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In this article a Markov chain for the distribution of single atoms is suggested and
studied+We explore a recursive model for the number of atoms present in a magneto-
optical trap under a feedback regime with a Poisson-distributed load+ Formulas for
the stationary distribution of this process are derived+ They can be used to adjust
the loading rate of atoms to maximize the proportion of time that a single atom
spends in the trap+ The ~approximate! optimal regime for the Poisson loading and
loss processes is found+

1. INTRODUCTION

The ability to control individual atoms is crucial in nanotechnology and quantum
information processing+ Atom-on-demand technology will enable novel quantum
computation schemes, unprecedented control over dopants in materials, and even-
tual realization of the ultimate goal of nanotechnology: atom-by-atom construction+

Here,we suggest a version of a recursive model for the number of atoms present
in a magneto-optical trap ~MOT! at any given time under a feedback regime with a
Poissonian loss+ Formulas for the stationary distribution of this process can be used
to control the loading rate of atoms so as to maximize the proportion of time that a
single atom spends in the trap+ The ~approximate! optimal regime for the Poisson
loading and loss processes is found+ More specifically, the values of loading and
loss parameters maximizing the probability of exactly one atom in the trap are deter-
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mined and confirmed through Monte Carlo simulation+ These results make use of
the Borel–Tanner distribution ~Kingman @8# !, which describes the total number of
customers served before a queue vanishes with random arrival of customers and a
constant time needed to serve each customer+

Optical quantum cryptography is built on the use of the single photon state @2,
Sect+ III+A# + Practical implementation mainly relies on faint laser pulses based on
standard semiconductor lasers+ The Electron and Optical Physics Division of the
National Institute of Standards and Technology has built a prototype device that
can produce and sustain one atom of a given species, upon demand, for a useful
time interval+ Hill and McClelland @6# described a new accurate method of trapping
neutral atoms in a vacuum chamber that does not use faint pulses+ To achieve the
optimal stationary distribution for single atoms in our model, one needs a weak
load regime and even weaker loss processes+ However, under these conditions, the
convergence to the stationary distribution is the slowest+

2. MARKOV CHAIN MODEL FOR THE NUMBER OF ATOMS
IN A MAGNETO-OPTICAL TRAP

Suppose the door to the MOT could be opened the instant it became empty or closed
at the instant it became occupied+ Then the number of atoms in the trap can be
modeled as a Markov chain+ Because of physical limitations, the number of atoms
in the trap cannot be monitored continuously: The trap can only be checked every
T seconds+ During that interval T, more than one atom can sneak inside the trap
before the door is closed+

Let Rn be a Poisson random variable with parameter l, representing the load
~i+e+, the random number of atoms entering the trap at time n! and denote by Xn the
number of atoms in the MOT at time n, n � 1,2, + + + + For a fixed Xn � x, the random
loss variable Yn has a Poisson distribution with parameter µx+ A simple recursive
model for the number Xn of atoms present in the MOT at step n under a feedback
regime is

Xn � �Rn if Xn�1 � Yn�1

Xn�1 � Yn�1 if Xn�1 � Yn�1,
(2.1)

with Rn and ~Xn�1,Yn�1! independent+As a simple example, suppose that at step n,
there are three atoms in the MOT, so Xn � 3; according to the model, the trap is
opened+ If we lose two atoms, then at step n � 1, there is only one atom left in the
trap ~Xn�1 � 1!, but if we lose all three atoms, Xn�1 is determined by a new load;
notice that in the latter case, we only consider one step, although we have two time
intervals+ Our goal is to get a single atom with high probability; if we know that the
trap empties, there is no point in stopping the process+

Clearly, Xn, n �1,2, + + + , forms a countable state Markov chain in discrete time+
If Xnr X, with the distribution of X being the steady-state ~stationary! distribution
for the chain, then the following equality of distributions holds:
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X � �R if X � Y

X � Y if X � Y+
(2.2)

Here, R is Poisson distributed with parameter l, and for a fixed X � x, the random
variable Y is Poisson distributed with parameter µx+

Our goal is to find the distribution of X and to find the values of l and µ that
maximize the value p1 � P~X � 1!+ For this purpose, we determine the probability
vector p� ~p0,p1, + + + ! with pk � P~X � k!, k � 0,1,2, + + + +

Notice that the transition probabilities of the above Markov chain are

P~x 6y! � P~Xn � y 6Xn�1 � x!

� P~Xn � y,Yn�1 � x 6Xn�1 � x!

� P~Xn�1 � Yn�1 � y, Yn�1 � x 6Xn�1 � x!

� (
k�x

`

P~Rn � y!P~Yn�1 � k 6Xn�1 � x!

� P~Yn�1 � x � y 6Xn�1 � x!1$1�y�x%

� e�l
ly

y! (k�x

`

e�µx
~µx!k

k!
� e�µx

~µx!x�y

~x � y!!
1$1�y�x% + (2.3)

In particular,

P~x 60! � e�l (
k�x

`

e�µx
~µx!k

k!

� e�l�1 � e�µx (
k�0

x�1 ~µx!k�1

k!
�

� e�l dx , (2.4)

with d0 � 1+
Observe that

P~161! � le�l~1 � e�µ !� e�µ, (2.5)

which is maximized when µ � 0 ~the value of l being immaterial+!

3. STEADY-STATE DISTRIBUTION FOR THE NUMBER OF ATOMS

Theorem 1: For any l, µ � 0, the Markov chain determined by transition proba-
bilities given in Eq. (2.3) is ergodic. In fact, the chain is geometrically ergodic; that
is, for some R~x! and r � 1,

6P n~x 6y!�px 6 � R~x!rn, (3.1)
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n �1,2, + + + + The vector p of stationary probabilities has the form given in Eq. (3.13)
with the vector u satisfying Eq. (3.8).

Proof: We will prove that the Markov chain determined by Eq+ ~2+3! has a station-
ary distribution p by constructing it+ For the stationary distribution to exist, we
need

(
n�0

`

pn P~n 60! � e�l (
n�0

`

dnpn �p0 , (3.2)

so p0 � 0, and for k � 1,2, + + + , with vk � pk0p0,

(
k�1

`

dk vk � el � 1+ (3.3)

Also, (k�1
` vk � ~1 � p0!0p0+ Introduce the lower triangular matrix B with the

entries

bij � e�µi
j~µi !i�j

i ~i � j !!
, i � j, j � 1, + + + + (3.4)

For µ � 0, we have (i�j
` bij � 1, and for 0 � µ � 1, the elements of B are in fact

the probabilities of the Borel–Tanner distribution, so that, with eT � ~1, 1, + + +!,
eT B � eT +

According to Eq+ ~2+3!, the reduced transition probabilities matrix P formed by
the elements $P~x 6y!, x, y � 1,2, + + + % can be written in the form

P � DBD�1 � e�ld~D�1�!T+ (3.5)

Here, D is the diagonal matrix with elements 1,2, + + + ,dT � ~d1,d2, + + + !, and �T �
~l,l2, + + + ,l j0@~ j �1!!# , + + + !+ Since P~0 6y!� e�lly0y!, one has for vT � ~v1, v2, + + + !,

vTP � vT � e�l~D�1�!T+ (3.6)

On the other hand,

vTP � vT @DBD�1 � e�ld~D�1�!T #� vTDBD�1 � ~1 � e�l !~D�1�!T+ (3.7)

Combining these formulas, one obtains for u � Dv,

uT @I � B# � �T+ (3.8)

We will prove that the norm of B, as an operator in L2, is smaller than e�µ02 ~�1!+
Hence, I � B is invertible in L2+ To this end, we show that for any i � 1,2, + + + ,

(
j�1

i

bij � b11 � e�µ+ (3.9)
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From definition ~3+4!,

(
j�1

i

bij �
e�µi

i (k�0

i�1 ~i � k!~µi !k

k!
; (3.10)

so to prove Eq+ ~3+9!, it suffices to demonstrate that

(
k�0

i�1 ~i � k!~µi !k

ik!
� e ~i�1!µ � (

k�0

` @µ~i � 1!# k

k!
+ (3.11)

However, this inequality follows directly from comparison of the coefficients i k �
ki k�1 � ~i � 1!k, k � 1, + + + , i � 1 + Since (i�j

` bij � 1, a theorem by Schur ~Halmos
@4, Problem 37# , with pi[ 1, implies that the operator defined by the matrix B has
norm in L2 less than e�µ02 � 1+ Note that b11 � e�µ , so that 7B72 � e�µ +

Since � belongs to the space L2, the solution u of Eq+ ~3+8! is also in L2 and can
be found from the formula

u � (
k�0

`

~BT !k�+ (3.12)

Now we can prove the existence and uniqueness of the stationary distribution p for
µ � 0 and l � 0+ Start with u given by Eq+ ~3+12! and put v � D�1u+ By the
Cauchy–Schwartz inequality, v � L1+ The stationary distribution p is given by

p0 �
1

1 � 7v71
, pi �

vi
1 � 7v71

, i � 1,2, + + + + (3.13)

The uniqueness of the stationary distribution p follows from the uniqueness of solu-
tion for Eq+ ~3+8!+ By Theorem 6+9 in Kemeny, Snell, and Knapp @7, p+ 135# , the
Markov chain with the transition probabilities given by Eq+ ~2+3! is ergodic+

Our argument shows that the operator zI � B is invertible if z � e�µ02 + It
follows that for such values of z, one can find in L2 the solution u of the equation

uT @zI � B# � �T (3.14)

for any right-hand side � in L2+ This fact implies that one can solve the “drift”
inequalities

(
y

P~x 6y!V~ y! � zV~x!� bdCx , (3.15)

with positive V and C � $0% + It follows from Nummelin @9, p+ 90# that our chain is
geometrically ergodic, which concludes the proof of the theorem+ �
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The referee suggested a proof of geometric ergodicity by checking Eq+ ~3+15!
with V~x!� bx for some b � 1:

(
y

P~x 6y!V~ y! �(
y
�e�l

ly

y! (k�x

`

e�µx
~µx!k

k!
� e�µx

~µx!x�y

~x � y!!
1$1�y�x%�b y

� el~b�1! (
k�x

`

e�µx
~µx!k

k!
� bxe�µx (

1�y�x

~µx0b!x�y

~x � y!!

� bx�e�µ~1�10b! � b�xel~b�1! (
k�x

`

e�µx
~µx!k

k!
� + (3.16)

Notice that as xr `, b�xel~b�1! (k�x
` e�µx~~µx!k0k!!r 0, and for some 0 �

z� 1, e�µ~1�10b! � z+ It follows that Eq+ ~3+15! holds for some finite xz and positive
b where C � $k : k � xz% +

To get a useful approximation top1,we use the form of the matrix B and denote
elements of ~I � B!�1 �(k50

` Bk by aij � aij~µ!, and put aj �(k�1
j ajk k�1+

Theorem 2: The probability p1 is given by

p1 �

(
k�1

`

ak1

lk

~k � 1!!

1 � (
k�1

`

ak

lk

~k � 1!!

(3.17)

with an upper bound (3.24). An approximation (3.26) is valid, and a lower bound
(3.31) for p1 holds, leading to approximation (3.36) for 0 � µ � 1. Small values of
µ and l are optimal.

Proof: Using the identity ~I � B!�1 � I � B~I � B!�1 , the aij can be found from
the recurrent formula

aij � dij �(
k�j

i

akj bik � dij �(
k�j

i

aik bkj (3.18)

for i � j+ Note that

aii �
1

1 � bii

�
1

1 � e�iµ
+ (3.19)

One has

uj �(
k�j

`

akj

lk

~k � 1!!
, (3.20)
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so that using Eq+ ~3+13!, we obtain Eq+ ~3+17!+ Note that

aj �
1

j
� (

k�1

j

ak bjk �
1

j
� (

1�i�k�j

ajk

bki

i
+ (3.21)

It is easy to see by induction that (k�1
j�1 bjk k�1 � ~1 � bjj !j

�1+ If for k �1, + + + , j �1,
ak1 � a110k, then for j � 2,

aj1 �
1

1 � bjj
(
k�1

j�1

ak1 bjk �
a11

1 � bjj
(
k�1

j�1 bjk

k
�
a11

j
+ (3.22)

Also, as iaij � jajj ,

aj �
1

j (k�1

j

akk + (3.23)

From Eq+ ~3+22!, we obtain

p1 �

(
k�1

`

ak1

lk

~k � 1!!

1 � (
k�1

`

ak1

lk

~k � 1!!

�
a11~e

l � 1!

1 � a11~e
l � 1!

�
el � 1

el � e�µ
, (3.24)

which shows that for this probability to be close to unity, one must have µ � 0 or l
must be large+ For

p1
~n! �

(
k�1

n

ak1

lk

~k � 1!!

1 � (
k�1

n

ak

lk

~k � 1!!

, (3.25)

it follows from Eqs+ ~3+22! and ~3+23! that limnr` p1
~n!� p1 and

6p1 �p1
~n! 6 �

el � 1

el � e�µ
max�g~l, n � 1!,

l

1 � e�µ
g~l, n!� , (3.26)

where

g~l, k! � el �(
i�0

k li

i!
�

el

~k � 1!!
�

0

l

e�tt k�1 dt, k � 1, (3.27)

is the incomplete gamma function+
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An argument similar to that in Eq+ ~3+23! can be used to demonstrate that for
any fixed j, iaij is a nonincreasing sequence in i � j, j �1, + + + , so that the limit, dj �
limir` iaij , exists+ Since 7~I � BT!�172 � @1 � 7B72#�1 and, for a fixed l, blp is a
decreasing sequence in p � l, we get, for i � j � 2 from Eq+ ~3+18!,

~1 � bii !6aij�1 � ai, j 6 � � (
k�j�1

i�1

akj�1 bik �(
k�j

i�1

akj bik� �
~2i � 2j � 1!bij

1 � 7B72
,

(3.28)

so that

6 iaij�1 � iai, j 6 �
2i 2bij

~1 � e�iµ !~1 � 7B72 !
+ (3.29)

For 0 � µ � 1, limir` i 2bij � 0, and, therefore, dj � dj�1 for any j, demonstrating
that dj [ d+ It follows that

uj �(
k�j

`

kakj

lk

k!
� del�

0

l e�tt j�1

~ j � 1!!
dt+ (3.30)

Using Eq+ ~3+23!, a lower bound for p1 is obtained,

p1 �
d~el � 1!

1 � (
k�1

`

akk(
j�k

` l j

j!

�
d~el � 1!

1 � lel � el (
k�1

` e�kµ~1 � e�l~1�e�kµ ! !

1 � e�kµ

+ (3.31)

To get a formula for d when 0 � µ � 1, recall that for any positive l,

el � 1 � (
k�1

` dk uk

k
� (

k�1

` lk

k! (j�1

k

kakj

dj

j
+ (3.32)

As neither akj nor dk depend on l, it follows that for any k � 1,2 + + + , (j�1
k akj dj 0

j � 10k, which implies that

d �
1

(
k�1

` dk

k

� �
1

log~1 � µ!
+ (3.33)
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Indeed,

(
k�1

` dk

k
� (

k�1

` �
0

µk e�tt k�1

k!
dt ��

0

µ

(
k�1

` e�ksk ks k�1

k!
ds

��
0

µ ds

1 � s
� �log~1 � µ!, (3.34)

since, as in the derivation of the expected value of the Borel–Tanner distribution
~e+g+, formula ~16! in Haight and Breuer @3# !,

(
k�1

` e�ks~ks!k

k!
�

s

1 � s
, 0 � s � 1+ (3.35)

These results lead to an approximation for p1; if one replaces u1 by la11 � l2a21 �
d~el � 1 � l � l202! and sets u2 � l2a22 � d~el � 1 � l � l202!, uj �
d~el � 1 � l � l202!, j � 3+ With Ei ~�l! � *l

` e�t0t dt denoting the integral
exponential function and C denoting Euler’s constant, the approximate formula
for p1 when 0 � µ � 1 takes the form

p1 �
u1

1 �(
j�1

` uj

j

;

l

1 � e�µ
�

l2µe�2µ

~1 � e�µ !~1 � e�2µ !
�

e�l � 1 � l� l202

log~1 � µ!

1 �
l

1 � e�µ
�

l2

1 � e�2µ � 1

2
�

µe�2µ

1 � e�µ��
l~l� 1!

log~1 � µ!
�

el @C � log l� Ei ~�l!#

log~1 � µ!

+

(3.36)

For small values of µ,

p1 ;

(
k�1

` lk

k!

µ � (
k�1

` 1

k (j�k

` l j

j!

�
1 � e�l

µe�l ��
0

l 1 � e�t

t
dt

+ (3.37)

This ratio is a decreasing function of l; for small l,p1 ; l0~l � µ!, so that
p1r 1 as l f 0, µ0lr 0+ Therefore small values of l and µ � o~l! are optimal+

�

Theorem 2 gives a method for approximating the probability of interest p1+
Given e, from Eq+ ~3+26! we determine the level of truncation n+ From Eq+ ~3+25!,
using the recurrence formulas ~3+18! and ~3+19!, we obtain the approximate value
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p1
n of p1 such that 6p1 � p1

n 6 � e+ Figure 1 depicts the probability p1 for l, µ �
~0,2+5! using e� 10�6 +

The referee has suggested using the geometric distribution as the loss distribu-
tion+ Thus, assume that Yn � min~Xn,G!, where G is a random variable with geo-
metric distribution over nonnegative integers with parameter p+ Then the inverse of
I � B can be obtained explicitly+ For any load distribution R with the finite first
moment, the same technique as in Theorem 1 shows that the stationary distribution
is obtained from Eq+ ~3+13!:

pn �

P~R � n!� p (
k�n

P~R � k!

1 � p � pE~R!
+ (3.38)

In particular,

p1 �
P~R � 1!� pP~R � 2!

1 � p~E~R!� 1!
, (3.39)

which is an increasing function in p for any load distribution such that 1 �
P~R � 0! � P~R � 1!E~R!+ The latter condition holds for the Poisson load distri-
bution+ Therefore, values of p close to 1 and l� 0 are optimal for this distribution+

Figure 1. The plot of the probability p1 as a function of l and µ+
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4. DISCUSSION

The bound in Eq+ ~3+26! suggests that the convergence to the stationary distribution
~although geometric! is the slowest for small µ+ For this reason, it takes more time
to attain the optimal regime than for the stationary distribution associated with other
parametric values+ Theorem 2 gives a method for computing an approximation p1

n

as defined in Eq+ ~3+25! of the probability of interest p1 with any given accuracy e+
Gibson and Seneta @1# and Heyman @5# gave a method for computing a numer-

ical approximation of the steady-state distribution p of a Markov chain with states
0,1, + + + , and a transition probabilities matrix P+ The idea is to approximate p by pn,
the steady-state distribution of the chain obtained by truncating P, keeping the first
n states and normalizing it in a convenient way ~e+g+, by linear normalization or, by
row normalization!+ The conditions ~A1!–~A4! in Heyman @5# hold for our case;
conditions ~A2!–~A4! are easy to check and ~A1! follows from Theorem 1, if its
implementation is practical+
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