = v′
k(0) = w(0) = 0 for k = 2, 3}

for α � 3.
For 2 < α < 3, the functional Jα is given by

Jα(u, v2, v3, w) = 1
2

∫ L

0
Q1(A′) dx1 −

∫ L

0
(f2v2 + f3v3) dx1 (2.3)

for every (u, v2, v3, w) ∈ Aα; Jα(u, v2, v3, w) = +∞ elsewhere in H. In (2.3) the
function A ∈ W 1,2((0, L), M3×3) is defined by

A(x1) :=

⎛
⎜⎝

0 −v′
2(x1) −v′

3(x1)
v′
2(x1) 0 −w(x1)

v′
3(x1) w(x1) 0

⎞
⎟⎠ (2.4)

for a.e. x1 ∈ (0, L).
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For α = 3 the Γ -limit is given by

J3(u, v2, v3, w) = 1
2

∫ L

0
E(u′ + 1

2 [(v′
2)

2 + (v′
3)

2])2 dx1

+ 1
2

∫ L

0
Q1(A′) dx1 −

∫ L

0
(f2v2 + f3v3) dx1 (2.5)

for every (u, v2, v3, w) ∈ Aα; J3(u, v2, v3, w) = +∞ elsewhere in H.
Finally, for α > 3 the Γ -limit is given by

Jα(u, v2, v3, w) = 1
2

∫ L

0
E(u′)2 dx1+ 1

2

∫ L

0
Q1(A′) dx1−

∫ L

0
(f2v2+f3v3) dx1 (2.6)

for every (u, v2, v3, w) ∈ Aα; Jα(u, v2, v3, w) = +∞ elsewhere in H.
We can now compute the Euler–Lagrange equations for the functionals Jα intro-

duced above. We first recall the following lemma.

Lemma 2.1. Let F ∈ M
3×3
skew and let GF : W 1,2(S, R3) → [0, +∞) be the functional

GF (β) :=
∫

S

Q3(x2Fe2 + x3Fe3|∂2β|∂3β) dx2 dx3

for every β ∈ W 1,2(S, R3). Then GF is convex and has a unique minimizer in the
class

B :=
{

β ∈ W 1,2(S, R3) :
∫

S

β dx2 dx3 =
∫

S

∂2β dx2 dx3 =
∫

S

∂3β dx2 dx3 = 0
}

.

Furthermore, a function β ∈ B is the minimizer of GF if and only if the map
E : S → M

3×3 defined by

E := L(x2Fe2 + x3Fe3|∂2β|∂3β) (2.7)

satisfies in a weak sense the following problem:

divx2,x3(Ee2|Ee3) = 0 in S,

(Ee2|Ee3)ν∂S = 0 on ∂S,

where ν∂S is the unit normal to ∂S. Finally, the minimizer depends linearly on F .

Proof. See [12, lemma 2.1] and [10, remark 3.4].

We shall use the following notation: for each F ∈ L1(Ω, M3×3) we define the
zeroth-order moment of F as the function F̄ : (0, L) → M

3×3 given by

F̄ (x1) :=
∫

S

F (x) dx2 dx3

for a.e. x1 ∈ (0, L). We also introduce the first-order moments of F as the functions
F̃ , F̂ : (0, L) → M

3×3 given by

F̃ (x1) :=
∫

S

x2F (x) dx2 dx3, F̂ (x1) =
∫

S

x3F (x) dx2 dx3

for a.e. x1 ∈ (0, L).
The following proposition follows now from straightforward computations.
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Proposition 2.2. Let (u, v2, v3, w) ∈ Aα. For a.e. x1 ∈ (0, L) let β(x1, ·, ·) ∈ B be
the minimizer of GA′(x1), where A′ is the derivative of the function A introduced
in (2.4). Let also E : Ω → M

3×3 be defined by

E := L(x2A
′e2 + x3A

′e3|∂2β|∂3β),

and let Ẽ and Ê be its first-order moments. Then we have the following.

1. (u, v2, v3, w) is a stationary point of J3 if and only if the following equations
are satisfied:

u′ + 1
2 [(v′

2)
2 + (v′

3)
2] = 0 in (0, L), (2.8)

Ẽ′′
11 + f2 = 0 in (0, L),

Ẽ11(L) = Ẽ′
11(L) = 0,

}
(2.9)

Ê′′
11 + f3 = 0 in (0, L),

Ê11(L) = Ê′
11(L) = 0,

}
(2.10)

Ẽ′
12 = Ê′

13 in (0, L),

Ẽ12(L) = Ê13(L).

}
(2.11)

2. If α > 3, then (u, v2, v3, w) is a stationary point of Jα if and only if

u′ = 0 in (0, L) (2.12)

and (2.9)–(2.11) are satisfied.

3. If 2 < α < 3, then (u, v2, v3, w) is a stationary point of Jα if and only if
(2.9)–(2.11) are satisfied.

Remark 2.3. If (u, v2, v3, w) ∈ Aα and 2 < α < 3, then u is uniquely determined
in terms of v2 and v3. Indeed, by the constraint

u′ +
(v′

2)
2 + (v′

3)
2

2
= 0 a.e. in (0, L)

and the boundary condition u(0) = 0, we have

u(x1) = −
∫ x1

0

(v′
2(t))

2 + (v′
3(t))

2

2
dt for a.e. x1 in (0, L). (2.13)

For α � 3, the same conclusion holds when (u, v2, v3, w) ∈ Aα is a stationary point
of Jα. Indeed, if α = 3, (2.8) yields (2.13), while if α > 3, (2.12) gives

u = 0 a.e. in (0, L).

Using the previous observations and the strict convexity of Q1, it is easy to show
that, for every α > 2, Jα has a unique stationary point which is a minimizer.

Remark 2.4. For what concerns the three-dimensional functionals J h, under addi-
tional hypotheses on W (such as polyconvexity [4]) it is possible to show the exis-
tence of global minimizers, and therefore of stationary points. Furthermore, they
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automatically satisfy the energy estimate (1.7) [9, proof of theorem 2]. For general
W , the existence of stationary points (according to definition 1.6 or to the classical
formulation) is a subtle issue. We refer the reader to [5, § 2.7] for a discussion of
results in this regard.

From now on we shall work with sequences of deformations yh ∈ W 1,2(Ω, R3),
satisfying the boundary condition (1.2) and the uniform energy estimate (1.7) with
α > 2. This bound, combined with the coercivity condition (H5), provides us with a
control on the distance of ∇hyh from SO(3). This fact, together with the geometric
rigidity estimate by Friesecke et al . [8, theorem 3.1], allows us to construct an
approximating sequence of rotations (Rh), whose L2-distance from ∇hyh is of the
same order in terms of h of the L2-norm of dist(∇hyh, SO(3)). More precisely, the
following result holds true.

Theorem 2.5. Assume that W : M
3×3 → [0, +∞] is continuous and satisfies (H3)–

(H6). Let α > 2 and let (yh) be a sequence in W 1,2(Ω, R3) satisfying (1.2) and (1.7)
for every h > 0. Then there exists a sequence (Rh) in C∞((0, L), M3×3) such that

Rh(x1) ∈ SO(3) for every x1 ∈ (0, L), (2.14)

‖∇hyh − Rh‖L2 � Chα−1, (2.15)

‖(Rh)′‖L2 � Chα−2, (2.16)

‖Rh − Id ‖L∞ � Chα−2. (2.17)

We omit the proof, as it follows closely the proof of [14, proposition 4.1]. Owing
to the previous approximation result, one can deduce the following compactness
properties.

Theorem 2.6. Under the assumptions of theorem 2.5, let uh, vh
2 , vh

3 , wh be the
scaled displacements and twist function introduced in (1.3)–(1.5). Then

yh → x1e1 strongly in W 1,2(Ω, R3) (2.18)

and there exists (u, v2, v3, w) ∈ Aα such that, up to subsequences, we have

uh → u strongly in W 1,2(0, L) if 2 < α < 3, (2.19)

uh ⇀ u weakly in W 1,2(0, L) if α � 3, (2.20)

vh
k → vk strongly in W 1,2(0, L) for k = 2, 3, (2.21)

wh ⇀ w weakly in W 1,2(0, L). (2.22)

Moreover, let A ∈ W 1,2((0, L), M3×3) be the function defined in (2.4). Then, if
Rh is the approximating sequence of rotations given by theorem 2.5, the following
convergence properties hold true:

∇hyh − Id
hα−2 → A strongly in L2(Ω, M3×3), (2.23)

Ah :=
Rh − Id
hα−2 ⇀ A weakly in W 1,2((0, L), M3×3), (2.24)

sym(Rh − Id)
h2(α−2) → A2

2
uniformly in (0, L). (2.25)
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For the proof we refer the reader to [17, theorem 3.3].
We conclude this section by proving a lemma which will be crucial for extending

the convergence of the equilibria result to the scalings α ∈ (2, 3).

Lemma 2.7. Under the assumptions of theorem 2.5, there exist two sequences (ξh
k ),

k = 2, 3, such that, for every h > 0,

ξh
k ∈ C1

b (R), ξh
k (0) = 0, (2.26)

yh
k

h
− 1

h
ξh
k ◦ yh

1 → xk strongly in L2(Ω), (2.27)

‖ξh
k‖L∞ + ‖(ξh

k )′‖L∞ � Chα−2. (2.28)

Remark 2.8. The sequences (ξh
k ) of the previous lemma can be interpreted as

follows: the functions defined by

ωh(x) =
(

x1,
x2

h
− ξh

2 (x1)
h

,
x3

h
− ξh

3 (x1)
h

)

represent a sort of ‘approximate inverse functions’ of the deformations yh, in the
sense that the compositions ωh ◦ yh converge to the identity strongly in L2(Ω, R3)
by (2.18) and (2.27).

Proof of lemma 2.7. In order to construct the functions ξh
k , we first study the

asymptotic behaviour of the sequences (yh
k/h), k = 2, 3. By the Poincaré inequality

we obtain the estimate∥∥∥∥yh
k

h
− xk −

∫
S

(
yh

k

h
− xk

)
dx2 dx3

∥∥∥∥
L2

� C

(∥∥∥∥∂kyh
k

h
− 1

∥∥∥∥
L2

+
∥∥∥∥∂jy

h
k

h

∥∥∥∥
L2

)
,

where k, j ∈ {2, 3}, k �= j. Therefore, by (1.4) and (2.23) we have∥∥∥∥yh
k

h
− xk − hα−3vh

k

∥∥∥∥
L2

� Chα−2. (2.29)

In particular, for α > 3 it follows that yh
k → xk strongly in L2, so that if α > 3,

we can simply take ξh
k = 0 for k = 2, 3 and every h > 0. If 2 < α � 3, we need to

construct a suitable approximation of vh
k . Let (Rh) be the approximating sequence

of rotations associated with (yh) (see theorems 2.5 and 2.6). By (2.17) and (2.25),
we deduce the following estimates:

‖Rh
k1‖L∞ � Chα−2 for k = 2, 3,

‖Rh
11 − 1‖L∞ � Ch2(α−2).

Let rh
k , rh

1 ∈ C(R) be continuous extensions of the functions Rh
k1 and Rh

11 − 1 to R

such that, for every h > 0,

supp rh
k , supp rh

1 ⊂ (−1, L + 1), (2.30)

rh
k = Rh

k1 in (0, L) for k = 2, 3, (2.31)

rh
1 = Rh

11 − 1 in (0, L), (2.32)
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‖rh
k‖L∞ � Chα−2 for k = 2, 3, (2.33)

‖rh
1‖L∞ � Ch2(α−2). (2.34)

We introduce the functions ṽh
1 , ṽh

k ∈ C1
b (R) defined by

ṽh
k (x1) :=

∫ x1

0
rh
k (s) ds, (2.35)

ṽh
1 (x1) :=

∫ x1

0
rh
1 (s) ds. (2.36)

Using the boundary condition (1.2), the Poincaré inequality, (2.15), and (2.23), we
obtain ∥∥∥∥yh

k

h
− xk − 1

h
ṽh

k

∥∥∥∥
L2

� Chα−2 (2.37)

and, analogously,

‖yh
1 − x1 − ṽh

1 ‖L2 � Chα−1. (2.38)

The latter inequality, together with (2.34), implies that

‖yh
1 − x1‖L2 � Ch2(α−2) for α � 3. (2.39)

We are now in a position to construct the maps ξh
k when α � 3. If α = 3, we

define ξh
k = ṽh

k . Properties (2.26) and (2.28) follow immediately. To verify (2.27) it
is enough to remark that by (2.33) and (2.37) we have∥∥∥∥yh

k

h
− xk − ṽh

k ◦ yh
1

h

∥∥∥∥
L2

� Ch +
1
h

‖ṽh
k ◦ yh

1 − ṽh
k‖L2

� Ch +
1
h

‖(ṽh
k )′‖L∞‖yh

1 − x1‖L2

� Ch.

If 2 < α < 3, we first fix n0 ∈ N such that

α > 2 +
1

2n0 + 3
(2.40)

and we introduce a sequence of maps (ζh
n), n = 1, . . . , n0, recursively defined as

ζh
n0

(x1) = x1 − ṽh
1 (x1),

ζh
n(x1) = x1 − ṽh

1 ◦ ζn+1(x1) for n = 1, . . . , n0 − 1.

}
(2.41)

For k = 2, 3 and every h > 0 we define

ξh
k := ṽh

k ◦ ζh
1 . (2.42)

Since ζh
n0

(0) = 0, we have by induction that ζh
n(0) = 0 for each n = 1, 2, . . . , n0, so

that ξh
k (0) = 0. From the regularity of ṽh

1 and ṽh
k it follows that (2.26) is satisfied.

By (2.33) we deduce

‖ξh
k‖L∞ � ‖ṽh

k‖L∞ � (L + 2)‖rh
k‖L∞ � Chα−2. (2.43)
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To estimate ‖(ξh
k )′‖L∞ , we first deduce a recursive bound for ‖(ζh

n)′‖L∞ . If h is
small enough, we have

‖(ṽh
1 )′‖L∞ � 1.

By (2.41) the following inequalities hold true:

‖(ζh
n0

)′‖L∞ � 1 + ‖(ṽh
1 )′‖L∞ � 2, (2.44)

‖(ζh
n)′‖L∞ � 1 + ‖(ζh

n+1)
′‖L∞ for n = 1, . . . , n0 − 1, (2.45)

‖(ζh
1 )′‖L∞ � 1 + n0. (2.46)

Now by (2.46) and (2.33) we have

‖(ξh
k )′‖L∞ � ‖(ṽh

k )′‖L∞‖(ζh
1 )′‖L∞ � (1 + n0)‖rh

k‖L∞ � Chα−2. (2.47)

Combining (2.43) and (2.47), we obtain (2.28). To conclude the proof it remains to
verify (2.27). By (2.34), (2.38), and (2.39) we have

‖ζh
n0

◦ yh
1 − x1‖L2 = ‖yh

1 − ṽh
1 ◦ yh

1 − x1‖L2

� ‖yh
1 − ṽh

1 − x1‖L2 + ‖ṽh
1 − ṽh

1 ◦ yh
1 ‖L2

� Chα−1 + ‖(ṽh
1 )′‖L∞‖yh

1 − x1‖L2

� Chα−1 + h2(α−2)‖rh
1‖L∞

� Chα−1 + Ch4(α−2). (2.48)

Arguing analogously for ζh
n0−1 and using (2.48), we obtain

‖ζh
n0−1 ◦ yh

1 − x1‖L2 � ‖yh
1 − x1 − ṽh

1 ‖L2 + ‖ṽh
1 − ṽh

1 ◦ ζh
n0

◦ yh
1 ‖L2

� Chα−1 + ‖(ṽh
1 )′‖L∞‖ζh

n0
◦ yh

1 − x1‖L2

� Chα−1 + Ch2(α−2)(hα−1 + h4(α−2))

� Chα−1 + Ch6(α−2). (2.49)

By induction, we deduce

‖ζh
n ◦ yh

1 − x1‖L2 � Chα−1 + Ch2(n0−n+2)(α−2). (2.50)

In particular, we have

‖ζh
1 ◦ yh

1 − x1‖L2 � Chα−1 + Ch2(n0+1)(α−2). (2.51)

We can now prove (2.27). By (2.42), (2.33) and (2.51) we obtain

1
h

‖ξh
k ◦ yh

1 − ṽh
k‖L2 =

1
h

‖ṽh
k ◦ ζh

1 ◦ yh
1 − ṽh

k‖L2

� 1
h

‖(ṽh
k )′‖L∞‖ζh

1 ◦ yh
1 − x1‖L2

� 1
h

‖rh
k‖L∞(Chα−1 + Ch2(n0+1)(α−2))

� Chα−3(Chα−1 + Ch2(n0+1)(α−2))

� Chmin{2α−4,(2n0+3)α−(4n0+7)},
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where the last term converges to zero due to (2.40). Combining this with (2.37), we
deduce (2.27).

3. Proof of the main result

This section is devoted entirely to the proof of theorem 1.2. The proof strategy is
similar to [13]. The major difference is in the analysis of the asymptotic behaviour of
the first-order stress moments (steps 6 and 7), where the approximating sequences
constructed in lemma 2.7 are needed to define suitable test functions in the scalings
2 < α < 3.

Proof of theorem 1.2. Let (yh) be a sequence of deformations in W 1,2(Ω, R3) satis-
fying the energy bound (1.7), the boundary condition (1.2), and the Euler–Lagrange
equations∫

Ω

DW (∇hyh)(∇hyh)T : [(∇φ) ◦ yh] dx =
∫

Ω

hα[f2(φ2 ◦ yh)+f3(φ3 ◦ yh)] dx (3.1)

for every φ ∈ C1
b (R3, R3) such that φ(0, hx2, hx3) = 0 for all (x2, x3) ∈ S.

Convergence of the sequences (yh), (uh), (vh
k ) and (wh) follows from theorem 2.6,

together with the fact that (u, v2, v3, w) ∈ Aα. To conclude the proof we need to
show that (u, v2, v3, w) is a stationary point of Jα.

The proof is split into seven steps.

Step 1 (decomposition of the deformation gradients in rotation and strain). Let
(Rh) be the approximating sequence of rotations constructed in theorem 2.5 and
let A ∈ W 1,2((0, L), M3×3) be the function defined in (2.4). We introduce the strain
Gh : Ω → M

3×3 as
∇hyh = Rh(Id + hα−1Gh). (3.2)

By (2.15) the sequence (Gh) is bounded in L2(Ω, M3×3), so that there exists G ∈
L2(Ω, M3×3) such that Gh ⇀ G weakly in L2(Ω, M3×3). Moreover, by lemma 3.1
(see the end of this section) the symmetric part of G can be characterized as follows:
there exists β ∈ L2(Ω, R3), with zero average on S and ∂kβ ∈ L2(Ω, R3) for k = 2, 3,
such that, if we set

M(β) := (x2A
′e2 + x3A

′e3|∂2β|∂3β),

we have

sym G =

⎧⎪⎨
⎪⎩

sym M(β) + (u′ + 1
2 [(v′

2)
2 + (v′

3)
2])e1 ⊗ e1 if α = 3,

sym M(β) + u′e1 ⊗ e1 if α > 3,

sym M(β) + ge1 ⊗ e1 if 2 < α < 3,

(3.3)

for some g ∈ L2(0, L). In particular, by the normalization hypotheses (1.1) on S we
deduce

G11 =

⎧⎪⎨
⎪⎩

u′ + 1
2 [(v′

2)
2 + (v′

3)
2] for α = 3,

u′ for α > 3,

g for 2 < α < 3.

(3.4)
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Step 2 (stress tensor estimate). We define the stress Eh : Ω → M
3×3 as

Eh =
1

hα−1 DW (Id + hα−1Gh)(Id + hα−1Gh)T. (3.5)

From the frame indifference of W it follows that

DW (F )FT = F (DW (F ))T for every F ∈ M
3×3
+ .

This implies that Eh is symmetric for every h > 0. Moreover, the following pointwise
estimate holds:

|Eh| � C

(
W (Id + hα−1Gh)

hα−1 + |Gh|
)

. (3.6)

Indeed, let δ be the width of the neighbourhood of SO(3), where W is of class
C2. Suppose first that hα−1|Gh| � 1

2δ. Then, a first-order Taylor expansion of DW
around the identity, together with (H4) and (H5), yields

DW (Id + hα−1Gh) = hα−1D2W (Mh)Gh

for some Mh ∈ M
3×3 satisfying |Mh − Id | � 1

2δ. Since D2W is bounded on the set
{F ∈ M

3×3 : dist(F, SO(3)) � 1
2δ}, we deduce

|DW (Id + hα−1Gh)| � Chα−1|Gh|.

Therefore, by (3.5) we obtain

|Eh| � C|Gh| + Chα−1|Gh|2 � C(1 + δ)|Gh|.

If instead hα−1|Gh| > 1
2δ, we first observe that W (∇hyh) is finite a.e. in Ω by (1.7).

By (H2) and by frame indifference we deduce that

det ∇hyh = det(Id + hα−1Gh) > 0 a.e. in Ω.

Therefore, we can use (H7), which yields

|Eh| � 1
hα−1 k(W (Id + hα−1Gh) + 1) � k

W (Id + hα−1Gh)
hα−1 +

2k

δ
|Gh|.

This completes the proof of (3.6).

Step 3 (convergence properties of the scaled stress). Arguing as in [13], some con-
vergence properties of the stresses Eh can be deduced from (3.6). Indeed, using (1.7)
and the fact that the Gh are bounded in L2(Ω, M3×3), we obtain from (3.6) that
for each measurable set Λ the following estimate holds true:∫

Λ

|Eh| dx � Chα−1 + C|Λ|1/2, (3.7)

where |Λ| denotes the Lebesgue measure of Λ. Now let

Bh := {x ∈ Ω : hα−1−γ |Gh(x)| � 1}, (3.8)
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where γ ∈ (0, α − 2), and let χh be the characteristic function of Bh. By (3.7) and
by the Chebyshev inequality we have∫

Ω\Bh

|Eh| dx � Chα−1−γ , (3.9)

so that
(1 − χh)Eh → 0 strongly in L1(Ω, M3×3). (3.10)

Moreover, one can show that the remainder in the first-order Taylor expansion of
DW (Id + hα−1Gh) around the identity is uniformly controlled on the sets Bh, so
that

χhEh ⇀ LG =: E in L2(Ω, M3×3) (3.11)

(see step 3 in the proof of [13, theorem 3.1] for details).

Step 4 (some consequences of the Euler–Lagrange equations). By the frame in-
difference of W and by (3.2) we have

DW (∇hyh)(∇hyh)T = hα−1RhEh(Rh)T.

Therefore, the Euler–Lagrange equations (3.1) can be written as∫
Ω

RhEh(Rh)T : [(∇φ) ◦ yh] dx = h

∫
Ω

[f2(φ2 ◦ yh) + f3(φ3 ◦ yh)] dx (3.12)

for every φ ∈ C1
b (R3, R3) satisfying the boundary condition φ(0, hx2, hx3) = 0 for

all (x2, x3) ∈ S.
Now let φ be a function in C1

b (R3, R3) such that φ(0, x2, x3) = 0 for every
(x2, x3) ∈ S. For each h > 0 we define

φh(x) := hφ

(
x1,

x2

h
− 1

h
ξh
2 (x1),

x3

h
− 1

h
ξh
3 (x1)

)
,

where ξh
2 , ξh

3 are the functions constructed in lemma 2.7. By (2.26), the maps φh

are admissible test functions in (3.12).
To simplify computations we introduce the following notation:

zh :=
(

yh
1 ,

yh
2

h
− ξh

2 ◦ yh
1 ,

yh
3

h
− 1

h
ξh
3 ◦ yh

1

)
. (3.13)

From (1.8) and (2.27) it follows that

zh → x in L2(Ω, R3). (3.14)

Choosing φh as test function in (3.12), we obtain∫
Ω

RhEh(Rh)Te1 ·
[
h∂1φ ◦ zh −

3∑
k=2

(∂kφ ◦ zh)((ξh
k )′ ◦ yh

1 )
]

dx

+
∫

Ω

3∑
k=2

RhEh(Rh)Tek · (∂kφ ◦ zh) dx

+
∫

Ω

h2[f2(φ2 ◦ zh) + f3(φ3 ◦ zh)] dx = 0. (3.15)
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By (3.7) and (2.28) we have∣∣∣∣
∫

Ω

RhEh(Rh)Te1 ·
[
h∂1φ ◦ zh −

3∑
k=2

(∂kφ ◦ zh)((ξh
k )′ ◦ yh

1 )
]

dx

∣∣∣∣
� C‖Eh‖L1

(
‖h∂1φ‖L∞ +

3∑
k=2

‖∂kφ‖L∞‖(ξh
k )′‖L∞

)

� C(h + hα−2);

therefore, the first integral in (3.15) converges to zero. Analogously, since fk ∈
L2(0, L) for k = 2, 3 and φk ∈ C1

b (R), the last integral in (3.15) tends to zero. We
deduce that the second integral in (3.15) must also converge to zero. On the other
hand, this term can be written as∫

Ω

3∑
k=2

RhEh(Rh)Tek · (∂kφ ◦ zh) dx

=
∫

Ω

3∑
k=2

χhRhEh(Rh)Tek · (∂kφ ◦ zh) dx

+
∫

Ω

3∑
k=2

(1 − χh)RhEh(Rh)Tek · (∂kφ ◦ zh) dx. (3.16)

By (3.14) and by the dominated convergence theorem we have

∂kφ ◦ zh → ∂kφ in L2(Ω). (3.17)

Thus, by (3.11) and by the fact that Rh → Id in L∞(0, L), we deduce∫
Ω

3∑
k=2

χhRhEh(Rh)Tek · (∂kφ ◦ zh) dx →
∫

Ω

3∑
k=2

Eek · ∂kφ dx,

while by (3.10) we have that the last term in (3.16) tends to zero. We conclude that∫
Ω

3∑
k=2

Eek · ∂kφ dx = 0 (3.18)

for every φ ∈ C1
b (R3, R3) such that φ(0, x2, x3) = 0 for all (x2, x3) ∈ S. Therefore,

the following equations hold true a.e. in (0, L):

divx2,x3(Ee2|Ee3) = 0 in S,

(Ee2|Ee3)ν∂S = 0 on ∂S,

}
(3.19)

where ν∂S is the unit normal to ∂S. Moreover, for a.e. x1 ∈ (0, L),∫
S

Eek dx2 dx3 = 0 for k = 2, 3. (3.20)

We conclude that Ēe2 = Ēe3 = 0 a.e. in (0, L) and, since E is symmetric,

Ē = Ē11e1 ⊗ e1.
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Step 5 (zeroth-order moment of the Euler–Lagrange equations). We now identify
the zeroth-order moment of the limit stress E. Let ψ be a function in C1

b (R) such
that ψ(0) = 0. We define

φ(x) = ψ(x1)e1.

Using φ as a test function in the Euler–Lagrange equations (3.12) we have∫
Ω

(RhEh(Rh)T)11(ψ′ ◦ yh
1 ) dx = 0. (3.21)

To pass to the limit in the previous equation, we split Ω into the sets Bh and
Ω \ Bh, so that we obtain∫

Ω

χh(RhEh(Rh)T)11(ψ′ ◦ yh
1 ) dx +

∫
Ω

(1 − χh)(RhEh(Rh)T)11(ψ′ ◦ yh
1 ) dx = 0.

(3.22)
By (1.8) and by the continuity of ψ′ it follows that ψ′ ◦ yh

1 converges to ψ′ in L2(Ω).
Therefore, by (3.10) and (3.11) we can pass to the limit in (3.22) and we deduce∫ L

0
Ē11ψ

′ dx1 =
∫

Ω

E11ψ
′ dx = 0

for every ψ ∈ C1
b (R) such that ψ(0) = 0. This implies that Ē = Ē11e1 ⊗ e1 = 0 a.e.

in (0, L).
Since by frame indifference LH = 0 for every skew-symmetric H ∈ M

3×3, we
obtain that Lsym G = LḠ = Ē = 0. The invertibility of L on the space of symmetric
matrices yields that sym G = 0. Together with (3.4), this implies (2.8) for α = 3,
(2.12) for α > 3, and g = 0 a.e. in (0, L) for 2 < α < 3. Moreover, by (3.3) we
deduce that

sym
(

0
∣∣∣∣
∫

S

∂2β dx2 dx3

∣∣∣∣
∫

S

∂3β dx2 dx3

)
= 0,

so that, if we introduce β̃ : Ω → R
3 defined by

β̃ :=
(

β1, β2 − x3

∫
S

∂3β2 dx2 dx3, β3 − x2

∫
S

∂2β3 dx2 dx3

)
,

we have that β̃(x1, ·, ·) ∈ B for a.e. x1 ∈ (0, L) and

sym G = sym(x2A
′e2 + x3A

′e3|∂2β̃|∂3β̃).

In particular, we have the following characterization of E:

E = L sym G = L(x2A
′e2 + x3A

′e3|∂2β̃|∂3β̃).

Since E satisfies (3.19), we deduce from lemma 2.1 that β̃ is a minimizer of the
functional

GA′(β) =
∫

S

Q3(x2A
′e2 + x3A

′e3|∂2β|∂3β) dx2 dx3.

In other words, β̃ satisfies

Q1(A′) =
∫

S

Q3(x2A
′e2 + x3A

′e3|∂2β̃|∂3β̃) dx2 dx3 (3.23)

for all α > 2.
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Step 6 (first-order moments of the Euler–Lagrange equations). In this step we
prove that the limiting Euler–Lagrange equations (2.9) and (2.10) are satisfied. Let
ϕ2, ϕ3 be two functions in C1

b (R) with ϕ2(0) = ϕ3(0) = 0. We define

φh(x) =
(

0,
ϕ2(x1)

h
,
ϕ3(x1)

h

)

and we use φh as test function in (3.12). By (1.8) the force term can be treated as
follows:

lim
h→0

∫
Ω

h[f2(φh
2 ◦ yh) + f3(φh

3 ◦ yh)] dx = lim
h→0

∫
Ω

[f2(ϕ2 ◦ yh
1 ) + f3(ϕ3 ◦ yh

1 )] dx

=
∫ L

0
(f2ϕ2 + f3ϕ3) dx1. (3.24)

Therefore, we have

lim
h→0

∫
Ω

[
(RhEh(Rh)T)21

ϕ′
2 ◦ yh

1

h
+ (RhEh(Rh)T)31

ϕ′
3 ◦ yh

1

h

]
dx

=
∫ L

0
(f2ϕ2 + f3ϕ3) dx1. (3.25)

We shall characterize the limit on the left-hand side of (3.25) in terms of the first-
order moments of the stress E. To this aim, we go back to the Euler–Lagrange
equations (3.12) and we construct some ad hoc test functions with a linear behaviour
in the variables x2, x3. Let (ωh) be a sequence of positive numbers such that

hωh → +∞, (3.26)

hα−1−γωh → 0, (3.27)

where γ ∈ (0, α − 2) is the same exponent introduced in (3.8). For each h > 0 we
consider a function θh ∈ C1

b (R) which coincides with the identity in a large enough
neighbourhood of the origin, that is,

θh(t) = t for |t| � ωh (3.28)

and, in addition, satisfies the following properties:

|θh(t)| � |t| for all t ∈ R, (3.29)

‖θh‖L∞ � 2ωh, (3.30)∥∥∥∥dθh

dt

∥∥∥∥
L∞

� 2. (3.31)

Let η be a function in C1(R) with compact support and such that η(0) = 0, and
let ξh

k , k = 2, 3, be the functions constructed in lemma 2.7. We consider the map

φh(x) = θh

(
x3

h
− 1

h
ξh
3 (x1)

)
η(x1)e1.

https://doi.org/10.1017/S0308210510001563 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001563


518 E. Davoli and M. G. Mora

Choosing φh as a test function in (3.12) and using the notation introduced in (3.13),
we obtain ∫

Ω

(RhEh(Rh)T)11(θh ◦ zh
3 )(η′ ◦ yh

1 ) dx

−
∫

Ω

(RhEh(Rh)T)11
h

(
dθh

dt
◦ zh

3

)
[(ξh

3 )′ ◦ yh
1 ](η ◦ yh

1 ) dx

+
∫

Ω

(RhEh(Rh)T)13
η ◦ yh

1

h

(
dθh

dt
◦ zh

3

)
dx = 0. (3.32)

The first integral in (3.32) can be decomposed into the sum of two terms:∫
Ω

(RhEh(Rh)T)11(θh ◦ zh
3 )(η′ ◦ yh

1 ) dx

=
∫

Ω

χh[(RhEh(Rh)T)11(θh ◦ zh
3 )(η′ ◦ yh

1 )] dx

+
∫

Ω

(1 − χh)[(RhEh(Rh)T)11(θh ◦ zh
3 )(η′ ◦ yh

1 )] dx. (3.33)

By (1.8), (3.14), (3.29), and by the dominated convergence theorem we deduce that

(θh ◦ zh
3 )(η′ ◦ yh

1 ) → x3η
′ in L2(Ω).

Therefore, by (3.11) we have

lim
h→0

∫
Ω

χh(RhEh(Rh)T)11(η′ ◦ yh
1 )(θh ◦ zh

3 ) dx =
∫

Ω

x3E11η
′ dx =

∫ L

0
Ê11η

′ dx1.

The second term in (3.33) can be estimated using (3.9), as follows:∫
Ω

(1 − χh)|(RhEh(Rh)T)11(η′ ◦ yh
1 )(θh ◦ zh

3 )| dx � 2ωh‖η′‖L∞(0,L)

∫
Ω\Bh

|Eh| dx

� Chα−1−γωh,

and the latter is infinitesimal owing to (3.27). We conclude that∫
Ω

(RhEh(Rh)T)11(θh ◦ zh
3 )(η′ ◦ yh

1 ) dx →
∫ L

0
Ê11η

′ dx1. (3.34)

As for the second integral in (3.32), we consider the following decomposition:∫
Ω

(RhEh(Rh)T)11
1
h

(
dθh

dt
◦ zh

3

)
[(ξh

3 )′ ◦ yh
1 ](η ◦ yh

1 ) dx

=
∫

Ω

(RhEh(Rh)T)11

[(
dθh

dt
◦ zh

3

)
− 1

]
1
h

[(ξh
3 )′ ◦ yh

1 ](η ◦ yh
1 ) dx

+
∫

Ω

(RhEh(Rh)T)11
1
h

[(ξh
3 )′ ◦ yh

1 ](η ◦ yh
1 ) dx. (3.35)

To study the first term in (3.35) we introduce the sets

Dh = {x ∈ Ω : |zh
3 (x)| � ωh}. (3.36)
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Since (zh
3 ) is uniformly bounded in L2(Ω), by the Chebyshev inequality we deduce

that

|Dh| � Cω−2
h . (3.37)

Thus, by (2.28) and (3.7) we have

∣∣∣∣
∫

Ω

(RhEh(Rh)T)11

[(
dθh

dt
◦ zh

3

)
− 1

]
1
h

[(ξh
3 )′ ◦ yh

1 ](η ◦ yh
1 ) dx

∣∣∣∣
�

∫
Dh

∣∣∣∣(RhEh(Rh)T)11

[(
dθh

dt
◦ zh

3

)
− 1

]
1
h

[(ξh
3 )′ ◦ yh

1 ](η ◦ yh
1 )

∣∣∣∣ dx

� Chα−3
∫

Dh

|Eh| dx

� Chα−3(hα−1 + |Dh|1/2) � C

(
h2α−4 +

hα−2

hωh

)
, (3.38)

where the latter term tends to zero owing to (3.26). Furthermore, we can prove that
the second term in (3.35) is equal to zero. Indeed, let

ψh(x1) :=
∫ x1

0

1
h

(ξh
3 )′(s)η(s) ds.

It is easy to verify that ψh ∈ C1
b (R) and ψh(0) = 0 for every h > 0. Therefore, by

(3.21) we obtain ∫
Ω

(RhEh(Rh)T)11
1
h

[(ξh
3 )′ ◦ yh

1 ](η ◦ yh
1 ) dx = 0.

By (3.35) and (3.38) we conclude that

∫
Ω

(RhEh(Rh)T)11
1
h

(
dθh

dt
◦ zh

3

)
[(ξh

3 )′ ◦ yh
1 ](η ◦ yh

1 ) dx → 0. (3.39)

It remains to study the third integral in (3.32), which can be written as

∫
Ω

(RhEh(Rh)T)13
η ◦ yh

1

h

(
dθh

dt
◦ zh

3

)
dx

=
∫

Ω

(RhEh(Rh)T)13
η ◦ yh

1

h

[(
dθh

dt
◦ zh

3

)
− 1

]
dx

+
∫

Ω

(RhEh(Rh)T)13
η ◦ yh

1

h
dx. (3.40)

We claim that

lim
h→0

∫
Ω

(RhEh(Rh)T)13
η ◦ yh

1

h

[(
dθh

dt
◦ zh

3

)
− 1

]
dx = 0. (3.41)
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To prove it, we again consider the sets Dh defined in (3.36). From (3.7), (3.31),
(3.37), and from the boundedness of η we obtain∫

Ω

∣∣∣∣(RhEh(Rh)T)13
η ◦ yh

1

h

[(
dθh

dt
◦ zh

3

)
− 1

]∣∣∣∣ dx

=
∫

Dh

∣∣∣∣(RhEh(Rh)T)13
η ◦ yh

1

h

[(
dθh

dt
◦ zh

3

)
− 1

]∣∣∣∣ dx

� C

h

∫
Dh

|Eh| dx

� C

h
(hα−1 + |Dh|1/2)

� C

(
hα−2 +

1
hωh

)
,

and the latter is infinitesimal owing to (3.26), so that (3.41) follows. In conclusion,
combining (3.32), (3.34), and (3.39)–(3.41) we deduce that

lim
h→0

∫
Ω

(RhEh(Rh)T)13
η ◦ yh

1

h
dx = −

∫
Ω

Ê11η
′ dx (3.42)

for every η ∈ C1(R) with compact support and such that η(0) = 0. Choosing a test
function of the form

φh(x) = θh

(
x2

h
− 1

h
ξh
2 (x1)

)
η(x1)e1,

one can prove analogously that

lim
h→0

∫
Ω

(RhEh(Rh)T)12
η ◦ yh

1

h
dx = −

∫
Ω

Ẽ11η
′ dx. (3.43)

Now let ϕk ∈ C2(R) with compact support be such that ϕk(0) = ϕ′
k(0) = 0 for

k = 2, 3. We choose η = ϕ′
3 in (3.42) and η = ϕ′

2 in (3.43) and we add the
two equations. Comparing the result with (3.25) and using the fact that Eh (and
therefore RhEh(Rh)T) is symmetric, we conclude that

∫ L

0
(Ẽ11ϕ

′′
2 + Ê11ϕ

′′
3 + f2ϕ2 + f3ϕ3) dx1 = 0

for every ϕk ∈ C2(R) with compact support and such that ϕk(0) = ϕ′
k(0) = 0,

k = 2, 3. By approximation we obtain (2.9) and (2.10) for all α > 2.

Step 7 (Euler–Lagrange equation for the twist function). To conclude the proof
of the theorem, it remains to verify the limiting Euler–Lagrange equation (2.11).
We define

φh(x) =
(

0, −θh

(
x3

h
− ξh

3 (x1)
h

)
η(x1), θh

(
x2

h
− ξh

2 (x1)
h

)
η(x1)

)
,
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where η ∈ C1(R) with compact support, η(0) = 0, and θh is as in step 6. Using φh

as test function in the Euler–Lagrange equations (3.12), we obtain

−
∫

Ω

[(RhEh(Rh)T)21(θh ◦ zh
3 ) − (RhEh(Rh)T)31(θh ◦ zh

2 )](η′ ◦ yh
1 ) dx

+
∫

Ω

(RhEh(Rh)T)21

(
dθh

dt
◦ zh

3

)
((ξh

3 )′ ◦ yh
1 )

η ◦ yh
1

h
dx

−
∫

Ω

(RhEh(Rh)T)31

(
dθh

dt
◦ zh

2

)
((ξh

2 )′ ◦ yh
1 )

η ◦ yh
1

h
dx

+
∫

Ω

[
(RhEh(Rh)T)32

(
dθh

dt
◦ zh

2

)
− (RhEh(Rh)T)23

(
dθh

dt
◦ zh

3

)]
η ◦ yh

1

h
dx

+ h

∫
Ω

[f2(θh ◦ zh
3 ) − f3(θh ◦ zh

2 )](η ◦ yh
1 ) dx = 0. (3.44)

Arguing as in the proof of (3.34), we can show that the first integral in (3.44)
satisfies

lim
h→0

∫
Ω

[(RhEh(Rh)T)21(θh ◦ zh
3 ) − (RhEh(Rh)T)31(θh ◦ zh

2 )](η′ ◦ yh
1 ) dx

=
∫ L

0
(−Ê12 + Ẽ13)η′ dx1.

The proof of (2.11) is concluded if we show that all other terms in (3.44) converge
to zero as h → 0. The last integral in (3.44) is infinitesimal, owing to the estimate∣∣∣∣h

∫
Ω

[f2(θh ◦ zh
3 ) − f3(θh ◦ zh

2 )](η ◦ yh
1 ) dx

∣∣∣∣ � Ch(‖f2‖L2‖zh
3 ‖L2 + ‖f3‖L2‖zh

2 ‖L2)

� Ch,

which follows from (3.29) and (3.14).
As for the term∫

Ω

[
(RhEh(Rh)T)32

(
dθh

dt
◦ zh

2

)
− (RhEh(Rh)T)23

(
dθh

dt
◦ zh

3

)]
η ◦ yh

1

h
dx,

we remark that by the symmetry of RhEh(Rh)T it can be written as
∫

Ω

η ◦ yh
1

h
(RhEh(Rh)T)32

{[(
dθh

dt
◦ zh

2

)
− 1

]
+

[
1 −

(
dθh

dt
◦ zh

3

)]}
dx.

Arguing as in the proof of (3.41), we obtain that the above expression tends to zero
as h → 0.

It remains to prove that

lim
h→0

∫
Ω

1
h

(RhEh(Rh)T)k1

(
dθh

dt
◦ zh

j

)
[(ξh

j )′ ◦ yh
1 ](η ◦ yh

1 ) dx = 0
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for k, j ∈ {2, 3}, k �= j. To this aim, we fix k = 2, j = 3 and we write the previous
integral as the sum of two terms:∫

Ω

1
h

(RhEh(Rh)T)21

(
dθh

dt
◦ zh

3

)
[(ξh

3 )′ ◦ yh
1 ](η ◦ yh

1 ) dx

=
∫

Ω

1
h

(RhEh(Rh)T)21

[(
dθh

dt
◦ zh

3

)
− 1

]
[(ξh

3 )′ ◦ yh
1 ](η ◦ yh

1 ) dx

+
∫

Ω

(RhEh(Rh)T)21
h1−ε

(ξh
3 )′ ◦ yh

1

hε
(η ◦ yh

1 ) dx, (3.45)

where 0 < ε < α−2. Arguing as in the proof of (3.41), we obtain that the first term is
infinitesimal. To study the second term, we notice that if (ψh) ⊂ C1

b (R) is a sequence
of functions such that ψh(0) = 0 and ‖ψh‖L∞(R) � C for all h > 0, then the map
ψh(x1)ej can be used as a test function in the Euler–Lagrange equations (3.12) for
every h > 0, and we have∣∣∣∣

∫
Ω

(RhEh(Rh)T)j1

h1−ε
[(ψh)′ ◦ yh

1 ] dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

hεfj(ψh ◦ yh
1 ) dx

∣∣∣∣ � Chε‖fj‖L2(Ω) → 0.

(3.46)
If we now choose

ψh(x1) :=
∫ x1

0

(ξh
k )′(s)
hε

η(s) ds,

then by (2.28) we obtain

‖ψh‖L∞ � Chα−2−ε‖η‖L1 � C for all h > 0,

so that by (3.46) the last term in (3.44) is also infinitesimal as h → 0. This concludes
the proof of (2.11) and of the theorem.

We conclude this section with a lemma which provides us with a characterization
of the limiting strain. This result is contained in the proof of [17, theorems 4.3
and 4.4]. We present here a concise proof for the reader’s convenience.

Lemma 3.1. Let all the assumptions of theorem 2.6 be satisfied and let (Rh) be the
sequence of rotations of theorem 2.5. For every h > 0 let Gh : Ω → M

3×3 be defined
by

Gh =
(Rh)T∇hyh − Id

hα−1 ,

and let G be the weak limit of (Gh) in L2(Ω, M3×3) (which exists, up to subse-
quences, by (2.15)). Then, there exist g ∈ L2(0, L) and β ∈ L2(Ω, R3), with zero
average on S and ∂kβ ∈ L2(Ω, R3) for k = 2, 3, such that, if we define

M(β) := (x2A
′e2 + x3A

′e3|∂2β|∂3β),

we have

sym G =

⎧⎪⎨
⎪⎩

sym M(β) + (u′ + 1
2 [(v′

2)
2 + (v′

3)
2])e1 ⊗ e1 if α = 3,

sym M(β) + u′e1 ⊗ e1 if α > 3,

sym M(β) + ge1 ⊗ e1 if 2 < α < 3,

(3.47)

where u, vk and A are the functions introduced in theorem 2.6.
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Proof. For every h > 0 we consider the function γh : Ω → R
3 defined by

γh(x) :=
1
hα

[yh(x) − hx2R
h(x1)e2 − hx3R

h(x1)e3]

for every x ∈ Ω. By (2.17) we have that

∂kγh ⇀ Gek for every k = 2, 3. (3.48)

Therefore, if we define βh := γh − γ̄h, where γ̄h is the average of γh on S, we deduce
by Poincaré–Wirtinger inequality that βh is uniformly bounded in L2(Ω, R3). It
follows that there exists β̃ ∈ L2(Ω, R3), with zero average on S, such that, up to
subsequences, βh ⇀ β̃ in L2(Ω, R3). Furthermore, by (3.48) we have that ∂kβ̃ = Gek

for all k = 2, 3.
As for the first column of G, we remark that by (1.1) we can write

RhGhe1 = h∂1γ
h +

1
hα−2 (x2(Rh)′e2 + x3(Rh)′e3) − 1

hα−1 Rhe1

= h∂1β
h +

1
hα−2 (x2(Rh)′e2 + x3(Rh)′e3) −

∫
S

Rhe1 − ∂1y
h

hα−1 dx2 dx3.

(3.49)

By (2.17) we have that RhGhe1 ⇀ Ge1 weakly in L2(Ω, M3×3). Moreover, by (2.15)
there exists a function g ∈ L2((0, L), R3) such that∫

S

Rhe1 − ∂1y
h

hα−1 dx2 dx3 ⇀ g weakly in L2((0, L), R3),

while (2.24) yields

1
hα−2 x2(Rh)′e2 + x3(Rh)′e3 ⇀ x2A

′e2 + x3A
′e3 weakly in L2((0, L), M3×3).

Finally, by the weak convergence of (βh) in L2(Ω, R3) we have that h∂1β
h → 0 in

W−1,2(Ω, R3); thus, passing to the limit in (3.49), we conclude that

G = (x2A
′e2 + x3A

′e3 + g|∂2β̃|∂3β̃).

To obtain (3.47) it is now enough to define

β := β̃ + x2(g · e2)e1 + x3(g · e3)e1,

so that
sym G = sym(x2A

′e2 + x3A
′e3 + (g · e1)e1|∂2β|∂3β).

This concludes the proof for 2 < α < 3. For α � 3 a characterization of g can be
given. Indeed, one can observe that∫

S

∂1y
h − Rhe1

hα−1 · e1 dx2 dx3 =
∫

S

(∂1y
h − 1) + (1 − Rh

11)
hα−1 dx2 dx3

= (uh)′ − hα−3 sym(Rh − Id)11,

where (uh) is the sequence introduced in (1.3). By (2.20) and (2.25) we obtain the
thesis for α � 3.
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