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An enhanced integral-equation formulation
for accurate analysis of frequency-selective
structures

guido valerio
1

, alessandro galli
2

, donald r. wilton
3

and david r. jackson
3

In this work, a very efficient mixed-potential integral-equation formulation is implemented for the rigorous analysis of multi-
layered structures with arbitrarily shaped two-dimensional periodic metallic and/or dielectric inclusions. Original accelera-
tion techniques have been developed for the computation of the components of the scalar and dyadic Green’s functions, based
on different types of asymptotic extractions according to the potential considered. The theoretical approach and its compu-
tational convenience have been validated through different full-wave analyses concerning both scattering problems and
complex-mode dispersive behaviors in various frequency-selective structures for microwave applications.
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I . I N T R O D U C T I O N

Efficient and versatile computational methods for numerical
modeling and the computer-aided design (CAD) of complex
electromagnetic structures have gained importance in recent
years, due to the ever-increasing progress of computational
resources. The problems that can be solved are now growing
in complexity, in terms of the number of unknowns, fine
details, frequency bands, complicated geometries, etc. [1, 2].

The numerical analysis of periodic problems has been a
well-known topic in connection with studies on crystal lattices
in theoretical physics and on canonical devices for micro-
waves, such as large arrays and filter configurations.
Nowadays, many new challenging applications involving elec-
tromagnetic periodic configurations can be found in electro-
magnetic band-gap (EBG) structures, in frequency-selective
surfaces (FSS), and in new artificial micro- and nano-
structured materials [3–5].

For all of these increasingly diverse classes of structures, the
need for accurate and efficient numerical analysis tools is of
paramount importance. The fast solution of scattering and
radiation problems is necessary, e.g., for the design of syn-
thetic surfaces and the homogenization of artificial materials,
as well as for the study of the excitation of periodic structures
illuminated by either a plane wave or a finite source, via the

application of plane-wave expansion methods or the array
scanning method [6].

The possibility to perform full-wave dispersive studies on
various kinds of periodic structures is also useful for the
design of microwave filters, FSS and EBG-like structures,
and for the characterization of periodic leaky-wave antennas
[3, 4, 7]. In the latter case, it is extremely useful to extend
the dispersive study to nonspectral representations, by allow-
ing for improper complex solutions (i.e., leaky waves), which
can be very useful for describing radiation effects on such
structures.

I I . B A C K G R O U N D A N A L Y S I S

One of the most versatile and established approaches to the
full-wave numerical solution of the above described classes
of periodic problems is based on integral-equation formu-
lations solved through the method of moments (MoM)
[1, 2, 8]. However, the slow convergence of the series that
appear in the computation of the kernels is currently the
main issue encountered in solving such integral equations
for periodic structures [9]. The problems can be formulated
inside a single spatial period (“unit cell”), and the periodicity
can be included in the kernels (i.e., the periodic Green’s func-
tions), which can be computed as a superposition of periodic
sources (i.e., as a “spatial series”) or as a sum of spatial harmo-
nics (i.e., as a “spectral series”). While the first representation
is usually slowly converging (at least for lossless structures)
and is not valid for improper waves where the wavenumber
is complex, the second is faster converging (though still con-
verging somewhat slowly) and works in the case of improper
waves, unless the observation point approaches the periodic
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sources (which is required in most MoM solutions). For MoM
applications, acceleration methods are required to reach a
reliable and fast convergence of the relevant series [9].

In free-space problems, one of the most effective accelera-
tion approaches is the Ewald method, leading to an expression
of the periodic Green’s function as the sum of a modified
spatial and a modified spectral series, both with Gaussian con-
vergence [9, 10]. This method can be easily implemented in
many periodic configurations and with different kinds of
sources [10].

If the periodic inclusions are embedded in a multilayered
media, rather than in a homogeneous space, the Green’s func-
tions are considerably more complicated. In this case a mixed-
potential integral equation (MPIE) approach is possible,
leading to weaker spatial singularities in the spatial-domain
MoM compared to working directly with the fields [8].
Different dyadic and scalar Green’s functions are needed in
the MPIE; the various components have spectral series with
different convergence features.

Some of the components, in particular the ones required in
transverse problems (where the metallization is planar and
parallel to the layer interfaces), can be accelerated with the
extraction of spectral terms corresponding to homogeneous-
medium Green’s functions, which can be further speeded up
with the Ewald method as described above.

On the other hand, the components required to treat verti-
cal current elements (i.e., those orthogonal to the stratification
planes) need the extraction of different spectral terms, which
are not simple homogeneous-medium Green’s functions. An
original extension of the acceleration approach for general
multilayered structures embedding cylindrical-type inclusions
is outlined next (see Fig. 1 as a reference structure). The whole
implementation is subsequently validated with suitable
numerical tests for various practical periodic structures.

I I I . A C C E L E R A T I O N T H R O U G H
A S Y M P T O T I C E X T R A C T I O N S

In this section, the asymptotic extractions for different kinds
of mixed potentials are summarized. The extracted terms

consist of quasi-static images of a source point reflected or
transmitted by the nearest interfaces: three terms (a direct
term and two reflected terms) if the source and observation
points are in the same layer, and only one direct term if the
source and observation points are in adjacent layers. If they
are separated by one or more layers, the asymptotic extrac-
tions are generally unnecessary since the Floquet modes of
the spectral representation decay exponentially, with faster
convergence rates for greater separation between the source
and observation points. Problems may still arise when the
source and observation points are separated by one or more
layers that are very thin, or when they are within the same
layer that is very thin. This aspect is not pursued here.
However, this aspect does not limit the application of the
computational methods described in this section to problems
involving general multilayered structures.

The general potential G from the periodic sources is
expressed with a spectral series of the form

Gp r, r′
( )

= 1
p

∑+1

n=−1

G̃ kxn; z, z′
( )

e−jkxnDx , (1)

where r and r′ are the observation and source points, respect-
ively, G̃ is a spectral-domain Green’s function for a uniform
(in y) source, which is known in closed form for a general
layered structure; kxn ¼ kx0 + 2p n/p is the wavenumber of
the nth harmonic along the x direction, with kx0 being the
phase shift (possibly complex) between adjacent unit cells.

A) Transverse potentials
A general transverse component G of the potentials in the pre-
vious section can be computed as follows:

Gp r, r′
( )

= 1
p

∑+1

n=−1

G̃ kxn; z, z′
( )

−
∑+1

i=−1

Cig̃ kxn; Dzi( )
[ ]

× e−jkxnDx +
∑+1

i=−1

Cig
p kx0; Dx, Dzi( ),

(2)

where the three extracted terms g̃ are homogeneous-medium
spectral-domain Green’s functions; the terms i ¼ 1 and 21
refer to images that correspond to waves reflected at the top
and bottom layer interfaces, while i ¼ 0 corresponds to the
direct term. Also, Dx ¼ x2 x′ and Dzi is a vertical distance
depending on the image considered. The terms gp are
homogeneous-medium periodic Green’s functions, which
can be efficiently computed by the Ewald method as pre-
viously mentioned [9, 10]. The vertical wavenumber needed
in the computation of the spectral-domain Green’s function
is kzn =

���������
k2

s − k2
xn

√
, where ks is the wavenumber for the

source medium.

B) Vertical potentials
If vertical current elements are also present, the computation
of additional potentials is required. The corrective scalar

Fig. 1. An example of the geometry under consideration, with the relevant
coordinate system and parameters: a multilayered structure with arbitrarily
shaped cylindrical-type periodic metallic or dielectric inclusions.
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potential Pz
p can be accelerated as

Pp
z r, r′
( )

= 1
p

∑+1

n=−1

P̃z kxn; z, z′
( )

−
∑+1

i=−1

Di

jkzn
g̃ kxn; Dzi( )

[ ]

e−jkxnDx +
∑+1

i=−1

Dig
z,p kx0; Dx, Dzi( ),

(3)

where the main difference with respect to (2) is the presence of
an extra factor 1/( jkzn) multiplying each extracted spectral-
domain homogeneous-medium Green’s function. Due to
this factor, the acceleration of the Green’s functions gz,p

cannot be performed with the usual methods developed in
free space (e.g., the usual Ewald method).

Nevertheless, this new function can be expressed in the
spatial domain as a potential due to an array of half-plane cur-
rents, since the spectral factor 1/( jkzn) is equivalent, in the
spatial domain, to an integration along the vertical z-axis:

gz,p kx0; Dx, Dz( ) =
∫+1

Dz| |
gp kx0; Dx, z( )dz. (4)

The Ewald method can then be suitably modified by inte-
grating both the spectral and spatial series along z: two new
series are obtained, each with Gaussian convergence. Their
terms are the z-integrals of the corresponding terms in the
standard Ewald method, each one expressed either in closed
form (in the spectral series) or through fast-converging inte-
grals (in the spatial series) [11].

The only nonzero off-diagonal entry, GA
zx, of the dyadic

potential GA can be similarly accelerated using the approach
(3) and (4), apart from a further factor kxn in the extracted
terms, corresponding to the derivative along x of (4).

I V . N U M E R I C A L T E S T S

The effectiveness of the acceleration methods previously
described is proven first with numerical results on the conver-
gence of the accelerated potentials. As an example of the
enhanced convergence obtained with extraction (3), the be-
havior (decay of the magnitude with n) of the terms of the
spectral series with and without the extraction is shown in
Fig. 2. The markers correspond to the number of terms
retained in order to grant a relative error of 1022, 1023, or
1024.

For an easier comparison, in Table 1 the number of terms
is given for the above-mentioned values of the error in both
the accelerated and nonaccelerated cases. The remarkable
improvement by several orders of magnitude in the compu-
tational efficiency of the proposed accelerated implementation
is manifest. This has an equivalent dramatic impact on the
reduction of computation time required for evaluating the
potential terms for a given accuracy.

V . R E S U L T S A N D D I S C U S S I O N

In this section, both scattering and dispersive analyses for per-
iodic structures have been performed to validate the accuracy

of the ‘transverse’ and of the “vertical” extractions, respect-
ively. A complete MoM implementation of the accelerated
Green’s function potentials described in the previous section
has been carried out, starting from the open-source distri-
bution of the electromagnetic code EIGERTM [12], solving
two-dimensional and three-dimensional problems both in
free space and in layered media. For periodic metallic
objects embedded in the multilayered background medium,
an electric-field integral equation (EFIE) is formulated; the
contour of the two-dimensional body within the unit cell is
discretized in segments and linear subdomain basis functions
are used.

A) Scattering problems
In this subsection a scattering problem is solved, and its sol-
ution is compared with the commercial software HFSSTM

[13], based on the finite element method (FEM) in order to
validate the described Green’s function computation. A dielec-
tric slab with an embedded array of vertical metallic strips is
considered here. A TMz plane wave is impinging on the slab
with incident angle uinc. Figure 3 shows the relevant behavior
of the reflection coefficient (Fig. 3(a) magnitude and Fig. 3(b)
phase) as a function of uinc for the Zeroth harmonic. Since the
currents induced on the strips are purely vertical, a very good
agreement with the independent results obtained through
HFSS fully validates the correctness of our “vertical” extrac-
tion (3).

B) Dispersive analyses
In this subsection, various examples of dispersive analyses per-
formed with our numerical implementation are shown and

Table 1. Number of terms retained in GA
zx.

Error Number of terms

Nonaccelerated series Accelerated series

1022 87 25
1023 271 29
1024 2233 43

Fig. 2. Decay of the magnitude of the terms of the nonaccelerated (black line)
and of the accelerated (gray line) series versus the harmonic number n. The
structure is a grounded dielectric slab in air, with relative permittivity 1r ¼

10.2, thickness h ¼ 5 mm, frequency f ¼ 3 GHz, spatial period p ¼ 10 mm
phase shift kx0 ¼ p/(2p), at z ¼ z′ (the interface between the grounded slab
and the air). The three markers correspond to the truncation of the relevant
series if relative errors 1022, 1023, and 1024 are required.
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validated with alternative methods. A first analysis is per-
formed for a strip grating printed on a grounded dielectric slab.

In Fig. 4, the involved modal behaviors of the phase con-
stant b and the attenuation constant a are both shown for a
TEz (i.e., TMy) mode, normalized with respect to the
vacuum wavenumber k0. It is seen that a complex improper
mode splits into two improper real branches slightly above
21.9 GHz. One of these modes merges around 22.1 GHz
with a second real improper mode, then giving rise to a
complex improper mode (i.e., a forward leaky wave) with
high attenuation. The other improper mode becomes proper
around 21.95 GHz and becomes a guided surface wave of
the structure.

It should be noted that the knowledge of the values of the
phase and attenuation constants is necessary to design and
characterize the radiation pattern of leaky-wave antennas
when the beam is scanned by varying the frequency [7].
Usually, this information cannot be obtained easily with
common commercial software, and an alternative full-wave
code is then required for the correct design of such structures.
The results shown in Fig. 4 are in full agreement with those
obtained in [14] by means of a multi-mode equivalent
network approach. This validates the “transverse” extractions
presented in (2), in the cases both real and complex
harmonics.

A validation of the “vertical” extractions in (3) involving
computation of wavenumbers for real and complex waves
can be performed if nonplanar cylindrical objects are
embedded in the stratification, when TMz (i.e., TEy) polarized

modes are investigated. This grants the presence of a vertical
component of induced currents and vertical potentials are
required in the EFIE formulation.

Dispersive analyses are performed here for two arrays of
metallic cylinders having different circular cross sections.
The cylinders are embedded in the middle of a grounded
dielectric slab with relative permittivity 1r ¼ 10.2 and thick-
ness h ¼ 20 mm; the spatial period of the structures is p ¼
20 mm. In this kind of structure, modal evolutions and coup-
ling phenomena are strongly dependent on the shape and
dimension of the embedded objects, as illustrated by the
pair of examples chosen.

In the first array analysed, a circular cross section of the
cylinders is chosen having radius r ¼ 4 mm. The Brillouin
diagram in Fig. 5(a) shows the phase constants of the zeroth
harmonic of the TMz (TEy) modes that are investigated,
with all the involved mode-coupling phenomena. The
dashed line is the light line (b ¼ k0), shown here as a reference
for the modes of the periodic structure. At low frequencies, a
real forward proper mode is above cutoff, which reaches a
closed stopband at around 2.2 GHz; at 2.7 GHz the mode
leaves the stopband, again being real. (Above the stopband
the 21 harmonic of the backward-propagating mode is
shown within the fundamental Brillouin zone.) At 3.1 GHz
this real mode (black thin line) merges with another real
proper mode (green line) and a complex proper mode arises
(gray line).

In Fig. 5(b) a detail of the high-frequency region of the
Brillouin diagram is shown for the sake of clarity. At around
3.6 GHz, the complex mode (gray line) splits into a backward
and a forward real proper mode, plotted with a red line and a
cyan thick line, respectively. The forward real mode reaches a
closed stopband at 3.9 GHz, thus becoming complex. The
backward real mode merges with a new real mode (cyan
thin line) and a complex proper mode arises. This mode
becomes a physical leaky mode (leaking in the backward
direction) when its n ¼ 21 harmonic crosses the light line
at 3.67 GHz.

Fig. 3. A periodic array of vertical metallic strips (length l ¼ 10 mm)
embedded in a dielectric slab (thickness h ¼ 20 mm and relative permittivity
1r ¼ 10.2), with spatial period p ¼ 20 mm and operating frequency f ¼
4 GHz: reflection coefficient for the 0th harmonic of a TMz uniform plane
wave versus the angle of incidence u inc. Results from our code, solid line,
and from HFSSTM, squares. (a) Magnitude and (b) phase (degrees) at the
top air/dielectric interface.

Fig. 4. A strip grating with period p ¼ 0.338 cm, strip width w ¼ 0.6p, on a
grounded slab with thickness h ¼ 0.14 cm and relative permittivity 1r ¼ 20:
modal dispersive behaviors. Phase constant b normalized with respect to the
free-space wavenumber k0: real proper mode (solid black line), improper
complex mode (solid black line with dots), improper real modes (dashed
black or gray lines). Attenuation constant a normalized with respect to k0:
improper complex modes (solid black lines with triangles). The analysis is
limited here to TEz modes, with results in agreement with those in [14].
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In Fig. 5(c) the relevant attenuation constants of the modes
are shown, confirming the presence of closed stopbands in the
frequency range 2.2–2.7 GHz and above 3.9 GHz, as already
discussed. The attenuation constant of the complex mode
shown with the gray line corresponds to the frequency
range 3.1–3.6 GHz mentioned above.

As a summary of the overall analysis in Fig. 5, it can be
noted that the fundamental mode first goes through a stop-
band as the frequency increases and then couples with
another real mode and becomes complex; this complex
mode then splits into two real proper modes at 3.6 GHz;
one of these real modes is a backward mode that merges
with another real mode to become a backward leaky mode.
The other real mode is a forward mode that encounters a stop-
band region at 3.9 GHz.

These analyses performed with the MoM are compared
with independent results obtained through HFSS. A truncated
structure has been simulated, made of 30 consecutive cells;
since HFSS treats three-dimensional objects, perfect magnetic
conductors are placed on two lateral walls at y ¼ constant,
thus simulating invariance along the y coordinate. Two wave-
guide ports are defined on the two boundaries x ¼ 0 and 30p,
and the relevant scattering parameters are simulated. A Bloch
analysis [15, 16] has then been performed, yielding an
approximate dispersion curve of the fundamental mode of
the periodic structure. Its phase and attenuation constants
(in small squares) are shown in Figs 5(a) and 5(c); they
show good agreement with the rigorous periodic approach,
thus validating the previous analysis. As expected, the
truncated-structure simulation does not accurately reproduce
the mode-coupling details in the high-frequency region of the
Brillouin diagram; these details are due to the mutual inter-
action among a large number of cells and can usually be recov-
ered effectively only if the correct periodicity is taken into
account with no approximations. The HFSS results also lose
accuracy at low frequencies, near the cutoff of the real
mode. Specifically, the attenuation constant is not exactly
zero due to the approximate nature of the method; this
gives rise to a growing normalized attenuation constant a/k0

near the cutoff frequency of the mode at about 1 GHz.
A second analysis is performed on a similar array of circu-

lar cylinders with a larger cross section: a radius r ¼ 8 mm is
chosen. As shown in the following results, this geometrical
variation leads to different mode coupling phenomena at
high frequencies. In Fig. 6(a) a Brillouin diagram shows the
phase constants of the TMz (TEy) modes investigated. The
low-frequency region of the diagram is similar to the previous
case. A real forward proper mode is above cutoff, reaching a
closed stopband at around 1.8 GHz, while at 3.0 GHz the
mode leaves the stopband being real and backward. At
3.1 GHz the real mode (black thin line) merges with another
real proper mode (green line) and a complex proper mode
arises (gray line).

In Fig. 6(b), a detail of the high-frequency couplings is
again given for the sake of clarity. At 3.56 GHz, the
complex mode reaches a closed stopband (as typical, its
phase constant b then becomes exactly equal to p/p). The
bandwidth of this stopband is relatively narrow (3.56–
3.60 GHz). At 3.6 GHz the mode leaves the stopband and
becomes real and backward, until it merges with a real
forward mode that is just above cutoff (cyan line). A
complex backward mode arises; its n ¼ –1 harmonic
becomes leaky as the light line is crossed.

In Fig. 6(c), the relevant attenuation constants are shown; in
particular, a sudden change is evident in the behavior of the
attenuation constant of the complex mode (in gray) before
and after the lower edge of the second stopband (at 3.56 GHz).

In both Figs 6(a) and 6(c) the propagation constant of the
fundamental mode, calculated with the periodic MoM, is

Fig. 5. Dispersive analysis of TMz modes supported by a periodic array of
circular cylinders with period p ¼ 2 cm, radius r ¼ 4 mm, embedded in the
middle of a grounded slab with thickness h ¼ 2 cm and relative permittivity
1r ¼ 10.2. (a) Brillouin diagram (frequency versus normalized phase
constant bp/p). Light line (dashed line), fundamental mode (thin black line),
real mode (green line), complex mode (gray line), real modes (cyan and red
lines). (b) Details of the Brillouin diagram. (c) Attenuation constant a

normalized with respect to k0. HFSS results are shown with small squares
for comparison.
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compared with the results of a Bloch analysis performed with
HFSS, as done for the previous periodic structure. A cascade of
19 cells has been simulated and the propagation wavenumber
is extracted from the S parameters of this structure. A very

good agreement is found for the propagation wavenumber,
especially at low frequency. As expected, the various modal
couplings are not exactly recovered with the approximate
HFSS analysis due to the finite structure simulated; in particu-
lar, a smoother behavior of the attenuation constant is
observed in the high-frequency region 3–4 GHz.
Nevertheless, the agreement with the results of the rigorous
periodic MoM is reasonably good, thus validating the full-
wave analyses presented.

C) Further comments
After these successful comparisons, some further consider-
ations on the efficiency of the methods can be drawn.

As concerns the scattering problem, the FEM commercial
code HFSS can be set up with a Floquet periodic boundary
condition and the analysis can be restricted to a single unit
cell with no loss of rigor. It is difficult to rigorously compare
efficiency between the two codes, due to the different
approaches implemented and the use of different parameters
to set the required accuracy. Nevertheless, it was observed
that our MoM approach was able to obtain solutions in less
than half the time required by the FEM software. A much
slower convergence of the FEM approach was also noticed
in ranges of incident angles near structural resonances (see,
e.g., the peaks near 408 in Fig. 3).

Concerning dispersive problems, commercial codes usually
do not allow for rigorous analyses involving complex and
improper waves. The approximate method of simulation
involving a truncated structure is the only approach usually
available, but a large number of cells can be required to cor-
rectly model the interactions among cells, thus leading to a
reduction in both efficiency and accuracy. On the other
hand, the MoM code allows for the rigorous study of proper
and improper waves, including waves that are not physical;
it can be further expanded to take into account a phase shift
along the y-axis, three-dimensional objects, or the presence
of nonperiodic sources [17, 18].

Finally, it is noted that the extraction of quasi-static images
as described automatically smooths (regularizes) the spectral
Green’s function series; the Ewald series may also be regular-
ized simply by removing the potentials of the nearest source(s)
[19]. Both series may then be separately pre-computed and
interpolated on demand using a simplex interpolation
method [20], providing considerable additional speedup of
the MoM approach.

V I . C O N C L U S I O N S

An original approach has been presented for the efficient and
accurate analysis of typical classes of microwave problems
involving arbitrary 2D periodic inclusions in stratified struc-
tures. Based on suitable asymptotic extractions, a significant
acceleration of all the components of the mixed-potential
multilayered Green’s functions has been achieved, depending
on the potential component analyzed. Homogeneous-medium
extracted terms are summed with the Ewald method, modified
in order to also treat the more difficult case of vertical current
elements.

Full-wave numerical tests and results have been presented,
implementing the proposed extraction algorithm in a version
of the open-source electromagnetic code EIGERTM.

Fig. 6. Dispersive analysis of TMz modes supported by a periodic array of
circular cylinders with period p ¼ 2 cm, radius r ¼ 8 mm, embedded in the
middle of a grounded slab with thickness h ¼ 2 cm and relative permittivity
1r ¼ 10.2. (a) Brillouin diagram (frequency versus normalized phase constant
bp/p). Light line (dashed line), fundamental mode (thin black line), real
mode (green line), complex mode (gray line), real modes (cyan line). (b)
Details of the Brillouin diagram. (c) Attenuation constant a normalized with
respect to k0. HFSS results are shown with small squares for comparison.
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Comparisons with independent results obtained through
other techniques and through commercial software show
both the precision and the major advantages of the presented
formulation.
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