
Math. Struct. in Comp. Science (1998), vol. 8, pp. 671–680. Printed in the United Kingdom

c© 1998 Cambridge University Press

Regular Böhm trees

G É R A R D H U E T

INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

Email: Gerard.Huet@inria.fr

Received 16 December 1996; revised 12 March 1998

We give a decision procedure for the extensional equality of total Böhm trees presented by

regular systems of recursion equations.

1. Böhm trees presentations

Böhm trees are the natural infinite generalisations of normal forms in pure λ-calculus.

They arose from the work of Böhm on separability (Böhm 1968), and were first identified

by Barendregt, who devotes Chapter 10 of his book Barendregt (1980) to their study, and

relates denotational models such as D∞ to appropriate quotients over Böhm trees.

There is, however, no generally agreed presentation of Böhm trees, and the various

partial orderings considered on them make this topic a difficult one (Lévy 1993). Here

we will adopt the point of view that Böhm trees are potentially infinite computational

objects similar to the streams studied in the theory of communicating processes, and treat

them accordingly as maximal solutions to systems of recursive definitions.

1.1. Systems of guarded combinators

Definitions. We assume that we are given two disjoint denumerable alphabets of symbols:

X = {X1, X2, . . .} is the set of combinator symbols; U = {u1, u2, . . .} is the set of parameter

symbols. Intuitively, combinators name Böhm trees, whereas parameters name bound

λ-variables.

We define Böhm tree presentation with respect to these two alphabets to be any denu-

merable system of guarded equations: E = {E1, E2, . . .}, with

Ei : Xi u1 u2 · · · uni := uki(M1, . . . ,Mpi)

where 1 6 ki 6 ni, 0 6 pi, Xi ∈ X, and for ∀j 6 pi Mj = Xki,j (v1, . . . , vli,j ) with 1 6 ki,j 6 ni
and {v1, . . . , vli,j} ⊆ {u1, . . . , uni} ⊆ U.

We assume, furthermore, that the system is deterministic, in the sense that every X ∈ X
possesses at most one defining equation in E. We shall then define the arity of Xi in E to

be the natural number ni, and we shall denote it by arE(Xi). We say that it is total when

every X ∈ X possesses exactly one defining equation in E.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


G. Huet 672

1.2. Completeness

Whatever your favorite formalism for Böhm trees, you ought to be able to convince

yourself that any Böhm tree T containing only a finite number of free variables {v1, . . . , vm}
is definable as X(v1, . . . , vm) in a suitable Böhm tree presentation. Indeed, if T is the

undefined Böhm tree, define it as ⊥ in the presentation ∅ over X = {⊥}, U = ∅. If T is of

the form λ u1 u2 · · · un ·w(T1, . . . , Tp) and its set of free variables is {v1, . . . , vm}, then let Tj
be represented by Xj(vj,1, . . . , vj,m) in Ej for 1 6 j 6 p, where we assume that the parameter

sets Xj of the Ej ’s are disjoint. Note that vj,1, . . . , vj,m are included in v1, . . . , vm, u1, . . . , un.

Now choose a new parameter X0, and consider the new equation

E0 : X0 v1 · · · vm u1 u2 · · · un := w(M1, . . . ,Mpi)

with Mj = Xj(vj,1, . . . , vj,m). Now with E0 = {E0} and X0 = {X0}, we consider the

presentation
⋃p
i=0 Ej over X =

⋃p
i=0Xj . In this presentation, T may indeed be defined as

X0(v1, . . . , vm). This construction may be made rigorous as a limit construction, defining T

as the ideal of its finite approximations, as usual.

Let us remark at this point that this shows that Böhm tree presentations are general

enough to represent arbitrary families of finitely generated Böhm trees, which is enough,

for instance, to represent the Böhm trees of any λ-term. But they permit us to do more,

in that we may represent dags and looping structures.

For instance, the λ-term in normal form λu1 u2 · (u1 λv · (v v) λw · w) may be presented

as X in the system

X u1 u2 := u1(D, I)

D v := v(I(v))

I w := w

with sharing of the combinator I . Whereas the single equation Z u := u(Z) defines as Z

the infinite tree λu1 · u1(λu2 · u2(. . .)). Another example is the fixpoint combinator Y , with

Y f := f(Y (f)). Yet another example, also denoting an infinite Böhm tree, is J presented

by the system: J x y := x(J(y)). It is the Böhm tree of the λ-term (Y λj λx λy (x (j y))),

for Y any fixpoint combinator such as Curry’s.

Indeed, we will call any finitely definable Böhm tree regular (in analogy with regular

languages).

Definition. We define any finite Böhm tree presentation to be regular. Such presentations

define Böhm trees that are regular in the sense of admitting only a finite number of

distinct subtrees, up to variable renaming. Of course not every Böhm tree is regular.

2. Semantics

We have just seen that arbitrary finitely generated Böhm trees are definable by Böhm tree

presentations. Conversely, let us show that any Böhm tree presentation defines a unique

Böhm forest.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


Regular Böhm trees 673

2.1. Parameterization of Böhm trees

We start with a few auxiliary technical notions.

If T is the (defined) Böhm tree

λ u1 u2 · · · un · w(T1, . . . , Tp)

and x is a variable, we define (T x) to be the Böhm tree

λ u2 · · · un · w′(T ′1, . . . , T ′p)
if n > 0, with w′ = x if w = u1 and w′ = w otherwise, and T ′j is obtained from Tj
by substituting every free occurrence of u1 by x. If n = 0, it is just the Böhm tree

w(T1, . . . , Tp, x). Finally, when T is the undefined Böhm tree ⊥, we define (T x) to be ⊥.

The top node of the defined Böhm tree

T = λ u1 u2 · · · un · w(T1, . . . , Tp)

is the triple (n, w, p). The head variable w may be encoded as a de Bruijn index, or as a

pair of indexes as in Huet (1993), or in any way that is invariant under variable renaming.

A path u in tree T is a list of integers addressing a node T/u in the tree. If u is the empty

list, T/u is the top node of T . If u = q; v with q 6 p, then T/u is Tq/v.

Two trees T and T ′ are different if and only if there exists a common path u such

that T/u 6= T ′/u. In this case we define the distance d(T ,T ′) between T and T ′ to

be 2−h, where h is the minimum of the lengths of such differentiating paths, otherwise

d(T ,T ′) = 0. The set of (finite and infinite) Böhm trees equipped with distance d has the

structure of a complete metric space.

2.2. Constructing the Böhm forest

Now every X-indexed family of Böhm tree T is mapped into an X-indexed family E(T )

as follows:

— If X has no defining equation in E, then E(T )X =⊥.

— If it has the defining equation:

X u1 u2 · · · un := uk(M1, . . . ,Mp)

with Mj = Xj(v1, . . . , vl), then

E(T )X = λ u1 u2 · · · un · uk(T1, . . . , Tp)

with Tj = (TXj v1, . . . , vl) as defined in the previous section.

This defines a contracting map T 7→ E(T ), in the sense that if for all trees T ,T ′, we

have d(E(T ),E(T ′)) 6 1
2
d(T ,T ′). We leave this easy proof to the reader. By the Banach

fixpoint theorem, it has a unique fixpoint associating a Böhm tree TX to every combinator

X in X. These trees are all total when E is total.

Note that when X has no defining equation in E we could alternatively define E(T )X =

X. We would get a slight generalisation of Böhm trees with (parameterized) constructors,

whose leaves are of the form X(v1, . . . , vl) for X ∈ X with no definition in E.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


G. Huet 674

2.3. Alternative formulations

Many variations on the formulation of systems of recursive combinators are possible.

What is essential is that our combinator definitions are guarded, in the sense that the

head variable is explicit in the definition of each combinator, which guarantees that every

defined combinator is solvable, in the sense of having a head normal form. It is the guard

indeed that guarantees that the defining map is contracting.

Our definition is minimal in the sense that we define the Böhm tree one layer at a

time: each immediate subterm Mj starts with a combinator symbol. We may relax this

condition by simply requiring that a right-hand side is a head expression u(M1, . . . ,Mp)

where the Mj ’s are either formed with a combinator applied to parameters (as above), or

are themselves head expression.

In contrast, another variation is to be more restrictive, by demanding that each Mj is a

linear pattern X(v1, . . . , vm) where the vk ’s are distinct variables. Obviously, both variations

have the same expressive power, but differ in the number of combinators needed to define

a given Böhm tree.

2.4. Operational semantics

Systems of recursive combinators admit a straightforward operational semantics, by

viewing each definition as a rewrite rule. This is similar to combinatory reduction –

the recursive nature of our systems does not introduce any extra difficulty. In terms of

λ-calculus, as usual, one gets a notion of weak reduction, i.e., a reduction that does not

occur below λs. In order to get a more interesting equational theory, one has to allow

η-expansion, leading to a notion of extensional equality.

3. Extensional equality

In the following we will assume that we are given alphabets X and U as well as a regular

Böhm tree presentation E. We have seen that Böhm trees can be represented as linear

patterns of the form X(v1, . . . , vm) with X ∈ X and the vj ’s distinct variables in U. Let us

now relax the linearity requirement.

Definition. A pattern is any expression X(v1, . . . , vm) with X ∈ X and vj ∈ U for 1 6 j 6 m.

The pattern is said to be saturated if m > arE(X).

A head expression is an expression u(M1, . . . ,Mp) where u ∈ U and the Mj ’s are simple

expressions for 1 6 j 6 p, where a simple expression is either a pattern or a head

expression.

We define the notion of shape of a simple expression as follows. The shape of the head

expression u(M1, . . . ,Mp) is (−p, u). The shape of pattern X(v1, . . . , vm), with X defined by

the equation

E : X u1 u2 · · · un := uk(M1, . . . ,Mp)

is defined as (n− p− m, v) where v is vk if k 6 m, and wj if k = m+ j, where w1, w2, . . . is

some denumerable set disjoint from U. Finally, the shape of pattern X(v1, . . . , vm), with X

undefined, is defined as some default value ⊥.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


Regular Böhm trees 675

We say that two simple expressions are similar when they have the same shape, and

dissimilar otherwise.

We now define extensional equality as the largest bisimulation consistent with E that

separates dissimilar expressions. More precisely, we mutually define an inductive relation

≡E and a co-inductive relation ∼E between simple expressions by the following closure

conditions:

Consistency : Mi ≡E Ni (1 6 i 6 p) =⇒ u(M1, . . . ,Mp) ∼E u(N1, . . . , Np)

Inclusion : M ∼E N =⇒M ≡E N
where M and N are patterns.

Extensionality : M(x) ≡E N(x) =⇒M ≡E N.
Here M and N are unsaturated patterns in which parameter x does not occur.

Definition : M := N ∈ E =⇒M ≡E N
Renaming : M ≡E N =⇒ σ(M) ≡E σ(N)

where M and N are patterns and σ is a parameter substitution (not necessarily one–one).

The renaming rule could be dispensed with if we imposed the linearity of patterns

(at the cost of increasing the number of combinators); it would then be reduced to

α-conversion, which may be made implicit given a proper canonical representation of

parameter variables.

If E is not total, and we want to consider undefined combinators as representing the

undefined tree rather than free constructors, we could single out one such undefined

combinator, say ⊥, and add the following extra closure conditions:

Undefined : X ≡E ⊥
where X ∈ X has no defining clause in E,

Saturation : ⊥(x) ≡E ⊥.
Finally, we take the closure conditions for ≡E to be an equivalence relation (Reflexivity,

Symmetry, Transitivity), and a congruence with respect to application:

Congruence : M ≡E N =⇒M(x) ≡E N(x)

where M and N are patterns and x a parameter.

This completes the mutual definition of relations ∼E and ≡E.

Lemma 3.1. M ≡E N only if M and N are two similar expressions.

Proof. Similarity is an equivalence relation. It is straightforward to check that it is

preserved by the Extensionality, Renaming, and Congruence rules. By definition, the Def-

inition, Undefined and Saturation rules introduce only similar expressions as equivalent.

Finally, since Consistency only relates similar expressions, and is the only introduction

rule for ∼E, similarity is also enforced by the Inclusion rule. Assume that M ≡E N. Then,

by induction on its proof, we get that M and N are similar. Inversely, M ∼E N =⇒ False

for any two dissimilar simple expressions.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


G. Huet 676

Remarks. Note that ∼E is not defined inductively. It is, rather, a co-inductive definition

in the sense of Pitts (1994). It has the flavour of defining truth as consistency, in the spirit

of inductionless induction (Huet and Hullot 1982). For instance, with

EY = {Y f := f(Y (f)); Z f := f(Z ′(f)); Z ′ f := f(Z(f))},
we may prove by co-induction that Y ∼EY Z .

On the other hand, ≡E is an inductively defined equivalence relation. ∼E and ≡E are

mutually defined in the same recursion. Such mixtures of inductively and co-inductively

defined objects are explained in Giménez (1995); a corresponding proof package, allowing

such definitions and the mechanical checking of formal proofs about such objects, is

available in the Coq proof assistant (Giménez 1996).

From the point of view of semantics, M ∼E N corresponds to equality in D∞ of the

Böhm trees defined by M and N in E (Wadsworth 1976).

Many equivalent variations are possible. For instance, we do not need the closure by

reflexivity, which may be proved to be an admissible rule. Similarly, Symmetry may be

dispensed with if we add the symmetric rules of Definition and Undefined. On the other

hand, notice that we cannot dispense with transitivity, for instance, we need it to chain

applications of Extensionality. And thus we are obliged to have an interplay between

an inductive and a co-inductive relation (the co-inductive closure by transitivity being

trivial).

If, on the other hand, we were interested in intensional equality (i.e. equality of the

underlying Böhm trees), we would need to restrict the Extensionality rule to unsaturated

patterns, in the spirit of Section 9-C of Hindley and Seldin (1986).

4. Decidability of regular systems

The main result of this paper is to show that extensional equality is decidable for regular

systems.

Theorem 4.1. The question as to whether M ≡E N for any regular total E and simple

expressions M and N is decidable.

We shall now prove this theorem, by exhibiting a completion algorithm that completes a

finite set of equations into another one that either equates two dissimilar head expressions,

or is closed by the closure conditions above. The theorem follows from its termination

proof. This algorithm is inspired by a similar one in recursive program schemas (Courcelle

et al. 1974).

4.1. The algorithm

Each recursion combinator Xi is either undefined or it has a unique recursion equation Ei
defining it in a given regular system:

Ei : Xi u1 u2 · · · uni := uki(M1, . . . ,Mpi).

We decide sets of equations of the form E : M = N, where M and N are simple

expressions.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


Regular Böhm trees 677

The algorithm manages two sets CON and HY P of such formulas. Initially, the set of

conjectures is put in HY P , and CON is initialised as empty. The algorithm terminates

with YES when HY P is empty.

Here is one step of the algorithm when HY P is non-empty: let HY P = REST ∪ {E},
with E of the form above. If E is already in CON modulo equivalence and renaming, we

just iterate with HY P := REST and CON unchanged. Otherwise, let us unfold M and

N to head normal form, when we do not already have them in head variable form, by

using the defining equation for their governing combinator. This may need replacing M

by (M z1 · · · zk) and N by (N z1 · · · zk), where z1, . . . , zk are new variables not already

occurring in M or N, in order that the X’s have enough arguments to match their arity.

This is the analogue of η expansion. We thus get two applicative forms x(M1, . . . ,Ml)

and y(N1, . . . , Nm). Now, if either x 6= y or l 6= m, the algorithm stops with answer NO.

Otherwise, we iterate, with HY P := REST ∪ {E1, . . . , El} where Eq : Mq = Nq and

CON := CON ∪ {E}.
When the governing combinator of M is undefined, if the governing combinator of N

is also undefined, we iterate with HY P := REST and CON unchanged, otherwise we

stop with answer NO.

4.2. The proof

Note that, without loss of generality, we may assume that HY P and CON only contain

equations between patterns: an initial query containing a head expression may be reduced

to pattern queries by one initial pass; thereafter head expressions occur only in temporary

conjectures in the processing step.

Lemma 4.2. The algorithm always terminates.

Proof. There is a finite number of candidates for CON, since all patterns X(v1, . . . , vm)

stored in CON (except possibly the ones given in the initial query) have a number of

parameter arguments m bound by the maximum of such arguments in all X-patterns used

in the right-hand sides of the system E.

Lemma 4.3. When the algorithm stops with YES, M ≡E N for every initial conjecture

M = N.

Proof. Every initial conjecture ends up in CON ultimately. Let us consider the set

of pairs CON as a relation ρ between simple expressions, and let σ be the closure of ρ

by the Extensionality, Definition, Renaming, Equivalence and Congruence rules (plus the

Undefined and Saturation rules if we allow undefined combinators). By construction of

the algorithm, the Consistency rule holds when we replace ≡E by σ and ∼E by ρ. Thus, by

bisimulation/coinduction, we have that ρ ⊆∼E and σ ⊆≡E. Thus, in particular, M ≡E N
for every initial conjecture M = N.

Lemma 4.4. When the algorithm stops with NO, the set of initial conjectures is inconsistent.

Proof. The steps of the algorithm correspond to inversion schemas of the various

closure conditions. Thus all the formulas placed in CON are logical consequences of the

initial conjectures. When the algorithm stops with NO, one such formula equates two

dissimilar expressions, from which a contradiction may be derived by Lemma 3.1.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


G. Huet 678

Equivalently, the algorithm may be interpreted in this case as a successful search for

a separating path (in the sense of Section 4.4 below) in the Böhm trees denoted by two

members of one initial equation.

Note. We only provide informal proofs in this paper. It is hoped that fully formal proofs,

mechanically verified by the Coq proof assistant, will be available soon.

4.3. Example: I=J

Here is a simple, but generic, example of the procedure.

Let E = {J x y := (x (J y)); I x := x}. We show that I ≡E J .

Initially, CON0 = {}, HY P0 = {I = J}.
We select E0 : I = J . We introduce new variables x and y, η-expand to (I x y) = (J x y),

and substitute I and J by their definitions, obtaining (x y) = (x (J y)). Since shapes fit, we

generate the subgoal y = (J y) (Note that we get rid of the useless x, this is important.)

Thus we get: CON1 = {I = J}, HY P1 = {y = (J y)}.
We now select E1 : y = (J y). We η-expand to (y z) = (J y z), substitute J , and

get (y z) = (y (J z)). Since shapes fit, we generate the subgoal z = (J z), and get

CON2 = {I = J, y = (J y)}, HY P2 = {z = (J z)}.
We now select E2 : z = (J z). But this equation is equivalent by renaming to one in

CON2, and thus we stop with CON3 = {I = J, y = (J y)}, HY P3 = {}. Thus we have

shown that I ≡E J , that is, that λx · x = (Y λj λx λy (x (j y))) in D∞.

As an exercise for the reader, we suggest trying the algorithm for proving Y ∼EY Z in

the presentation EY above.

4.4. Distances, separability, apartness

We recognize as equal the combinators defining Böhm trees that are in fact quite different

as trees: I has a finite Böhm tree, whereas J ’s is infinite. Moreover, note that these Böhm

trees do not correspond to equivalent λ-terms in the sense of βη-conversion; intuitively

an infinite number of η expansions is necessary to transform I into J . However, these

trees are not separable in the sense of Böhm’s theorem.

The equality between Böhm trees in question here corresponds to trees being hereditarily

of the same shape, where the shape of λ u1 u2 · · · un · u(T1, . . . , Tp) is (n − p, u), and

‘hereditarily’ means recursing in the Ti’s, after possible η-expansion to the same prefix.

Equivalently, we may define equality as non-separability, with two trees being separable

if their distance is greater than 0, where now the distance between two Böhm trees is

2−h where h is the length of a minimum separating path for the two trees in the sense

of Huet (1993). Intuitively, a separating path is a virtual path through η-expansions of

the two trees, where the corresponding subterms are of different shapes. Böhm’s theorem,

in the slightly different context of λ-calculus, shows that a separating path permits us

to construct a uniform context that separates the two original λ-terms, in the sense of

β-reducing to, respectively, λ x y · x and λ x y · y.

The idea of defining equality as non-separability has a long history. This notion is

already implicit in Leibniz’ equality. More recently, the idea was systematically applied

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


Regular Böhm trees 679

to von Plato’s treatment of constructive geometry (von Plato 1995). This conforms to the

view of mathematical modelling of reality up to the precision of measuring instruments.

It is thus quite natural to define separability with some measure d:

X 6= Y =def dXY > 0.

Note that if d is an ultrametric, that is, if dXX = 0 and dXZ > max{dXY , dY Z}, then

separability is an apartness relation, that is, ¬X 6= X and X 6= Z ⇒ ∀Y X 6= Y ∨ Y 6= Z

and its opposite (that is, equality) is, by construction, an equivalence relation. This

gives a general methodology for constructive mathematical modelling, from measure to

separability to equality.

5. Applications and further investigations

The formalism of guarded combinators is extremely simple, but powerful, since it combines

in one notion combinatory logic and recursion (as opposed to indirectly coding up

recursion by a fixpoint combinator). Furthermore, it accommodates (mutually recursive)

definitions. It has the flavour of machine code, with combinators playing the role of

program addresses and parameterization the role of register transfer. The notion of guard

gives to its execution a dataflow flavour: at each combinator invocation, when enough

arguments are provided for it to fire, one grain of information is computed.

This formalism is thus a good candidate for a sort of basic programmming language for

communicating processes: overall computation may be infinite, but no process may loop

without producing information, in sharp contrast to pure λ-calculus, or non-guarded re-

cursion. For instance, it would be interesting to investigate closely in what way it relates to

the applicative programming languages proposed for describing reactive processes. Lustre

is a particularly good candidate. Recently, Caspi and Pouzet have shown that a functional

extension to Lustre could be implemented in a kernel of recursively defined primitives for

stream manipulations (Caspi and Pouzet 1995). This kernel can be represented in a rather

direct way as a set of regular combinators.

Many further investigations are needed to make such an application practical. For

instance, there are several alternative ways of representing data structures or more

complex control structures. An example is given in Huet and Laulhère (1997), which

considers the encoding of finite-state transducers as regular Böhm trees.

The algorithmic aspects of the decision procedure remain to be investigated. If no

constraint is put on the way combinators mutually recurse, in the worst case the number

of parameters of such calls may be of the same order as the size of the system, in which

case the algorithm may have exponential behaviour. If mutual recursion is checked with

further devices, such as local sections with hierarchical scoping we may hope to improve

the bounds and obtain an algorithm that will scale up to realistic sizes. Sharing techniques

from BDD technology may also prove useful in this context.

Finally, application of this formalism to typed systems, in particular to proof assistants,

where Böhm trees may represent sequent calculus partial proofs, in the manner of

Herbelin (1995), remains to be investigated. In particular, the Extensionality rule needs to

be constrained (for instance with a notion of η-long normal form).

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643


G. Huet 680

Acknowlegment

We thank Martin Abadi, Gilles Dowek and Vaughan Pratt for their judicious remarks.

References

Barendregt, H. (1980) The Lambda-Calculus: Its Syntax and Semantics, North-Holland.

Böhm, C. (1968) Alcune proprietà delle forme β − η−normali nel λ − K−calcolo. Pubblicazioni

dell’Istituto per le Applicazioni del Calcolo 696, Roma.

Böhm, C., Dezani-Ciancaglini, M. Peretti, P. and Ronchi della Rocca, S. (1979) A discrimination

algorithm inside λ− β-Calculus. Theoretical Computer Science 8 271–291.

Böhm, C., Piperno, A. and Tronci, E. (1989) Solving equations in Lambda-Calculus. In: Ferro,

Bonotto, Valentini and Zanardo (eds) Logic Colloquium’88, North-Holland.

Caspi, P. and Pouzet, M. (1995) A functional extension to Lustre. International Symposium on

Languages for Intentional Programming, Sydney.

Coppo, M., Dezani-Ciancaglini, M. and Ronchi della Rocca, S. (1978) (Semi-)separability of finite

sets of terms in Scott’s D∞ models of the λ-calculus. In: Ausiello, G. and Böhm, C. (eds) Proc.

5th ICALP. Springer-Verlag Lecture Notes in Computer Science 62 142–164.

Coquand, C. and Coquand, T. (1996) On the definition of reduction for infinite terms. C. R. Acad.

Sci. Paris 323 Série I 553–558.

Courcelle, B., Kahn, G. and Vuillemin, J. (1974) Algorithmes d’équivalence et de réduction à des

expressions minimales dans une classe d’équations récursives simples. Proceedings ICALP 74,

Springer-Verlag.

David, R. and Nour, K. (1996) Une preuve syntaxique de l’équivalence opérationnelle de deux

λ-termes. (Private communication.)

Giménez, E. (1995) Codifying guarded definitions with recursive schemes. Proceedings of

the 1994 Workshop on Types for Proofs and Programs. Springer-Verlag Lecture Notes

in Computer Science 996 39–59. (Extended version of the paper available by ftp at

lip.ens-lyon.fr:/pub/Rapports/RR/RR95/RR95-07.ps.Z.)

Giménez, E. (1996) Co-inductive types in Coq. Documentation included in the release of Coq V6.1.

(Available by ftp at ftp.inria.fr:INRIA/Projects/coq/coq/V6.1.beta.)

Herbelin, H. (1995) Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul

de λ-termes et comme calcul de stratégies gagnantes, Thèse, U. Paris 7.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinators and λ-Calculus, Cambridge

University Press.

Huet, G. (1993) An analysis of Böhm’s Theorem. In: Ronchi della Rocha, S., Dezani-Ciancaglini, M.

and Zilli, M.V. (eds.) To C. Böhm: Essays on Lambda-Calculus and Functional Programming. (Also

Theoretical Computer Science 121 145–167.)

Huet, G. and Hullot, J. M. (1982) Proofs by Induction in Equational Theories With Constructors.

JCSS 25,2 239–266.

Huet, G. and Laulhère, H. (1997) Finite-state Transducers as Regular Böhm Trees. Proceedings of

TACS’97, Sendai, Japan.

Lévy, J. J. (1993) Böhm trees and Extensionality. (Private communication.)

Pitts, A. (1994) A Co-induction Principle for Recursively Defined Domains. Theoretical Computer

Science 124 195–219.

von Plato., J. (1995) The axioms of constructive geometry. Annals of Pure and Applied Logic 76

169–200.

Wadsworth, C. (1976) The relation between computational and denotational properties for Scott’s

D∞-models of the lambda calculus. SIAM J. Comput. 5 488–521.

https://doi.org/10.1017/S0960129598002643 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002643

