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In this article a Markov chain for the distribution of single atoms is suggested and
studied. We explore a recursive model for the number of atoms present in a magneto-
optical trap under a feedback regime with a Poisson-distributed load. Formulas for
the stationary distribution of this process are derived. They can be used to adjust
the loading rate of atoms to maximize the proportion of time that a single atom
spends in the trap. The (approximate) optimal regime for the Poisson loading and
loss processes is found.

1. INTRODUCTION

The ability to control individual atoms is crucial in nanotechnology and quantum
information processing. Atom-on-demand technology will enable novel quantum
computation schemes, unprecedented control over dopants in materials, and even-
tual realization of the ultimate goal of nanotechnology: atom-by-atom construction.

Here, we suggest a version of a recursive model for the number of atoms present
in a magneto-optical trap (MOT) at any given time under a feedback regime with a
Poissonian loss. Formulas for the stationary distribution of this process can be used
to control the loading rate of atoms so as to maximize the proportion of time that a
single atom spends in the trap. The (approximate) optimal regime for the Poisson
loading and loss processes is found. More specifically, the values of loading and
loss parameters maximizing the probability of exactly one atom in the trap are deter-
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mined and confirmed through Monte Carlo simulation. These results make use of
the Borel-Tanner distribution (Kingman [8]), which describes the total number of
customers served before a queue vanishes with random arrival of customers and a
constant time needed to serve each customer.

Optical quantum cryptography is built on the use of the single photon state [2,
Sect. IMILA]. Practical implementation mainly relies on faint laser pulses based on
standard semiconductor lasers. The Electron and Optical Physics Division of the
National Institute of Standards and Technology has built a prototype device that
can produce and sustain one atom of a given species, upon demand, for a useful
time interval. Hill and McClelland [6] described a new accurate method of trapping
neutral atoms in a vacuum chamber that does not use faint pulses. To achieve the
optimal stationary distribution for single atoms in our model, one needs a weak
load regime and even weaker loss processes. However, under these conditions, the
convergence to the stationary distribution is the slowest.

2. MARKOV CHAIN MODEL FOR THE NUMBER OF ATOMS
IN A MAGNETO-OPTICAL TRAP

Suppose the door to the MOT could be opened the instant it became empty or closed
at the instant it became occupied. Then the number of atoms in the trap can be
modeled as a Markov chain. Because of physical limitations, the number of atoms
in the trap cannot be monitored continuously: The trap can only be checked every
T seconds. During that interval 7, more than one atom can sneak inside the trap
before the door is closed.

Let R, be a Poisson random variable with parameter A, representing the load
(i.e., the random number of atoms entering the trap at time n) and denote by X,, the
number of atoms in the MOT at time n,n = 1,2,.... For a fixed X,, = x, the random
loss variable Y, has a Poisson distribution with parameter ux. A simple recursive
model for the number X,, of atoms present in the MOT at step n under a feedback
regime is

Rn if)(n—l = Yn—l
X, = @.1)

Xn—l - Yn—l ian—I > Yn—l’

with R, and (X,,_,,Y,_,) independent. As a simple example, suppose that at step n,
there are three atoms in the MOT, so X, = 3; according to the model, the trap is
opened. If we lose two atoms, then at step n + 1, there is only one atom left in the
trap (X,+; = 1), but if we lose all three atoms, X, is determined by a new load;
notice that in the latter case, we only consider one step, although we have two time
intervals. Our goal is to get a single atom with high probability; if we know that the
trap empties, there is no point in stopping the process.

Clearly, X,,,n =1,2,..., forms a countable state Markov chain in discrete time.
If X,, — X, with the distribution of X being the steady-state (stationary) distribution
for the chain, then the following equality of distributions holds:
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R ifX=Y
= { 2.2)

X—-Y iftX>Y.

Here, R is Poisson distributed with parameter A, and for a fixed X = x, the random
variable Y is Poisson distributed with parameter px.

Our goal is to find the distribution of X and to find the values of A and u that
maximize the value 77, = P(X = 1). For this purpose, we determine the probability
vector 7 = (7, 74,...) with 7, = P(X =k), k =0,1,2,....

Notice that the transition probabilities of the above Markov chain are

P(x|)’) = P(Xn =y|an1 :x)
= P(Xn :y’Ynfl Z_X'Xn71 :'x)
+ P(anl - Yn*l =) )/n*l <x‘Xn*1 :x)
2 P(Rn :y)P(Ynfl = k|anl :X)
k=x

+P(Y,_ =x—y[X,, :x)l{lSysx}

A @ k xX—y
=e A — D e () e % | PR 2.3)
y' k=x k! (x_}’)' =
In particular,
9] ( .X)k
P(x|0)=e "D e K
k=x k’
x—1 (‘ux)k—1>
=e M1l—e
( 2 u
=e*d, 2.4)
Wlth d() = 1.
Observe that
P(1)=Ade (1 —e™)+e* 2.5)

which is maximized when u = 0 (the value of A being immaterial.)

3. STEADY-STATE DISTRIBUTION FOR THE NUMBER OF ATOMS

THEOREM 1: For any A,u > 0, the Markov chain determined by transition proba-
bilities given in Eq. (2.3) is ergodic. In fact, the chain is geometrically ergodic; that
is, for some R(x) and p < 1,

[P"(x]y) = .| = R(x)p", 3.1
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n=1,2,.... The vector m of stationary probabilities has the form given in Eq. (3.13)
with the vector u satisfying Eq. (3.8).

ProoF: We will prove that the Markov chain determined by Eq. (2.3) has a station-
ary distribution 7 by constructing it. For the stationary distribution to exist, we

need
iml’(nlo):eAidﬂﬁﬂo, (3.2)
so my # 0, and for k = 1,2,..., with v, = 7 /7,
,i dov, = et — 1. 3.3)

Also, 22 v, = (1 — m¢)/m. Introduce the lower triangular matrix B with the
entries

o
”:e,mj(w) ’
! i(i=j)!

For u > 0, we have 272, b; = 1, and for 0 < u = 1, the elements of B are in fact
the probabilities of the Borel-Tanner distribution, so that, with e’ = (1, 1,...),
eTB =e".

According to Eq. (2.3), the reduced transition probabilities matrix P formed by
the elements {P(x|y),x,y =1,2,...} can be written in the form

i=jj+1,.... (3.4)

P=DBD ' +e *d(D '0)T. 3.5)

Here, D is the diagonal matrix with elements 1,2,...,d” = (d,,d,...), and €T =
(M A2 LM/ —D1,...). Since P(0]y) = e *AY/y!, one has for v' = (vy,0,,...),

vIP=vT —e *(D )" (3.6)
On the other hand,
vIP=v'[DBD ' +e *d(D ')T]=v'DBD '+ (1—e ") (D 'O)T. (3.7)
Combining these formulas, one obtains for u = Dv,
u’[I-B]=¢" 3.8)

We will prove that the norm of B, as an operator in L,, is smaller than e #/2 (<1).
Hence, I — B is invertible in L,. To this end, we show that for any i = 1,2,...,

i

Dby=b,=e*" (3.9)

Jj=1

https://doi.org/10.1017/50269964806060219 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964806060219

STOCHASTIC MODEL FOR THE NUMBER OF ATOMS 355

From definition (3.4),

L e (= k()

2bj=— 2 ; (3.10)
j=1 i i=o k!
so to prove Eq. (3.9), it suffices to demonstrate that
i (= k) (i) : z [uG— 1)1
E —‘u = el Du = E u (3.11)
k=0 ik! =0 k!

However, this inequality follows directly from comparison of the coefficients i* —
ki*“'=(i—1D%k=1,...,i —1.Since 22, b; =1, a theorem by Schur (Halmos
[4, Problem 37], with p; = 1, implies that the operator defined by the matrix B has
norm in L, less than e /2 < 1. Note that b;;, = e 7#, so that |[B|, = e .

Since € belongs to the space L,, the solution u of Eq. (3.8) is also in L, and can
be found from the formula

u= ﬁ (BT)k¢, (3.12)
k=0

Now we can prove the existence and uniqueness of the stationary distribution 7 for
u > 0and A > 0. Start with u given by Eq. (3.12) and put v = D~ 'u. By the
Cauchy-Schwartz inequality, v € L. The stationary distribution 7 is given by

1 v

= —, r.
L+ ol ’

i

Y i1 (3.13)
1+ ol

o

The uniqueness of the stationary distribution 7 follows from the uniqueness of solu-
tion for Eq. (3.8). By Theorem 6.9 in Kemeny, Snell, and Knapp [7, p. 135], the
Markov chain with the transition probabilities given by Eq. (2.3) is ergodic.

Our argument shows that the operator /I — B is invertible if / > e #/2, It
follows that for such values of £, one can find in L, the solution u of the equation

u’[(I-B]= €7 (3.14)

for any right-hand side € in L,. This fact implies that one can solve the “drift”
inequalities

> P(x[y)V(y) = {V(x) + bd,, (3.15)

with positive V and C = {0}. It follows from Nummelin [9, p. 90] that our chain is
geometrically ergodic, which concludes the proof of the theorem. n
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The referee suggested a proof of geometric ergodicity by checking Eq. (3.15)
with V(x) = B* for some 8 > 1:

S
> P(x|y)V(y) = 2( e BT e #x—l{1<»<x}>ﬂ‘
y y v o= ! (x y)
k x—y
— /\(ﬁ 1) Z e ([,LX) +18xe*,wr M
I=y=x (x_)’)'
o) k
=B |:e”(11/ﬁ) + B FerMPTD Y o (l;j) ] (3.16)
k=x -

Notice that as x = o0, B *e* B~V 3% e ((ux)*/k!) — 0, and for some 0 <
{ < 1,e07VB) < £ Tt follows that Eq. (3.15) holds for some finite x, and positive
B where C = {k:k = x.}.

To get a useful approximation to 77, we use the form of the matrix B and denote
elements of (I — B) ™! = 37_B* by a; = a;;(p), and put o = X, a k.

THEOREM 2: The probability , is given by

o, ——
k;m(k

T = (3.17)

with an upper bound (3.24). An approximation (3.26) is valid, and a lower bound
(3.31) for | holds, leading to approximation (3.36) for 0 < u < 1. Small values of
uand A are optimal.

ProoF: Using the identity (I — B)™' =1+ B(I — B)™', the a;; can be found from
the recurrent formula

61/ + 2 ak/ ik 81/ + 2 azk bk/ (3'18)
for i = j. Note that
1 : 3.19
aii_l—bii_l—e_i“' (3.19)
One has
) Ak
3.20
)= 2% Ty (3.20)
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so that using Eq. (3.13), we obtain Eq. (3.17). Note that

1 J 1
aj:_.+zakbjk:_.+ 2 Qe ——

J k=1 J |=i=k=j

It is easy to see by induction that 3\ by k' =< (1 —by)j L Iffork=1,...

ap = aq, /k, then for j = 2,

j—1
ay by

2 au b i =

1 b =1 =Dy =1 k

Also, as ia; = jay;,

ayy

2—5—.-
J

1 J
o= 2 Qg
J k=1
From Eq. (3.22), we obtain
) /\k
@, ———
Zl k=1 a,(e* = 1) et —1
T = = = ,
i N 1+ a,(e*—1) Aot
1+ Ay
S k=)

357

3.21)

J— 1

3.22)

3.23)

3.24)

which shows that for this probability to be close to unity, one must have =~ 0 or A

must be large. For

n )\k
Zf’“ (k—1)!

k ’

" =

-1

it follows from Egs. (3.22) and (3.23) that lim,,_,,, 7\") = 7, and

A
= ) = L x| y (A + 1),
et —eH 1-

where

ko) e/\ A
YA k) =et =D — = f e 'tF 1 dt,
0

20t (k=1

is the incomplete gamma function.
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An argument similar to that in Eq. (3.23) can be used to demonstrate that for
any fixed j, ict;; is a nonincreasing sequence ini = j, j + 1,..., so that the limit, §; =
lim; o0 icv;, ex1sts Since [(T—B")"'[, =[1—|B[,]™" and, for a fixed [, by, is a
decreasing sequence in p = [, we get, for i = j + 2 from Eq. (3.18),

0 byl = | S gt 3 ah| = 0
e k=i 1B
(3.28)
so that
. . 2i%b;
|la,;;+1 - la,-,_/| (1—e *)(1—|BJ,)" (3.29)

For 0 < u < 1, lim;,.,i*b; = 0, and, therefore, 8; = &

;11 for any j, demonstrating
that 6, = 6. It follows that

0 )lk Y 1
=Sk .—zaAf dt. 3.30
Y kz‘:, M =% ) (=) (3.30)

Using Eq. (3.23), a lower bound for 77| is obtained,

(e —1)
T =
[o%e} e} /\j

1+Zakk2

S(e* —1)
N o e*li(l — e*/\(l*eikﬂ)) ’ (3.31)
A A
1+ et +e g I
To get a formula for § when 0 < u < 1, recall that for any positive A,

o dkuk o )‘ k
er—1= p =2k—2kak,,. (3.32)

k=1 k= j=

As neither ay; nor d; depend on A, it follows that for any k = 1,2..., 2,;_; a; d;/
j = 1/k, which implies that

0= = - . 3.33)
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Indeed,

o d o uk e_ttk_l u oo e—kskksk—l
z":zf dt=fE—ds
0 :

Lo ds
= f = —log(1 — u), 3.34)
0 S

since, as in the derivation of the expected value of the Borel-Tanner distribution
(e.g., formula (16) in Haight and Breuer [3]),

7ks(ks)k s

-5

, 0<s<l. 3.35)

These results lead to an approximation for 7 ; if one replaces u; by Aa;; + A2, +
S(e* =1 — A — A%/2) and sets uy =~ Nay + 8(e* — 1 — A — A%/2), u; =
S(e* =1 — A — A%¥/2),j = 3. With Ei(—)) = [,"e "/t dr denoting the integral
exponential function and C denoting Euler’s constant, the approximate formula
for 7r; when 0 < u < 1 takes the form

Uy
T = -
1+ 5
j=1J
A N Ape - e r—1—A—2A%Y2
Il—e™ (Q—e™)(1—e ) log(1 — p)
A A2 1 pe 2 AA+1)  e*[C+logAr—Ei(=N)]’
1+ + - + -
l—e™ 1—e |2 1—e™ log (1 — p) log(1 — u)
(3.36)
For small values of g,
0 /\k
,;1 K 1—e?
T~ — . 3.37)
e ) )\ A 1—e¢ t
PO dt
=1 k ;=% J! 0 t

This ratio is a decreasing function of A; for small A,7; ~ A/(A + u), so that
T —> las A N 0,u/A — 0. Therefore small values of A and u = 0(A) are optimal.
|

Theorem 2 gives a method for approximating the probability of interest 7.
Given €, from Eq. (3.26) we determine the level of truncation n. From Eq. (3.25),
using the recurrence formulas (3.18) and (3.19), we obtain the approximate value
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0.8

FIGURE 1. The plot of the probability 77| as a function of A and u.

7 of 77, such that |7, — 7| =< e. Figure 1 depicts the probability 7r; for A,u €
(0,2.5) using e =107°,

The referee has suggested using the geometric distribution as the loss distribu-
tion. Thus, assume that ¥, = min(X,,,G), where G is a random variable with geo-
metric distribution over nonnegative integers with parameter p. Then the inverse of
I — B can be obtained explicitly. For any load distribution R with the finite first
moment, the same technique as in Theorem 1 shows that the stationary distribution
is obtained from Eq. (3.13):

P(R=n)+p > P(R=k)
k>n
T, = P ) (3.38)

In particular,

_ P(R=1)+pP(R=2)
1+ p(E®R)-1)

3.39)

B

which is an increasing function in p for any load distribution such that 1 —
P(R =0) = P(R = 1)E(R). The latter condition holds for the Poisson load distri-
bution. Therefore, values of p close to 1 and A =~ 0 are optimal for this distribution.
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4. DISCUSSION

The bound in Eq. (3.26) suggests that the convergence to the stationary distribution
(although geometric) is the slowest for small u. For this reason, it takes more time
to attain the optimal regime than for the stationary distribution associated with other
parametric values. Theorem 2 gives a method for computing an approximation 7}
as defined in Eq. (3.25) of the probability of interest 77, with any given accuracy e.

Gibson and Seneta [ 1] and Heyman [5] gave a method for computing a numer-
ical approximation of the steady-state distribution o of a Markov chain with states
0,1,..., and a transition probabilities matrix P. The idea is to approximate 7 by 7,
the steady-state distribution of the chain obtained by truncating P, keeping the first
n states and normalizing it in a convenient way (e.g., by linear normalization or, by
row normalization). The conditions (A1)—(A4) in Heyman [5] hold for our case;
conditions (A2)—(A4) are easy to check and (A1) follows from Theorem 1, if its
implementation is practical.
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