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Abstract. We show that a sectional-hyperbolic attracting set for a Hölder-C1 vector field
admits finitely many physical/SRB measures whose ergodic basins cover Lebesgue almost
all points of the basin of topological attraction. In addition, these physical measures depend
continuously on the flow in the C1 topology, that is, sectional-hyperbolic attracting sets
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neighborhood of this class of attracting sets is eventually expanded to contain a ball whose
inner radius is uniformly bounded away from zero.
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Sectional-hyperbolic attracting sets and statistical stability 2707

1. Introduction and statements of the results
The term statistical properties of a dynamical system refers to the statistical behavior
of typical trajectories of the system. It is well known that this relates to the properties
of the evolution of measures by the dynamics. Statistical properties are often a better
object of study than pointwise behavior. In fact, the future behavior of initial data can
be unpredictable, but statistical properties are often regular and their description simpler.

Arguably one of the most influential concepts in the theory of dynamical systems
has been the notion of physical (or Sinai–Ruelle–Bowen, SRB) measure. We say that an
invariant probability measure µ for a flow φt is physical if the set

B(µ) =

{
z ∈ M : lim

t→∞

1

t

∫ t

0
ψ(φs(z)) ds =

∫
ψ dµ, ∀ψ ∈ C0(M , R)

}

has non-zero volume, with respect to any volume form on the ambient compact mani-
fold M. The set B(µ) is by definition the basin of µ. It is assumed that time averages of
these orbits are observable if the flow models a physical phenomenon.

The study of the existence of these special measures and their statistical properties for
uniformly hyperbolic diffeomorphisms and flows has a long and rich history, starting with
the works of Sinai, Ruelle and Bowen [17, 18, 47, 48, 52]. Some classes of systems that do
not satisfy all the basic assumptions of uniform hyperbolicity have much more recently
been shown to possess physical measures: sectional hyperbolicity is a generalization
of Smale’s notion of Axiom A [53] that allows for the inclusion of equilibria (also
known as singularities or steady states) and incorporates the classical Lorenz attractor
[29] as well as the geometric Lorenz attractors of [1, 24]. For three-dimensional flows,
sectional-hyperbolic attractors are precisely those that are robustly transitive, and they
reduce to Axiom A attractors when there are no equilibria [38].

For arbitrary dimensions this notion was established first in [32] and the first concrete
example provided by [15]. Sectional-hyperbolic attractors are those robustly transitive
attracting sets for which the flow is a star flow in the trapping region, that is, there are
no bifurcations of singularities or periodic orbits for all nearby dynamics (also known as
‘strongly homogeneous flow’). Again these sets reduce to Axiom A attractors if there are
no equilibria.

Sectional-hyperbolic attractors in 3-manifolds were shown to have a unique physical
measure in [7, 8] and sectional-hyperbolic attracting sets have finitely many ergodic
physical measures whose basins cover a full volume subset of a neighborhood of the
attracting set; see [9, 51]. The study of statistical properties of these measures is well
developed; among recent works are [3–6, 10, 12, 23, 25, 30, 50].

The existence of a unique physical measure for sectional-hyperbolic attractors for flows
in manifolds with any finite dimension was recently shown in [28] using the thermo-
dynamical formalism and assuming certain properties of a stable foliation in a neighbor-
hood of the attracting set, common to the above mentioned works in the three-dimensional
setting; see also [33] for a different proof using stochastic stability of such attractors.

Various issues regarding the existence and smoothness of the stable foliation in a
neighborhood of sectional-hyperbolic attracting sets are clarified in [4]; a topological
foliation always exists, and an analytic proof of smoothness of the foliation for the
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classical Lorenz attractor (and nearby attractors) is given in [4, 6]. In [5] sufficient
conditions are provided for these foliations to have absolutely continuous holonomy maps,
a crucial technical feature to obtain many statistical properties in dynamics. For higher
differentiability properties of these foliations for geometric Lorenz attractors, see [54].

Here we pave the way to further study of statistical properties of sectional-hyperbolic
attracting sets. We solve the basin problem for sectional-hyperbolic attracting sets, that
is, we show that an open dense and full measure subset of points in a neighborhood
of these sets is exponentially asymptotic to some orbit inside the set. More precisely,
given a neighborhood U of an invariant sectional-hyperbolic attracting set 3 of a smooth
flow φt , there exist K , λ > 0 and an open and dense subset W ⊂ U with full Lebesgue
measure (Leb(U\W) = 0) such that for any given y ∈ W there exists x ∈ 3 satisfying
d(φty, φtx) ≤ Ke−λt for all t > 0.

Moreover, coupled with recent results from [20] on weak limits of time averages for
almost all orbits in partially hyperbolic sets with applications to sectional-hyperbolic
attracting sets, we complement [28] proving the existence of finitely many ergodic physical
measures for sectional-hyperbolic attracting sets in any dimension. In addition, the basins
of these measures cover a full Lebesgue measure subset of a neighborhood of the
sectional-hyperbolic attracting set.

With this in hand, we use recent results from [40] on robust entropy expansiveness for
sectional-hyperbolic attracting sets to prove that the physical measures depend continu-
ously on the flow, showing that asymptotic time averages for Lebesgue almost all points in a
neighborhood of such attracting sets are robust under small perturbations of the dynamics.
This is known as statistical stability and our proof provides a far-reaching extension of the
results already obtained for the 3-flows having geometric Lorenz attractors in [2] and the
classical Lorenz attractor in [11].

1.1. Preliminary definitions. Let M be a compact Riemannian manifold with induced
distance d and volume form Leb. Let X1(M) be the set of C1 vector fields on M and
denote by φGt the flow generated by G ∈ X1(M). We say that G is Hölder-C1 if on any
local chart the derivative DG is α-Hölder for some fixed 0 < α < 1. We write X1+(M)

for the vector space of all Hölder-C1 vector fields over M.
Given a compact invariant set3 forG ∈ X1(M), we say that3 is isolated if there exists

an open set U ⊃ 3 such that 3 =
⋂
t∈R φt (U). If U can be chosen so that

Closure (ϕt (U)) ⊂ U for all t > 0,

then we say that 3 is an attracting set.
A compact invariant set 3 is partially hyperbolic if the tangent bundle over 3 can be

written as a continuous Dφt -invariant sum T3M = Es ⊕ Ecu, where ds = dim Esx ≥ 1
and dcu = dim Ecux ≥ 2 for x ∈ 3, and there exist constants C > 0, λ ∈ (0, 1) such that
for all x ∈ 3, t ≥ 0, we have:

• uniform contraction along Es (‖Dφt |Esx‖ ≤ Cλt ); and
• domination of the splitting (‖Dφt |Esx‖ · ‖Dφ−t |E

cu
φtx

‖ ≤ Cλt ).

We say that Es is the stable bundle and Ecu the center-unstable bundle. A partially
hyperbolic attracting set is a partially hyperbolic set that is also an attracting set.
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We say that the center-unstable bundle Ecu is sectional expanding if for every
two-dimensional subspace Px ⊂ Ecux ,

|det(Dφt (x) | Px)| ≥ Keθt for all x ∈ 3, t ≥ 0. (1.1)

If σ ∈ M and G(σ) = 0, then σ is called an equilibrium or singularity in what follows,
and we denote by Sing(G) the family of all such points. An invariant set is non-trivial if it
is neither a periodic orbit nor an equilibrium.

We say that a compact invariant set 3 is a sectional-hyperbolic set if 3 is partially
hyperbolic with sectional expanding center-unstable bundle and all equilibria in 3

are hyperbolic. A sectional-hyperbolic set which is also an attracting set is called a
sectional-hyperbolic attracting set.

A singular-hyperbolic set is a compact invariant set 3 which is partially hyperbolic
with volume expanding center-unstable subbundle and all equilibria within the set are
hyperbolic. A sectional-hyperbolic set is singular-hyperbolic and both notions coincide
if, and only if, dcu = 2.

Remark 1.1

(1) A sectional-hyperbolic set with no equilibria is necessarily a hyperbolic set, that
is, the center-unstable subbundle admits a splitting Ecux = R{G(x)} ⊕ Eux for all
x ∈ 3 where Eux is uniformly contracting under the time reversed flow; see, for
example, [7].

(2) A sectional-hyperbolic attracting set cannot contain isolated periodic orbits. For
otherwise such orbit must be a periodic sink, contradicting volume expansion.

We recall that a subset3 ⊂ M is transitive if it has a full dense orbit, that is, there exists
x ∈ 3 such that Closure{φtx : t ≥ 0} = 3 = Closure{φtx : t ≤ 0}.

A non-trivial transitive sectional-hyperbolic attracting set is a sectional-hyperbolic
attractor. For more details on these notions, see, for example, [7] and references therein.

1.2. Statement of the results. The definition of singular hyperbolicity ensures that
every invariant probability measure supported in a singular-hyperbolic set is a hyperbolic
measure. Moreover, if the vector field is smooth (at least Hölder-C1), from the proof
of [8, Theorem B, §4] or explicitly from [51, Theorem 1.5] we get that every singular-
hyperbolic attracting set admits finitely many µ1, . . . , µk ergodic physical/SRB invari-
ant measures; and the union of the ergodic basins of these measures covers a full
Lebesgue measure subset of the topological basin of attraction of 3 (i.e. Leb (U\

⋃k
i=1

B(µi)) = 0).
We show here that the same result is true in higher dimensions for sectional-hyperbolic

attracting sets.

THEOREM A. Every sectional-hyperbolic attracting set for a Hölder-C1 vector field
admits finitely many µ1, . . . , µk ergodic physical/SRB invariant probability measures.
Moreover, the union of the ergodic basins of these measures covers a full Lebesgue measure
subset of the topological basin of attraction of 3.
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In [28] existence and uniqueness of the physical measure were obtained for
sectional-hyperbolic attractors of C2 vector fields. We extend the argument from [28],
avoiding the use of a dense orbit, taking advantage of the recent results from [20] which
hold in the C1+ topology.

By robustness of partial hyperbolicity and sectional expansion, given a sectional-
hyperbolic attracting set 3G(U) =

⋂
t>0 φt (U) with trapping region U, there exists

a neighborhood U ⊂ X1+(M) of G such that U is a trapping region and 3Y (U) is
sectional-hyperbolic for all Y ∈ U . It is then natural to study the stability of the physical
measures under small perturbation of the vector field G.

THEOREM B. Let G ∈ X1+(M) be a vector field with a trapping region U whose attract-
ing set 3G(U) =

⋂
t>0 φt (U) is sectional-hyperbolic. Then there exists a neighborhood

U ⊂ X1+(M) of G such that, for each choice of Gn ∈ U and µn physical measures for
Gn supported in U such that ‖Gn −G‖C1 → 0 when n ր ∞, each weak∗ accumulation
point µ of (µn)n≥1 is a linear convex combination of the ergodic physical measures of3G
provided in Theorem A:

µ ∈ 8(G) =

{ k∑

i=1

tiµi : ti ≥ 0 and
k∑

i=1

ti = 1

}
.

In other words, the convex hull 8(G) of the ergodic physical measures of a
sectional-hyperbolic attracting set depends continuously on the vector field, with respect
to the C1 topology of vector fields and weak∗ topology of probability measures on a
manifold.

Statistical stability means that time averages ψ̃G = limt→∞(1/t)
∫ t

0 ψ ◦ φGs ds of con-
tinuous observables ϕ : U → R, in a neighborhood of the sectional-hyperbolic attracting
sets, are well defined Lebesgue almost everywhere in U, depend continuously on the vector
field G generating the flow φGt , so that we can ensure that |ψ̃G − ψ̃G

′
| is small as long has

‖G−G′‖C1 is small enough.
Theorem B improves both [2] and [11] since, although not dealing with the density of

the invariant probability of the quotient map along stable leaves on a global cross-section
of the geometric Lorenz attractor, its statement and proof apply to a much larger family of
sectional-hyperbolic attracting sets.

In particular, the attracting sets appearing as small perturbations of singular-hyperbolic
attractors as in Morales [36], which must have a singular component, are statistical stable
whatever the number of singularities involved.

We note that there are many examples of singular-hyperbolic attracting sets,
non-transitive and containing non-Lorenz-like singularities; see Figure 1 for an example
obtained by conveniently modifying the geometric Lorenz construction, and many others
in [37]. Statistical stability follows for all these examples.

Moreover, Theorem B applies to the multidimensional Lorenz attractor described in
[15] without further ado.

In addition, the open families of Lorenz-like attractors obtained after bifurcating saddle
connections by many authors [21, 27, 34, 35, 39, 44–46, 49] are automatically endowed
with statistical stability after Theorem B, that is, in the (generic) unfolding of double

https://doi.org/10.1017/etds.2020.91 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.91


Sectional-hyperbolic attracting sets and statistical stability 2711

FIGURE 1. Example of a singular-hyperbolic attracting set, non-transitive (in fact, it is the union of two transitive
sets indicated by H1, H2 above) and containing non-Lorenz like singularities.

(resonant) homoclinic cycle or saddle connections, the physical measure for the ensuing
Lorenz-like attractors depends continuously on the parameters.

We mention that in the preprint [33] the authors prove stochastic stability for C2

transitive sectional-hyperbolic attracting sets which, in particular, provides an alternative
proof of the existence of a unique SRB measure for C2 sectional-hyperbolic attractors.
This is a different kind of stability which is in general unrelated to statistical stability.
Whereas statistical stability compares the SRB measures of close vector fields, stochastic
stability considers random perturbations of a given vector field, usually though a diffusion,
and checks whether the stationary measure for the randomly perturbed vector field
converges to some special invariant measure for the original unperturbed vector field when
the size of the diffusion vanishes. The results strongly depend on the type of random
perturbation chosen; see, for example, [14, Appendix D].

The proofs of Theorems A and B use a construction of adapted cross-sections, gener-
alizing that presented in the 3-flow setting in [8] and in the codimension 2 setting in [5],
which has been used to prove many delicate statistical properties of these flows; a similar
construction (but built in a different way) of higher-dimensional adapted cross-sections was
recently proposed in [19]. This enables us to solve the basin problem as follows; see, for
example, [13] for a similar but more delicate instance in a highly non-uniformly hyperbolic
setting.

For a periodic point p of G we write O(p) for its compact orbit {φtp : t ∈ R} = {φtp :
t ∈ [0, Tp]} where the minimal Tp > 0 satisfying this is the period of any point q ∈ O(p).
Moreover, we write

W s
x = {y ∈ M : d(φty, φtx) −−−−→

t→+∞
0}
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for the stable manifold of x ∈ M , and for a given ε0 > 0 we write

Wu
x (ε0) = {y ∈ M : d(φ−ty, φ−tx) ≤ ε0, ∀t ≥ 0}

for the local unstable manifold of x of size ε0. There are analogous and dual notions of
local stable manifolds and unstable manifolds.

We say that a periodic point p is hyperbolic if DφTp (p) : TpM 	 admits three
DφTp -invariant subspaces forming a splitting TpM = Esp ⊕ 〈G〉 ⊕ Eup, where 〈G〉 =

R ·G is an eigenspace with eigenvalue 1, Esp is contracted and Eup expanded. The
(un)stable manifold theorem ensures that Wu

q (ε0) is an embedded manifold with
TqW

u
q (ε0) = Euq and W s

q is an immersed submanifold with TqW
s
q = Esq , for each

q ∈ O(p). We write Wu
O(pi )

(ε0) for the union
⋃

{Wu
q (ε0) : q ∈ O(p)} and analogously

W s
O(pi )

=
⋃

{W s
q (ε0) : q ∈ O(p)}. For more details on these notions from hyperbolic

dynamics, see, for example, [41].

THEOREM C. LetG ∈ X1(M) be a vector field with a trapping region U whose attracting
set 3 =

⋂
t>0 φt (U) is sectional-hyperbolic. Then there are ε0 > 0 and finitely many

(hyperbolic) periodic points p1, . . . , pl of 3 such that

W
cs = {W s

x : x ∈ Wu
O(pi )

(ε0); i = 1, . . . , l}

is open and dense in U = {y ∈ M : d(φty, 3) −−−−→
t→+∞

0} ⊃ U . In particular,
⋃
i W

s
O(pi )

is dense in U .
In addition, if G ∈ X1+(M), then Wcs contains the basin of any physical probability

measure supported in 3 and has full volume: Leb(U\Wcs) = 0.

Recently [56] obtained a similar structure for C2 sectional-hyperbolic attractors,
showing that they are homoclinic classes.

We conjecture that in this setting Wsc is the entire basin, as follows.

Conjecture 1. For any sectional-hyperbolic attracting set 3 the topological basin of
attraction coincides with the family of stable manifolds through the points of local unstable
leaves of finitely many periodic orbits, that is, U = Wcs .

The following example shows that partially hyperbolic attracting sets which are not
sectional-hyperbolic do not necessarily satisfy the conclusions of Theorem C.

Example 1. (Bowen’s example flow; see [55] for the not very clear reason for the
name) This is a folklore example showing that Birkhoff averages need not exist almost
everywhere. Indeed, in the system pictured in Figure 2 time averages only exist for the
sources s3, s4 and for the set of separatrixes and saddle equilibria 3 = W1 ∪W2 ∪W3 ∪

W4 ∪ {s1, s2}, which is an attracting set.
The orbit under this flow φt of every point z ∈ S1 × [−1, 1] = M not in 3 ∪ {s3, s4}

accumulates on either side of the separatrixes, as suggested in the figure, if we impose the
condition λ−

1 λ
−
2 > λ+

1 λ
+
2 on the eigenvalues of the saddle fixed points s1 and s2; for more

specifics on this, see, for example, [55] and references therein.
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FIGURE 2. A sketch of Bowen’s example flow.

Due to the very long sojourn times around s1 and s2, future time averages of continuous
functions ϕ : M → R with ϕ(s1) 6= ϕ(s2) do not exist; see, for example, [26]. However,
time averages do exist for points in 3 ∪ {s3, s4}.

Hence, no point in M\(3 ∪ {s3, s4}) belongs to the stable manifold of any point of 3.
That is, we have that W s(3) = M\(3 ∪ {s3, s4}) but the union of the stable manifolds of
the points of 3 is simply 3.

To obtain an example with Lorenz-like singularities, just multiply this system by the
north–south flow on S1 so that the derivative of the flow at the sink in the south pole S has
an eigenvalue λ < 0 so that λ+

i + λ > 0, i = 1, 2; and then take the attracting set3× {S}

in M × S1.

1.3. Organization of the text. In §2 we present precise statements of the main properties
of sectional-hyperbolic attracting sets together with a precise description of the construc-
tion of a family of adapted cross-sections 4 and a corresponding piecewise smooth and
uniformly hyperbolic global Poincaré return map (with singularities) on a subset 4′′ of 4,
which might be of independent interest for further work on statistical properties of these
systems.

In §3 we consider the basin of a C1 sectional-hyperbolic attracting set 3 proving the
topological part of the statement of Theorem C as a consequence of showing that every
center-unstable disk contains subdisks which are sent, by arbitrarily large iterates of the
Poincaré map, to center-unstable disks with inner radius uniformly bounded away from
zero, accumulating the local unstable manifold of a hyperbolic periodic orbit, from a finite
subset of such orbits in the attracting set. In §4.1 we obtain as a consequence of the previous
result that every positively invariant subset of 3 containing Leb-almost every (a.e.) point
of a center-unstable disk must contain a center-unstable disk with uniform inner radius.

This enables us to complete the proof of Theorem A in §4.2 by using and completing
the relevant steps presented in [28] together with the results from §4.1 and the more recent
results from [20], under the assumption that the vector field is Hölder-C1. Following this,
a proof of the measure-theoretic part of the statement of Theorem C is presented in §4.3.
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Finally, we present a proof of Theorem B on statistical stability in §5, coupling the
previous results with robust entropy expansiveness of sectional-hyperbolic attracting sets
obtained in [40].

2. Preliminary results on sectional-hyperbolic attracting sets
Let G be a C1 vector field admitting a singular-hyperbolic attracting set 3 with isolating
neighborhood U. Given x ∈ M , we denote the omega-limit set

ω(x) = ωG(x) =
{
y ∈ M : ∃tn ր ∞ s.t. φtnx −−−→

n→∞
y
}

and the alpha-limit set α(x) = ω−G(x) which are non-empty on a compact ambient
space M.

2.1. Lorenz-like singularities. We first recall some properties of sectional-hyperbolic
attracting sets, extending some results from [4, 5] which hold for dcu ≥ 2.

PROPOSITION 2.1. Let 3 be a sectional-hyperbolic attracting set and let σ ∈ 3 be an
equilibrium. If there exists x ∈ 3\{σ } such that σ ∈ ω(x) ∪ α(x), then σ is general-
ized Lorenz-like: that is, DG(σ)|Ecuσ has a real eigenvalue λs and λu = inf{Re(λ) :
λ ∈ sp(DG(σ)), Re(λ) ≥ 0} satisfies −λu < λs < 0 < λu and so the index of σ is
dim Esσ = ds + 1.

Remark 2.2

(1) If σ ∈ Sing(G) ∩3 is a generalized Lorenz-like singularity and γ sσ is its local
stable manifold, then Twγ sσ = Ecsw = Esw ⊕ R · {G(w)} at w ∈ γ sσ \{σ } since T γ sσ
isDφt -invariant and containsG(w) (because γ sσ is φt -invariant) and the dimensions
coincide.

(2) If an equilibrium σ ∈ Sing(G) ∩3 is not generalized Lorenz-like, then σ is not in
the limit set of 3\{σ },that is, there is no x ∈ 3\{σ } such that σ ∈ α(x) ∪ ω(x).
An example is provided by the pair of equilibria of the Lorenz system of equations
away from the origin: these are saddles with an expanding complex eigenvalue which
belong to the attracting set of the trapping ellipsoid already known to E. Lorenz; see,
for example, [7, §3.3] and references therein.

Proof of Proposition 2.1. It follows from sectional hyperbolicity that σ is a hyperbolic
saddle and that at most dcu eigenvalues have positive real part. If there are only dcu − 1
such eigenvalues, then the constraints on λs and λu follow from sectional expansion.

Let γ be the local stable manifold for σ . If σ ∈ ω(x) ∩ α(x) for some x ∈ 3\{x}, it
remains to rule out the case dim γ = d − dcu = ds .

In this case, Tpγ = Esp for all p ∈ γ ∩3 and, in particular, G(p) ∈ Esp. On the one
hand, G(p) ∈ Ecup (see, for example, [7, Lemma 6.1]), so we deduce that G(p) = 0 for all
p ∈ γ ∩3 and so γ ∩3 = {σ }.

On the other hand, if σ ∈ ω(x) (the case σ ∈ α(x) is analogous), then by the local
behavior of orbits near hyperbolic saddles, there exists p ∈ (γ \{σ }) ∩ ω(x) ⊂ (γ \{σ }) ∩

3 which, as we have seen, is impossible. �
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2.2. Extension of the stable bundle and center-unstable cone fields. Let Dk denote the
k-dimensional open unit disk and let Embr(Dk , M) denote the set of Cr embeddings
ψ : Dk → M endowed with the Cr distance. We say that the image of any such embedding
is a Cr k-dimensional disk.

PROPOSITION 2.3 [4, Proposition 3.2, Theorem 4.2 and Lemma 4.8]. Let 3 be a partially
hyperbolic attracting set.
(1) The stable bundle Es over 3 extends to a continuous uniformly contracting

Dφt -invariant bundle Es on an open positively invariant neighborhood U0 of 3.
(2) There exists a constant λ ∈ (0, 1), such that the following statements hold.

(a) For every point x ∈ U0 there is a Cr embedded ds-dimensional disk W s
x ⊂M ,

with x ∈ W s
x , such that TxW s

x = Esx , φt (W s
x ) ⊂ W s

φtx
and d(φtx, φty) ≤

λtd(x, y) for all y ∈ W s
x , t ≥ 0 and n ≥ 1.

(b) The disks W s
x depend continuously on x in the C0 topology: there is a contin-

uous map γ : U0 → Emb0(Dds , M) such that γ (x)(0) = x and γ (x)(Dds ) =

W s
x . Moreover, there exists L > 0 such that Lip γ (x) ≤ L for all x ∈ U0.

(c) The family of disks F s = {W s
x : x ∈ U0} defines a topological foliation Ws of

U0: every x0 ∈ U0 admits a neighborhood V ⊂ U0 and a homeomorphism ψ :
V → Rds × Rdcu so that ψ(W s

x ) = π−1
s {πs(ψ(x))} where π s : Rds × Rdcu →

Rds is the canonical projection.

Remark 2.4. For any two close enough dcu-disks D1, D2 contained in U0 and transverse
to F s there exists an open subset D̂1 of D1 such that W s

x ∩D2 is a singleton. This defines
the holonomy map h : D̂1 → D2, D̂1 ∋ x 7→ W s

x ∩D2 and Proposition 2.3 ensures that h
is continuous.

The splitting T3M = Es ⊕ Ecu extends continuously to a splitting TU0M = Es ⊕ Ecu

where Es is the invariant uniformly contracting bundle in Proposition 2.3 (however, Ecu

is not invariant in general). Given a > 0 and x ∈ U0, we define the center-unstable cone
field as Ccux (a) = {v = vs + vcu ∈ Esx ⊕ Ecux : ‖vs‖ ≤ a‖vcu‖}.

PROPOSITION 2.5. Let 3 be a partially hyperbolic attracting set.

(1) There exists T0 > 0 such that for any a > 0, after possibly shrinking U0,
Dφt · Ccux (a) ⊂ C

cu
φtx
(a) for all t ≥ T0, x ∈ U0.

(2) Let λ1 ∈ (0, 1) be given. After possibly increasing T0 and shrinking U0, there
exist constants K , θ > 0 such that |det(Dφt |Px)| ≥ K eθt for each two-dimensional
subspace Px ⊂ Ecux and all x ∈ U0, t ≥ 0.

Proof. For item (1) see [4, Proposition 3.1]. Item (2) follows from the robustness of
sectional expansion; see [5, Proposition 2.10] with straightforward adaptation to area
expansion along any two-dimensional subspace of Ecux . �

2.3. Global Poincaré map on adapted cross-sections. We assume that 3 is a partially
hyperbolic attracting set and recall how to construct a piecewise smooth Poincaré map
f : 4 → 4 preserving a contracting stable foliation Ws(4). This largely follows [8] (see
also [7, Ch. 6]) and [5, §3] with slight modifications to account for the higher-dimensional
setup.

https://doi.org/10.1017/etds.2020.91 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.91


2716 V. Araujo

We write ρ0 > 0 for the injectivity radius of the exponential map expz : TzM → M

for all z ∈ U , so that expz | Bz(0, ρ0) : Bz(0, ρ0) → M , v 7→ expz v is a diffeomorphism
with Bz(0, ρ0) = {v ∈ TzM : ‖v‖ ≤ ρ0} and D expz(0) = Id and also d(z, expz(v)) =

‖v‖ for all v ∈ Bz(0, ρ0).

2.3.1. Construction of a global adapted cross-section. Let y ∈ 3 be a regular point
(G(y) 6= E0). Then there exists an open flow box Vy ⊂ U0 containing y. That is, if we
fix ε0 ∈ (0, 1) small, then we can find a diffeomorphism χ : Dd−1 × (−ε0, ε0) → Vy

with χ(0, 0) = y such that χ−1 ◦ φt ◦ χ(z, s) = (z, s + t). Define the cross-section 6y =

χ(Dd−1 × {0}).

Remark 2.6. We assume that 6y ⊂ expy(By(0, ρ0/3) ∩G(z)⊥) and ‖D(expy)
−1
x ‖ ≤ 2

for all x ∈ 6y without loss of generality.

For each x ∈ 6y , let W s
x (6y) =

⋃
|t |<ε0

φt (W
s
x ) ∩6y . This defines a topological

foliation Ws(6y) of 6y . We can also assume that 6y is diffeomorphic to Ddcu−1 × Dds

by reducing the size of the 6y if needed. The stable boundary ∂s6y ∼= ∂Ddcu−1 × Dds ∼=

Sdcu−2 × Dds is a regular topological manifold homeomorphic to a cylinder of stable
leaves, since Ws is a topological foliation; that is, ∼= denotes only the existence of a
homeomorphism, and the subspace topology of ∂s6y induced by M coincides with the
manifold topology.

Let Dds
a denote the open disk of radius a ∈ (0, 1] in Rds . Define the sub-cross-section

6y(a) ∼= D
dcu−1
a × D

ds
a , and the corresponding sub-flow box Vy(a) ∼= 6y(a)× (−ε0, ε0)

consisting of trajectories in Vy which pass through 6y(a). In what follows we fix
a0 = 3/4.

For each equilibrium σ ∈ 3, we let Vσ be an open neighborhood of σ on which the flow
is locally conjugated by a homeomorphism to a linear flow (Hartman–Grobman theorem).
Let γ sσ and γ uσ denote the local stable and unstable manifolds of σ within Vσ ; trajectories
starting in Vσ remain in Vσ for all future time if and only if they lie in γ sσ .

Define V0 =
⋃
σ∈Sing(G)∩U Vσ . We shrink the neighborhoods Vσ so that they are

disjoint, 3 6⊂ V0, and γ uσ ∩ ∂Vσ ⊂ Vy(a0) for some regular point y = y(σ ).
By compactness of 3, there exist ℓ ∈ Z+ and regular points y1, . . . , yℓ ∈ 3 such that

3\V0 ⊂
⋃ℓ
j=1 Vyj (a0). We enlarge the set {yj } to include the points y(σ ) mentioned

above, adjust the positions of the cross-sections 6yj if necessary to ensure that they

are disjoint, and define the global cross-section 4 =
⋃ℓ
j=1 6yj and its smaller version

4(a) =
⋃ℓ
j=1 6yj (a) for each a ∈ (0, 1).

In what follows we modify the choices of U0 and T0. However, Vyj , 6yj and 4 remain
unchanged from now on and correspond to our current choice ofU0 and T0. All subsequent
choices will be labeled U1 ⊂ U0 and T1 ≥ T0. In particular,U1 ⊂ V0 ∪

⋃ℓ
j=1 Vyj (a0). We

set δ0 = d(∂4, ∂4(a0)) > 0 where ∂4(a) is the boundary of the submanifold 4(a) of M,
a ∈ (0, 1], and 4 = 4(1).

2.3.2. The Poincaré map. By Proposition 2.3, for any δ > 0 we can choose T1 ≥ T0

such that diam φt (W
s
x (6yj )) < δ, for all x ∈ 6yj , j = 1, . . . , ℓ and t > T1. We fix
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T1 = T1(δ0) for δ = δ0 = d(∂4, ∂4(a0)) in what follows and define Ŵ0 = {x ∈ 4 :
φT1+1(x) ∈

⋃
σ∈Sing(G)∩U0

(γ sσ \{σ })} and 4′ = 4\Ŵ0. If x ∈ 4′, then φT1+1(x) cannot
remain inside V0 so there exist t > T1 + 1 and j = 1, . . . , ℓ such that φtx ∈ Vyj (a0).
Since ε0 < 1, there exists t > T1 such that φtx ∈ 6yj (a0).

For each 6 = 6yj ∈ 4, we choose a center-unstable disk W6 which crosses 6 and is
transversal to Ws(6), that is, every stable leaf W s

x (6) intersects W6 transversely at only
one point, for each x ∈ 6. Then, for every given x ∈ W6 ∩4′, we define

f (x) = φτ(x)(x) where τ(x) = inf

{
t > T1 : φtx ∈

ℓ⋃

j=1

Closure 6yj (a0)

}
. (2.1)

We note that by the choice of T1 = T1(δ0) we have diam φτ(x)(W
s
x (6)) < δ0 and so the

disk φτ(x)(W s
x (6)), although not necessarily contained in any 6yj , is certainly contained

in some Vyj by construction. Thus we can define

f (y) = φτ(y)(y) where τ(y) = inf

{
t > T1 : φty ∈

ℓ⋃

j=1

6yj

}
(2.2)

for each y ∈ Ws
x(6). This defines τ and f on 4′.

We define the topological foliation Ws(4) =
⋃ℓ
j=1 Ws(6yj ) of 4 with leaves W s

x (4)

passing through each x ∈ 4. From the uniform contraction of stable leaves together with
the choice of δ0, T1(δ0) and the definition of Ws(4) and flow invariance of Ws we obtain
the following proposition.

PROPOSITION 2.7 [5, Proposition 3.4]. For large enough T1 > T0, f (W s
x (4)) ⊂ W s

f x(4)

for all x ∈ 4′.

Remark 2.8 The definition of τ in [5] is pointwise, namely, τ(x) = inf{t > T1 : φtx ∈⋃ℓ
j=1 Closure 6yj (a0)}, and this allows discontinuities of the return time and return

map along stable leaves, that is, a pair of indexes i 6= j and of close points w, z ∈ W s
x

so that φτ(w)(w) ∈ Closure 6yj (a0) and φτ(z)(z) ∈ Closure 6yi (a0). So the statement of
[5, Proposition 3.4] (which is analogous to Proposition 2.7 with dcu = 2) does not make
sense in this setup, since we would have f (W s

x ) with elements in distinct cross-sections.
The definition of τ first on the points of a fixed collection of center-unstable leaves

(2.1), and then the smooth extension to the stable leaves through each of these points (2.2),
provides for the crucial property stated in Proposition 2.7.

The rest of the features of the global Poincaré map f stated and used in [4, 5, 9] remain
valid with the same proofs.

In this way we obtain a piecewiseCr global Poincaré map f : 4′ → 4 =
⋃ℓ
j=1 6j (a0)

with piecewise Cr roof function τ : 4′ → [T1, ∞), and deduce the following standard
result.

LEMMA 2.9 [5, Lemma 3.2]. If 6y contains no equilibria (i.e. Ŵ0 ∩6y = ∅), then
τ | 6y ≤ T1 + 2. In general, there is C > 0 such that τ(x) ≤ −C log dist(x, Ŵ0) for all
x ∈ 4′; in particular, τ(x) → ∞ as dist(x, Ŵ0) → 0.
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We define ∂s4(a0) =
⋃ℓ
j=1 ∂

s6yj (a0) and Ŵ1 = {x ∈ 4′ : f x ∈ ∂s4(a0)} and then
set Ŵ = Ŵ0 ∪ Ŵ1. Clearly Ŵ0 ∩ Ŵ1 = ∅.

LEMMA 2.10

(1) Ŵ0 is a ds-submanifold of 4 given by a finite union of stable leaves Wsi (4), i =

1, . . . , k; and
(2) Ŵ1 is a regular embedded (d − 2)-topological submanifold foliated by stable leaves

from Ws(4) with finitely many connected components.

Remark 2.11. Note that Ŵ0 is a (smooth) submanifold of4with codimension dcu − 1, so it
separates 4 only if dcu = 2; while Ŵ1 is a regular topological codimension 1 submanifold
of 4 and so it separates 4.

Proof. It is clear thatW s
x (4) ⊂ Ŵ for all x ∈ Ŵ, so Ŵ is foliated by stable leaves. We claim

that Ŵ is precisely the set of those points of4 which are sent to the boundary of4 or never
visit 4 in the future.

Indeed, if x0 ∈ 4′\Ŵ1, then f x0 = φτ(x0)(x0) ∈ 6′ for some 6′ ∈ 4(a0) = {6yj (a0)}.
For x close to x0, it follows from continuity of the flow that f x ∈ 6′ (with τ(x) close to
τ(x0)). Hence x ∈ 4′\Ŵ1 and, since 4′ = 4\Ŵ0, the claim is proved and, moreover, Ŵ is
closed.

For item (1), we note that Ŵ0 ⊂ 4 ∩ φ−1
[0,T1+1](

⋃
σ γ

s
σ ) and we may assume without

loss of generality that the above union comprises only generalized Lorenz-like equilibria;
cf. Remark 2.2(2). Hence Twγ sσ = Ecsw for w ∈ γ sσ \{σ }; see Remark 2.2(1). Thus Ŵ0 is
contained in the transversal intersection between a compact (ds + 1)-submanifold and a
compact (d − 1)-manifold, so Ŵ0 is a compact differentiable ds-submanifold of M and 4.
In addition, since Ŵ0 is foliated by stable leaves which are ds-dimensional, Ŵ0 has only
finitely many connected components in 4.

For item (2), note that for each x ∈ Ŵ1 we have that f x ∈ ∂6j (a0) ⊂ 6j . Thus there
exists a neighborhoodWx of x in 4 and Vf x of f x in 6j such that f | Wx : Wx → Vf x is
a diffeomorphism. Hence Ŵ1 ∩Wx = (f | Wx)

−1(Vx ∩ ∂s6(a0)) is homeomorphic to a
(dcu − 2 + ds)-dimensional disk. Moreover, this shows that the topology of Ŵ1 is the same
as the subspace topology induced by the topology of 4. We conclude that Ŵ1 is a regular
topological (d − 2)-dimensional submanifold.

It remains to rule out the possibility of existence of infinitely many connected
components Ŵm1 , m ∈ Z+, of Ŵ1 in 4. Since 4 contains finitely many sections only, there
exist cross-sections 6j , 6i in 4 and, taking a subsequence if necessary, an accumulation
set Ŵ̃ = limm Ŵ

m
1 within Closure(6j ) so that f (Ŵm1 ) ⊂ ∂s6i(a0) for all m ≥ 1. By the

continuity of the stable foliation, Ŵ̃ is a union of stable leaves.
We claim that the Poincaré times τ(xm) for xm ∈ Ŵm1 , m ≥ 1, are uniformly bounded

from above. For otherwise the trajectory φ[0,τ(xm)](xm) intersects Vσ for some σ ∈

Sing(G) ∩ U and accumulates σ . Hence, by the local behavior of trajectories near saddles
and the choice of the cross-sections near Vσ , we get that Ŵ̃ ⊂ 6i(a0) is not contained in
the boundary of the cross-section. This contradiction proves the claim. Let T be an upper
bound for τ(xm).
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Then, for an accumulation point x ∈ Ŵ̃ of (xm)m≥1, we have that the trajectories
φ[0,T ](xm) converge in the C1 topology (taking a subsequence if necessary) to a limit
curve φ[0,T ](x) and so f x = φτ(x)(x) ∈ ∂s6i(a0). Thus we can find neighborhoodsWx of
x and Vf x of f x in 4 such that for arbitrarily large m we have that f | Wx : Wx → Vf x

is a diffeomorphism and Ŵ1 ∩Wx = (f | Wx)
−1(Vx ∩ ∂s6i(a0)), which contradicts the

regularity of Ŵ1 as topological submanifold.
This concludes the proof of item (2) and the lemma. �

Let us set 4′′ = 4(a0)\Ŵ from now on. Then 4′′ = S1 ∪ · · · ∪ Sm for some m ≥ 1,
where each Si is a connected smooth strip, homeomorphic to either (i) Ddcu × Dds if
Ŵ0 ∩ Closure Si = ∅; or (ii) Ddcu × (Dds\{0}) otherwise. The latter are singular (smooth)
strips.

We note that f | Si : Si → 4(a0) is a diffeomorphism onto its image, τ | Si : Si →

[T1, ∞) is smooth for each i, and τ | Si ≤ T1 + 2 on non-singular strips Si and also on
a neighborhood of ∂s(Si ∪ Ŵ0) for singular strips Si . The foliation Ws(4) restricts to a
foliation Ws(Si) on each Si .

Remark 2.12. In what follows it may be necessary to increase T1, leading to changes to
f, τ , Ŵ and {Si} (and the constant C in Lemma 2.9). However, the global cross-section
4 =

⋃
6yj is fixed throughout the argument.

Remark 2.13. Since f sends 4′′ into 4 = 4(1), there are smooth extensions f̃i : S̃i → 4

of f | Si : Si → 4, where S̃i ⊃ Closure(Si)\Ŵ0.

2.4. Hyperbolicity of the global Poincaré map. We assume from now on that 3 is a
sectional-hyperbolic attracting set with dcu > 2 and proceed to show that, for large enough
T1 > 1, the global Poincaré map f : 4′′ → 4 is piecewise uniformly hyperbolic (with
discontinuities and singularities).

2.4.1. Hyperbolicity at each smooth strip. Let S ∈ {Si} be one of the smooth strips.
Then there are cross-sections 6, 6̃ ∈ 4 such that S ⊂ 6 and f (6) ⊂ 6̃. The split-
ting TU0M = Es ⊕ Ecu induces the continuous splitting T6 = Es(6)⊕ Eu(6), where
Esx(6) = (Esx ⊕ R{G(x)}) ∩ Tx6 and Eux (6) = Ecux ∩ Tx6 for x ∈ 6; and analogous
definitions apply to 6̃.

PROPOSITION 2.14. The splitting T6 = Es(6)⊕ Eu(6) is invariant, that is, Df ·

Esx(6) = Esf x(6̃) for all x ∈ S, and Df · Eux (6) = Euf x(6̃) for all x ∈ 3 ∩ S. It is also
uniformly hyperbolic, that is, for each given λ1 ∈ (0, 1) there exists T1 > 0 such that if
inf τ > T1, then ‖Df | Esx(6)‖ ≤ λ1 for each x ∈ S; and ‖(Df | Eux (6))

−1‖ ≥ λ−1
1 for

all x ∈ S ∩3.
Moreover, there exists 0 < λ̃1 < λ1 such that, for all x on a non-singular strip S, or for

x on a neighborhood of ∂s(S ∪ Ŵ0) of a singular strip S, we have λ̃1 < ‖(Df | Esx(6))
−1‖

and ‖Df | Eux (6)‖ < λ̃1
−1

.
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Proof. See [5, Proposition 4.1], with straightforward adaptation to area expansion along
each two-dimensional within Eux (6) in order to obtain uniform expansion; cf. [7, Lemma
8.25]. The last statement follows from the boundedness of τ on the designated domains;
cf. Lemma 2.9. �

2.4.2. Hyperbolicity of the extensions of the Poincaré maps at smooth strips. For a given
a > 0, x ∈ 6 and 6 ∈ 4, we define the unstable cone field at x as Cux(6, a) = {w =

ws + wu ∈ Esx(6)⊕ Eux (6) : ‖ws‖ ≤ a‖wu‖}.

Remark 2.15. We assume that Cux(6y , a) ⊂ D(expy)exp−1
y x

· Cuy(6y , 2a) for all x ∈ 6y

and each 6y ∈ 4 without loss of generality; recall Remark 2.6. Consequently, letting
πu : Esy(6y)⊕ Euy (6y) → Euy (6y) be the canonical projection, we get ‖πuw‖/‖w‖ ∈

(1 − 2a, 1 + 2a) for all w ∈ Cux(6y , a), where we implicitly identify Cux(6y , a) with a
subcone of Cuy(6y , 2a), for x ∈ 6y and 6y ∈ 4.

PROPOSITION 2.16. For any a > 0, λ1 ∈ (0, 1), we can increase T1 and shrink U1 such
that, if inf τ > T1 and x ∈ S and S, S′ ∈ {Si} so that f x ∈ S′, then:

• Df (x) · Cux(S, a) ⊂ C
u
f x(S

′, a); and

• ‖Df (x)w‖ ≥ ‖πuDf (x)w‖ ≥ λ−1
1 ‖w‖ for all w ∈ Cux(S, a).

Moreover, ‖Df (x)w‖ ≤ λ̃1
−1

‖w‖ for x in a non-singular S or x in a neighborhood of
∂s(S ∪ Ŵ0) for a singular S.

Proof. See [5, Proposition 4.2]; use λ̃1 from Proposition 2.14 and the estimate on ‖πu‖

from Remark 2.15. �

Considering the union of the smooth strips S, the previous results shows that we obtain a
global continuous uniformly hyperbolic splitting T4′′ = Es(4)⊕ Eu(4) in the following
sense.

THEOREM 2.17. For given a > 0 and λ1 ∈ (0, 1), we obtain a global Poincaré map f so
that the stable bundle Es(4) and the restricted splitting T34′′ = Es3(4)⊕ Eu3(4) are
Df -invariant; and Df · Cux(4, a) ⊂ C

u
f x(4, a) and ‖πuDf (x)w‖ ≥ λ−1

1 ‖w‖ for all x ∈

4′′ and w ∈ Cux(4, a).

Remark 2.18. The extensions f̃i : S̃i → 4 of f | Si : Si → 4(a0) mentioned in
Remark 2.13 are such that on S̃i ⊃ Closure(Si)\Ŵ0 the map f̃i behaves as f in
Propositions 2.14 and 2.16. In particular, δ1 = d(Si , ∂S̃i) ≥ λ̃1 · d(4(a0), 4) = λ̃1δ0.

3. The basin of sectional-hyperbolic attracting sets
Here we prove the topological part of the statement of Theorem C using first the following
technical result. The measure-theoretic part is dealt with in the next section; see §4.3.

THEOREM 3.1. There are finitely many (hyperbolic) periodic points p1, . . . , pl of 3 in
4 such that Ws = {W s

x (4) : x ∈ Wu
pi
(4); i = 1, . . . , l} is open and dense in 4 and, in

particular,
⋃
i W

u
pi
(4) is dense in 4.
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This is enough to deduce the topological part of Theorem C, since it implies that Wcs

is open and dense in U . In the rest of the section we prove Theorem 3.1.

3.1. Denseness of stable leaves of 3 on U

Proof of Theorem 3.1. In what follows we say that aC1(dcu − 1)-dimensional diskD ⊂ 6

such that TxD ⊂ Cux(6, a) for all x ∈ D is a center-unstable disk, or just a cu-disk. A
cu-disk D is an unstable disk, or just a u-disk, if for any given x, y ∈ D there exists a
sequence f̃i : S̃i → 4 of smooth extensions of fi = f | Si together with a subsequence ik
and xk , yk ∈ 4 such that gk = f̃ik ◦ f̃ik−1 ◦ · · · ◦ f̃2 ◦ f̃1 satisfies gkxk = x, gkyk = y and
d(xk , yk) ≤ λ

ik
1 d(x, y) for all k ≥ 1 (note that an unstable disk is necessarily contained in

the attracting set 3).
From Remark 2.15, if S ⊂ 6y for some 6y ∈ 4, then D̃ = exp−1

y (D) = Graph(g :

Du → Esy(6)) where Du = πuD̃ ⊂ Euy (6) is a open subset of Euy (6y) and g is a C1

map such that ‖Dg‖ ≤ 2a. Indeed, D is transverse to Ws(6y) and each W s
x (6y) is the

graph of ϕx : B(0, ρ) ∩ Esy(6y) → Euy (6y) which is C1 and depends continuously on x

in the C1 topology; and the tangent space at any point of D̃ is contained in Cuy(6y , 2a).
We define ρ(D) = sup{r > 0 : B(x, r) ⊂ Du, x ∈ Euy (6y)} as the inner radius of any

given cu-disk D.
We use uniform expansion along center-unstable cones by the extension of f to obtain

the following proposition.

PROPOSITION 3.2. There exist ρ0 > 0 and finitely many periodic points p1, . . . , pl of 3
in 4 such that any given center-unstable disk D0 contains a nested sequence D0 ⊃ D̂1 ⊃

D̂2 ⊃ . . . of disks admitting:

• a sequence f̃i : S̃i → 4 of smooth extensions; and
• a subsequence ik such that gk = f̃ik ◦ f̃ik−1 ◦ · · · ◦ f̃2 ◦ f̃1 satisfies

gk | D̂k : D̂k → Dk = gkD̂k ⊂ 4 is a diffeomorphism for each k ≥ 1.

Moreover, (Dk)k≥1 accumulates a u-disk D in the C1 topology which:

• contains the local unstable manifoldWu
q (4) with respect to f of a point of q of the orbit

of pi for some i ∈ {1, . . . , l}; and
• whose inner radius is uniformly bounded away from zero, ρ(D) ≥ ρ0. �

We prove Proposition 3.2 in the next subsection. Since Ws(4) is transversal to any
cu-disk and the nested disks D̂k with vanishing diameter intersect at a unique point
r ∈ D0 ∩3, this shows that every center-unstable disk in any smooth strip contains the
transversal intersection of the stable manifold of all points in the local unstable manifold
of a periodic point of 3, completing the proof of Theorem 3.1. �

3.2. Local uniform expansion of cu-disks. Here we fix a cu-disk D0 in S ∈ {Si} and
prove Proposition 3.2.
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We obtain by induction a sequence of disks Dn, n ≥ 0 in 4 as follows. First, the inner
radius of any cu-disk contained in a smooth strip S̃ is uniformly expanded by the global
Poincaré map.

LEMMA 3.3. If λ2 ∈ (0, 1) satisfies 2λ1 < λ2(1 − 2a) and D is a cu-disk contained in
some extension S̃ of a smooth strip S ∈ {Si}, then

ρ(f̃D) ≥ λ−1
2 ρ(D) and (1 − 2a)ρ(f̃D) ≤ 2diam(f̃ D) ≤ (1 + 2a)ρ(f̃D),

where f̃ : S̃ → 4 is the extension of f | S : S → 4(a0).

Proof. Let S ⊂ 6y ∈ 4. From Remark 2.18, f̃ D is a cu-disk contained in some 6y′ ∈ 4

and we can write exp−1
y′ (f̃ D) = Graph(g : D1

u → Es
y′(6y′)) where D1

u ⊂ Eu
y′(6y′)

is an open subset. Then for a ball B(x′, r) ⊂ D1
u and C1 curve γ1 : (I , 0, 1) →

(Closure B(x′, r), x′, ∂B(x′, r)) there exists a unique curve γ : I → Du = πu exp−1
y D

such that γ1(s) = πuf̃ expy(γ (s)+ g1γ (s)), where s ∈ I = [0, 1]. By Theorem 2.17 and
Remark 2.18, together with the choice of 6y , 6y′ in Remark 2.6,

‖γ̇1(s)‖ = ‖πuDf̃ ·D expy(γ̇ (s)+Dg1(γ (s)) · γ̇ (s))‖

≥ λ−1
1 ‖D expy(γ̇ (s)+Dg1(γ (s)) · γ̇ (s))‖ ≥

λ−1
1

2
· (1 − 2a)‖γ̇ (s)‖.

Then the bound on the inner radius follows by the choice of λ2, since γ1 is any curve
joining γ1(0) = x′ to the boundary γ1(1) ∈ ∂B(x′, r) inside D1

u. For the diameter, note
that ‖u− v‖(1 − 2a) ≤ ‖u+ g1u− (v + g1v)‖ ≤ (1 + 2a)‖u− v‖ for all u, v ∈ D1

u and
take account of the effect of expy′ on distances; cf. Remark 2.6. �

We let λ2 be as in the statement of Lemma 3.3 in what follows; fix λ2 < a1 < 1 and
assume without loss of generality that a1λ

−1
2 > 5. We assume that cu-disks D0, . . . , Dn

have already been obtained so that there are smooth strips S0, . . . , Sn satisfying Di ⊂

S̃i ⊂ 6yi and Di+1 ⊂ f̃iDi , i = 0, . . . , n− 1.
Letting Dn = expyn Graph(gn), we consider the balls B = {B(x, a1ρ(Dn)) ⊂

πu exp−1
yn
Dn} and corresponding disks D = {D = expyn Graph(gn | B), B ∈ B}. We

set D̂ = {D ∈ D : ∃S, D ∩ ∂sS 6= ∅} and D̂σ = {D ∈ D : D ∩ Ŵ0 6= ∅}. Then we have
the following cases.

(1) If D 6⊆ D̂ ∪ D̂σ , then we choose some D ∈ D\(D̂ ∪ D̂σ ). There exists a smooth
section S such that D ⊂ S and we reset Dn = D and define Dn+1 = fDn = (f |

S)(Dn) ⊂ 4(a0).
(2) Otherwise: either D̂ 6= ∅ or D̂σ 6= ∅.

(a) If D̂σ 6= ∅, then we choose D ∈ D̂σ and B ⊂ πu exp−1
yn
D a ball of radius

a1ρ(Dn)/4 so that, resetting Dn = expyn B, we have

d(Dn, Ŵ0) > (1 − 2a)ρ(Dn) and

ρ(Dn) = ρ(D)/4 > a1λ
−1
2 ρ(Dn−1)/4 > (5/4)ρ(Dn−1).

We then define Dn+1 = fDn.
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(b) Otherwise, we have D̂ 6= ∅ = D̂σ and consider the subfamily D̃ = {D ∈ D̂ :
∃S, D ∩ ∂sS 6= ∅ 6= D ∩ ∂s S̃} of those disks which intersect both ∂sS and ∂s S̃
for some S.

(i) If D̃ = ∅, then we choose someD ∈ D̂ and S so thatD ∩ ∂sS 6= ∅, reset
Dn = D, and define Dn+1 = f̃ Dn, where f̃ is the extension of f | S

to S̃.
(ii) Otherwise, we choose D ∈ D̃. There exists a subdisk D̂ ⊂ D such that

D̂ ⊂ S̃ and ρ(D̂) ≥ a0δ1/2 by Remark 2.18 and the definition of δ1 and
D̂. We reset Dn = D̂ and define Dn+1 = f̃ Dn, with f̃ denoting the
extension of f | S to S̃.

This completes the inductive step of the construction of a sequence (Dn)n≥0 of cu-disks
in 4. Lemma 3.3 ensures that ρ(Dn+1) ≥ (a2λ

−1
2 /4)ρ(Dn) and a1λ

−1
2 /4 > 5/4 > 1 by

the choice of a1.
Since diam S < diam S̃ is bounded by a uniform constant for all smooth strips S ∈

{Si}, the expansion of the inner radius implies that the induction cannot go consecutively
through cases (1), (2a) or (2b)(i) above infinitely many times. Each time we are in case
(2b)(ii) we restart the algorithm, choosing a subdisk of Dn+1 with half the inner radius.

We conclude that, starting with any diskD0 as above, we obtain a subsequence nk ր ∞

so that Dnk is in case (2b)(ii) and ρ(Dnk ) > a0δ1/2 for all k ≥ 1. Moreover, there exist
a subdisk D′

nk−1
with 2ρ(D′

nk−1
) = ρ(Dnk ) and an iterate fmk such that fmk | D′

nk−1
:

D′
nk−1

→ Dnk is a diffeomorphism. In addition, the uniform bound on the diameter also
ensures that mk = nk − nk−1 is bounded: mk ≤ m̄.

Finally, since 4 contains finitely many cross-sections, we can assume without loss of
generality that Dnk ⊂ 6y ∈ 4 for (possibly a subsequence of) all k. This is a sequence
of graphs of C1 functions with uniformly bounded derivative and domains given by balls
with radius uniformly bounded away from zero. It follows that there exists a subsequence
of such disks uniformly converging to a cu-disk D in the C1-topology.

In particular, for large enough k, we have that the stable holonomy map h : D′
nk−1

→

Dnk within 6 is well defined by the choice of D′
nk−1

with half of the inner radius of

Dnk and, moreover, is a continuous map; see Remark 2.4. Hence g = h ◦ (fmk | Dnk )
−1 :

Dnk → Dnk has a fixed point by Brouwer’s fixed point theorem, that is, there exists a stable
leaf satisfying fmkW s

x (4) ⊂ W s
x (4). The contraction of stable leaves implies the existence

of a fixed point p of fmk | 6 which is a periodic point for the flow whose stable manifold
crosses Dnk . Since we can take k as large as needed, we obtain that W s

p(6) transversely
crosses D also.

To complete the proof, since Dn+1 ⊂ f̃nDn by construction, if we set gn = f̃n ◦ · · · ◦

f̃1, n ≥ 1, then we can find D̂n+1 ⊂ D0 such that gnD̂n = Dn and Dn+1 ⊂ Dn, n ≥ 1.
Since Dnk → D uniformly as graphs, for x, y ∈ D there are x̃k , ỹk ∈ D̂nk such that
(gnk x̃k , gnk ỹk) → (x, y). By uniform expansion on cu-disks, for any given i ≥ 1 we get
d(gnk−i x̃k , gnk−i ỹk) ≤ λi1d(gnk x̃k , gnk ỹk) for all k ≥ 1. Thus, for an accumulation pair

(xi , yi) of (gnk−i x̃k , gnk−i ỹk) and sequence gi = f̃i ◦ · · · ◦ f̃0 of f̃nk−i ◦ · · · ◦ f̃nk as
k ր ∞, we get (gixi , giyi) = (x, y) and d(xi , yi) ≤ λi1d(x, y). Hence D is a u-disk as
claimed.
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In addition, by the inclination lemma (λ-lemma of [41, Ch. 2, §7]), we can assume
without loss of generality that nk are multiples of mk for all large enough k and that
D ⊂Wu

p is a piece of the local unstable manifold of the hyperbolic periodic orbit p of
f, whose period is a divisor ofmk . In particular, p is a hyperbolic periodic orbit for the flow
whose period τp is bounded: τp ≤ T = T (m̄).

This ensures the uniform size of the unstable manifold of the periodic orbits obtained
by the previous algorithm and, moreover, since their period is bounded, that the possible
periodic orbits are finite in number, by hyperbolicity and compactness.

This completes the proof of Proposition 3.2.

4. Finitely many ergodic physical measures for sectional-hyperbolic attracting sets
Here we prove Theorem A. We first obtain an auxiliary result which is a consequence of
the previous arguments on cu-disks contained in adapted cross-sections.

4.1. Uniformly center-unstable size of invariant subsets. We prepare the proof of
Theorem A by obtaining a result on uniform size of positively flow-invariant subsets in
the center-unstable direction.

We say that a dcu-dimensional C1 disk D0 ⊂ U is a cu-disk if TxD0 ⊂ Ccux (a) for all
x ∈ D (observe that such D is not contained in any cross-section 6 ∈ 4).

PROPOSITION 4.1. For a sectional-hyperbolic attracting set 3 of a C1 vector field G,
there exists δ > 0 so that, given a positively G-invariant subset E ⊂ 3 having a cu-disk D
such that D ∩ E has full Lebesgue induced measure in D, there exists a cu-disk D̃ whose
inner radius is larger than δ and such that D̃ ∩ E has full Lebesgue induced measure
in D̃. Moreover, there exists i ∈ {1, . . . , l} so that for any ε > 0 we can find D̃ as above
ε- C1-close to the local unstable manifold of O(pi), where the periodic point pi is given
by Proposition 3.2.

Proof. This is a consequence of Proposition 3.2. Indeed, if E ⊂ 3 and D are as stated,
then we project D into D0 through the flow to the nearest cross-section, that is, for any
x ∈ D we consider t (x) = inf{t > 0 : φtx ∈ 4(a0)} and p(x) = φt (x)x, x ∈ D.

We claim that p(D) contains a cu-disk D0 inside some 6 ∈ 4 and, moreover, E ∩D0

has full Lebesgue induced measure in D0.
Assuming this claim, then D̂k ∩ E also has full Lebesgue induced measure in D̂k for

each of the disks D̂k ⊂ D0 provided by Proposition 3.2. Moreover, since the Poincaré
map f is a piecewise C1 diffeomorphism as well as its extensions, Dk = gkD̂k is such
that Dk ∩ E also has full Lebesgue induced measure in Dk by invariance of E under all
transformations φt , t ∈ R. The statement of Proposition 4.1 follows since, by construction,
(i) the cu-disks Dk have inner radius larger than some δ > 0 inside 6; (ii) fixing some
k ≥ 1, we have that D̃ = φ[−δ,δ](Dk) is a dcu-dimensional center-unstable disk for the
flow of G with inner radius bounded away from zero; and (iii) by smoothness of the
flow and invariance of E we have that D̃ ∩ E = φ[−δ,δ](Dk ∩ E) also has full Lebesgue
induced measure inside φ[−δ,δ](Dk). Moreover, the C1-closeness to the local unstable
manifold of one of the hyperbolic periodic orbits provided by Proposition 3.2 follows,
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using the transversal intersection of the stable manifold of this orbit with D̃ together with
the inclination lemma.

It remains to prove the claim. SinceD ⊂ U we have t (x) < ∞ for all x ∈ D and we fix
x0 ∈ D and y0 = p(x0) ∈ 6, for some adapted cross-section 6 ∈ 4(a0) in what follows,
where we assume without loss of generality that x0 is not a singularity.

We take a cross-section S to G at x0 and note that, since D is a cu-disk for the flow,
there exists a neighborhood V of x0 in M such that (i) p(V ) ⊂ 6 and (ii) S is transversal to
D ∩ V . So DS = S ∩D ∩ V is a submanifold of M of codimension 1 + ds . Hence, DS is
a submanifold of S of dimension dcu − 1 and a cu-disk inside S, that is, TxDS ⊂ Ccux (a, S)
according to the definition of the induced center-unstable cone fields on a cross-section S.
Consequently, p(DS) is a cu-disk inside 6 and contained in p(D). It remains to show that
E has full Lebesgue induced measure in p(DS).

We now conveniently choose coordinates on a local chart of M at V so that S = Rd−1 ×

{0}, G(x0) = (0, . . . , 0, 1) and Es = Rds × {0dcu}, Ecux0
= {0ds } × Rdcu , and also D ∩ V

is the graph of a C1 map ϕ : Rdcu → Rds . Since8 : {0ds } × Rdcu → D ∩ V , u 7→ (ϕu, u)
is a C1 diffeomorphism and E ∩D ∩ V has full Lebesgue induced measure in D ∩ V , it
follows that Ẽ = 8−1(E ∩D ∩ V ) has full Lebesgue measure in {0ds } × Rdcu .

However, DS = 8({0ds } × {Rdcu−1 × {0}) does not necessarily intersect E in a full
Lebesgue induced measure subset. But Fubini’s theorem ensures that Ẽ ∩ {0ds } ×

Rdcu−1 × {t} has full Lebesgue measure for Lebesgue almost every t ∈ R.
Thus we can choose t as close to 0 as needed so that St = Rd−1 × {t} is a cross-section

to G; Dt = St ∩D ∩ V is a cu-disk inside St and E ∩Dt has full Lebesgue induced
measure in Dt . Moreover, we also have that p(Dt ) ⊂ p(D) ⊂ 6 is a cu-disk inside 6
and p(Dt ∩ E) has full Lebesgue induced measure in p(Dt ), since p | Dt : Dt → p(Dt )

is a diffeomorphism as smooth as G.
This completes the proof of the claim with D0 = p(Dt ) and Proposition 4.1 follows. �

4.2. Uniform volume of ergodic basis of physical measures. We now extend the steps
presented in [28] together with Proposition 4.1 and the following result.

THEOREM 4.2 [20, Appendix: Corollary B.1 and Theorem I]. A C1 vector field with
a sectional-hyperbolic attracting set 3 supports an SRB measure. More precisely, for
Lebesgue almost every point x in the trapping region of 3, any weak∗ limit measure of the
family (T −1

∫ T
0 δφtx dt)T>0 is an SRB measure. Moreover, if the vector field is Hölder-C1,

then each limit measure is a physical measure.

The above result states that any weak∗ accumulation point µ of the empirical measures
along the orbit of a Lebesgue generic point in U is an equilibrium state for the logarithm
of the center-unstable Jacobian, that is,

hµ(φ1) =

∫
log |det Dφ1 | Ecu| dµ > 0, (4.1)

the positiveness being a consequence of sectional hyperbolicity.
Moreover, if the flow is Hölder- C1, then this SRB measure is also a physical measure

since its support contains the (Pesin) unstable manifold through µ-a.e. point and the stable
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foliation is absolutely continuous (this is a consequence of the partial hyperbolicity of
the attracting set, the fact that the vector field is Hölder-C1, and Proposition 2.3; this can
be seen by adapting known arguments from [42, 43]), following standard geometric and
ergodic arguments; see, for example, [28, §§2 and 3] and the proof of [20, Theorem I]. In
particular, the center-unstable manifold W cu

x through µ-a.e. x is a cu-disk contained in the
attracting set 3.

Remark 4.3. From Proposition 4.1, since the support of any SRB measure µ is a forward
invariant closed subset and contains a cu-disk, there exists a periodic orbit O(pi) contained
in suppµ for some i ∈ {1, . . . , l}. The stable leaves through the points of the local unstable
manifold W cu

O(pi )
(ε0), for all small enough ε0 > 0, intersect each center-unstable manifold

through µ-a.e. point in an open subset, which contains µ-generic points by the absolute
continuity property of the stable foliation. In particular, this shows that no such periodic
orbit can be shared by distinct SRB measures of a sectional-hyperbolic attracting subset.

Proof of Theorem A. From Theorem 4.2 we have that any sectional-hyperbolic attracting
set for a C1 flow admits some physical/SRB probability measure µ which we can assume,
without loss of generality, to be ergodic. Indeed, using ergodic decomposition, by Ruelle’s
inequality [31] we have hµ(φ1) ≤

∫
log |det Dφ1 | Ecu| dµ and so ifµ satisfies (4.1), then

each ergodic component of µ also satisfies (4.1)
Now we use that the ergodic basin B(µ) of µ contains a full Lebesgue measure subset

of some center-unstable diskD0 inside the sectional-hyperbolic attracting set together with
Proposition 4.1.

COROLLARY 4.4. Every sectional-hyperbolic attracting set3 for a Hölder-C1 vector field
admits ε0 > 0 so that the volume of the ergodic basin B(µ) of any ergodic SRB measure
µ supported in 3 is uniformly bounded away from zero: Leb(B(µ)) ≥ ε0.

Proof. By assumption, µ is an ergodic SRB measure and, as explained above, in our
setting the stable holonomies are absolutely continuous. Then by [28, Lemma 3.2] we
have that there exists a open subset V of the basin of attraction of3 so that Leb-a.e. x ∈ V

is µ-generic, that is, Leb(V \B(µ)) = 0.
Hence there exists a cu-disk D0 ⊂ V such that D0 ∩ B(µ) has full Lebesgue induced

measure inD0. Proposition 4.1 implies that the positively invariant subset B(µ) contains a
cu-disk D with ρ(D) ≥ δ for some uniform δ > 0 depending only on 3. The same proof
of [28, Lemma 3.2], using the uniform size of local stable leaves of Ws and the angle
between Esx and Ecux at x ∈ D uniformly bounded away from zero (due to domination),
implies that the setW =

⋃
{W s

x : x ∈ D} is open, diffeomorphic to a cylinderD × Dds of
uniform height. So Leb(W) ≥ ε0 for some uniform ε0 > 0. In addition, Leb-a.e. x ∈ W

belongs to B(µ) by the absolute continuity of the stable foliation. �

We are now ready to complete the proof of Theorem A. Let U be a trapping region
for 3. If Leb(U\B(µ)) = 0, then µ is the unique physical/SRB measure supported in 3.
Otherwise, let µ1 = µ and since U1 = U\B(µ1) is such that Leb(U1) > 0 we can use
[20, Theorem I] to ensure that Leb-a.e. x ∈ U1 belongs to the ergodic basin of some SRB
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measure µ2 6= µ1. This measure µ2 is a physical measure, satisfies Leb(B(µ2)) > δ > 0
by Corollary 4.4, and B(µ1) ∩ B(µ2) = ∅ and B(µ1) ∪ B(µ2) ⊂ U .

Again, if Leb(U\(B(µ1) ∪ B(µ2))) = 0, then 3 supports exactly the pair µ1, µ2

of ergodic physical measures whose ergodic basins cover the topological basin of 3
except perhaps a Lebesgue zero subset. Otherwise U2 = U\(B(µ1) ∪ B(µ2)) is such that
Leb(U2) > 0 and we can repeat the argument.

Since the ergodic basins of distinct ergodic physical probability measures are disjoint
subsets of the trapping region U which has finite volume, and each ergodic basin has
a minimum volume bounded away from zero, this inductive process stops with finitely
many µ1, . . . , µk ergodic physical/SRB measures supported on 3, whose basins cover
the trapping region U, Leb mod 0. This completes the proof of Theorem A. �

4.3. Full volume of stable leaves in the topological basin. Here we prove the
measure-theoretic part of the statement of Theorem C.

Let µ be an ergodic SRB measure supported in 3 for a Hölder-C1 vector field, that
is, a physical measure. Let O(pi) be the hyperbolic periodic orbit contained in supp µ;
see Remark 4.3. Let V be an open neighborhood of O(p) and ϕ : M → R a non-negative
continuous function supported in V, so that µ(ϕ) =

∫
ϕ dµ > 0. Hence

lim
T→∞

1

T

∫ T

0
ϕ(φtx) dt = µ(ϕ) > 0 for each x ∈ B(µ).

Thus ϕ(φtx) > 0 for some t > 0 and so φtx ∈ V . This ensures that x ∈ W s
y for some

y ∈ W cu
O(pi )

, that is, x ∈ Wcs for each x ∈ B(µ).
Finally, from Theorem A, there are finitely many ergodic SRB measures whose basins

cover Leb-a.e. point of U . This ensures that Leb(U\Wcs) = 0, and completes the proof of
the measure-theoretic part of the statement of Theorem C.

5. Statistical stability of sectional-hyperbolic attracting sets
Statistical stability is essentially a consequence of the existence of finitely many physical
measures whose basins cover Leb-a.e points of the trapping region together with recent
results from [40] on robust entropy expansiveness of sectional-hyperbolic attractors on
their trapping regions. We recall some relevant notions in what follows so as to be able to
present a proof of Theorem B in §5.4.

5.1. Entropy expansiveness. Let g : M → M be a continuous map and K a not nec-
essarily invariant subset of M. For ε > 0 and n ≥ 1, the (ε, n)-dynamical ball around
x ∈ M is B(x, ε, n) = {y ∈ M : d(gjx, gjy) < ε, ∀0 ≤ j < n}. A subset E ⊂ M is an
(n, ε)-generator for K if, given x ∈ K , there exists y ∈ E so that d(gix, giy) < ε for each
0 ≤ i < n. Equivalently, the dynamical ball {B(y, ε, n) : y ∈ E} is an open cover of K.

Let rn(K , ε) be the cardinality of the smallest (n, ε)-generator for K and r(K , ε) =

lim supn→∞(1/n) log rn(K , ε). The topological entropy of g on K is given by

htop(g, K) = lim
ε→0

r(K , ε),

and the topological entropy of g is defined by htop(g) = htop(g, M).
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For x ∈ M and ε > 0 we define the two-sided ε-dynamical ball at x as B(x, ε, ∞) =

{y : d(gnx, gny) < ε, ∀n ∈ Z} and say that g is ε-entropy expansive if all these infinite
dynamical balls have zero topological entropy, that is, supx∈Mhtop(g, B(x, ε, ∞)) = 0.

5.2. Upper semicontinuity of metric entropy. Let µ be a g-invariant measure and P a
finite µ mod 0 measurable partition. The metric entropy of µ with respect to the partition
P is given by

hµ(g, P) = inf
n≥1

1

n
Hµ(P

n) where Hµ(P
n) =

∑

B∈Pn−1

−µ(B) log µ(B)

and Pn is the nth dynamical refinement of P: Pn = P ∨ g−1P ∨ · · · ∨ g−(n−1)P. The
metric entropy of µ is hµ(g) = supPhµ(g, P) and the supremum is taken over all finite
measurable partitions.

If g is ε-entropy expansive, then every finite partition P with diam P < ε is generating,
that is, it satisfies hµ(g) = hµ(g, P) for all µ ∈ M

g

1 , where M
g

1 is the family of all
g-invariant probability measures; see, for example, [16].

The metric entropy of a vector field is the metric entropy of the time 1 map of its
induced flow. A vector field is ε-entropy expansive if the time-one map of its induced
flow is ε-entropy expansive.

Entropy expansiveness is a sufficient condition to ensure upper semicontinuity of the
entropy map µ ∈ M

g

1 7→ hµ(g), as follows.

LEMMA 5.1 [16]. If G is entropy expansive, then the metric entropy function is upper
semicontinuous.

5.3. Equilibrium states and physical measures. Since the family M
G
1 of G-invariant

probability measures is compact in the weak∗ topology, for entropy expansive vector fields
there exists some measure which maximizes the function µ ∈ M

G
1 7→ hµ(G)+

∫
ψ dµ

for any given continuous function ψ : M → R, known as an equilibrium state for ψ , G.
In order to use equilibrium states to obtain statistical stability, we relate equilibrium

states for the potential ψ = log |det Dφ1 | Ecu| with physical measures in the same way
as for hyperbolic attracting sets; see, for example, [18].

THEOREM 5.2. Let3 be a sectional-hyperbolic attracting set for a Hölder-C1 vector field
G with the open subset U as trapping region.

(1) For each G-invariant ergodic probability measure µ supported in 3 the following
are equivalent:

(a) hµ(φ1) =
∫
ψ dµ > 0;

(b) µ is an SRB measure, that is, it admits an absolutely continuous disintegration
along unstable manifolds;

(c) µ is a physical measure, that is, its basin B(µ) has positive Lebesgue measure.

(2) In addition, the family E of all G-invariant probability measures which satisfy
item (a) above is the convex hull E = {

∑k
i=1 tiµi :

∑
i ti = 1; 0 ≤ ti ≤ 1, i =

1, . . . , k}.
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We recall that, from sectional hyperbolicity together with Ruelle’s inequality [48],
hν(φ1) ≤

∫
ψ dν for all ν ∈ M

G
1 . Hence, the set E defined above is formed by equilibrium

states for −ψ , G. The proof of Theorem 5.2 can be found in [9, §2.3] where the same
properties were stated and proved in the dcu = 2 setting (singular-hyperbolic attracting
sets). However, the proof presented there also holds in the present setting without
change.

5.4. Statistical stability. Here we prove Theorem B.
We consider vector fields G on a subset U of X1+(M) with a trapping region U of

a sectional-hyperbolic attracting set 3G = 3G(U) =
⋂
t>0 φ

G
t (U) so that each G ∈ U is

ε-entropy expansive. Then the map U → K(U), G 7→ 3G(U) is continuous, where K(U)
is the family of compact subsets of U with the Hausdorff distance between compact subsets
K , L ⊂ U of a metric space given by (see, for example, [22])

dH (K , L) = inf{r > 0 : K ⊂ B(L, r) and L ⊂ B(K , r)}.

LEMMA 5.3 [7, Lemma 2.3]. For every ε > 0 there is a neighborhood V of G in X1(M)

such that 3Y (U) ⊂ B(3G(U), ε) and 3G(U) ⊂ B(3Y (U), ε) for all Y ∈ V.

Moreover, the map ν ∈ M 7→ supp ν ∈ K(M) is also continuous, where M is the family
of probability measures in M with the weak ∗ topology. In addition, the domination of the
splitting Es3 ⊕ Ecu3 implies its continuity for nearby vector fields; see, for example, [14,
Appendix B.1].

For any fixed G ∈ U and any sequence Gn ∈ U such that ‖Gn −G‖C1 → 0 when
n ր ∞, we let µn ∈ M

Gn
1 be equilibrium states for ψn, Gn, n ≥ 1, where ψn = ψGn =

log |det DφGn1 | Ecu3Gn (U)
|, and µ be a weak∗ limit point of (µn)n≥1. We assume that µ =

lim µn, restricting to a subsequence if necessary. Since the splitting Es3Gn (U) ⊕ Ecu3Gn (U)
is continuous, we can deal with its continuous extension Esn ⊕ Ecun to define ψn on the
whole of M.

The continuity of dominated splittings for nearby vector fields means that for each ξ > 0
there exist N ≥ 1 and a neighborhood V of supp µ such that

supp µn ⊂ V and dist(E∗
n,x ; E∗

3G(U),x) < ξ , x ∈ V , ∗ = s, cu, for all n > N ;

where the distance dist(E, F) between two subspaces E, F of TxM is defined to be

dist(E, F) := max
{

sup
‖v‖=1,v∈E

dist(v, F), sup
‖v‖=1,v∈F

dist(v, E)
}

,

and dist(v, H) := minw∈E ‖v − w‖ for each subspace H of TxM and any x ∈ M .
Moreover, since DφGn1 (x) converges to DφG1 (x) uniformly in x when n ր ∞, we have

ψn → ψ = ψG uniformly by definition of the C1 topology, in the following sense: for any
given ξ > 0 there exist N ≥ 1 and a neighborhood V of supp µ so that |ψn(x)− ψ(x)| <

ξ for all x ∈ V and each n > N .

Proof of Theorem B. Using the compactness of the manifold M, we construct a finite open
cover {B(xi , δ) : i = 1, . . . , k} for some 2δ < ε such that µ(∂B(x, δ)) = 0, i = 1, . . . , k,
and obtain the partition P =

∨k
i=1 B(xi , ε/2) with diameter smaller than ε and the
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boundaries of each atom with zero µ-measure. Hence, for each k ≥ 1, we have that
µ(∂Pk) = 0 since by continuity we have

∂Pn ⊂ ∂P ∪ ∂(φ−1P) ∪ · · · ∪ ∂(φ−k+1P) ⊂ ∂P ∪ φ−1∂P ∪ · · · ∪ φ−k+1∂P.

Now for each fixed k ≥ 1 we find that

0 = lim sup
n

(
hµn(Gn)+

∫
ψn dµn

)
≤ lim sup

n

(
1

k
Hµn(P

k
n)+

∫
ψn dµn

)

where Pkn =
∨k−1
i=0 φ

Gn
−i P and (φGnt )t is the flow induced by Gn.

LEMMA 5.4. For each fixed k ≥ 1 we have lim supn(1/k)Hµn(P
k
n) ≤ (1/k)Hµ(Pk)

where Pk =
∨k−1
i=0 φ

G
−iP.

Assuming the lemma, since k ≥ 1 is arbitrary and (possibly taking a subsequence) we
have µn → µ in the weak∗ topology, then

∣∣∣∣
∫
ψn dµn −

∫
ψ dµ

∣∣∣∣ ≤

∣∣∣∣
∫
(ψn − ψ) dµn

∣∣∣∣ +

∣∣∣∣
∫
ψ dµn −

∫
ψ dµ

∣∣∣∣ −−−→
n→∞

0.

Consequently, we deduce that

0 ≤ inf
k≥1

(
1

k
Hµ(P

k)−

∫
ψ dµ

)
= hµ(G)−

∫
ψ dµ ≤ 0

and so µ achieves the maximum of µ ∈ M
G
1 7→ hµ(G)−

∫
ψ dµ. From Theorem 5.2 we

have that µ is a convex linear combination of the finitely many ergodic physical measures
supported in 3G(U) provided by Theorem A.

To complete the proof of Theorem B we present the proof of the lemma.

Proof of Lemma 5.4. Observe that

sup|t |<kd(φ
Gn
t (x), φGt (x))

u
−−−→
n→∞

0

for all fixed k ≥ 1 and uniformly in x ∈ M . Moreover, we may assume without loss of
generality that each P ∈ P has non-empty interior by construction.

Thus for each δ > 0 and atom Q ∈ P there exists N = N(δ, Q) ∈ Z+ such that for all
n ≥ N and 0 ≤ t ≤ k,

• φG−t (Q) ∩ φGn−t (Q) 6= ∅ and φGn−t (Q) ⊂ Bδ(φ
G
−t (Q)), and

• µ(∂Bδ(Q)) = 0,

where Bδ(Q) =
⋃
x∈Q B(x, δ) is the δ-neighborhood of the set Q. Let N(δ, Pk) =

maxQ∈Pk N(δ, Q) be chosen to satisfy the previous relations simultaneously for all
Q ∈ Pk .

For ω > 0, let ζ > 0 be such that

|ti − si | < ζ , ti , si ∈ R, i = 1, . . . , k H⇒

k∑

i=1

−xi log xi < ω;
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and, for each δ > 0, let L = L(ζ , δ, Pk) be such that µ(∂B(Q, δ)) = 0 for allQ ∈ Pk and

n ≥ L, Q ∈ P
k H⇒ µn(Bδ(Q)) ≤ µ(Bδ(Q))+

ζ

2
.

Since µ(∂Pk) = 0, let δ0 be such that µ(Bδ(Q)) ≤ µ(Q)+ ζ/2 for all Q ∈ Pk .
We now take 0 < δ < δ0 in the previous choices, and for n ≥ L(ζ , δ, Pk)+N(δ, Pk)

we have for each Qn ∈ Pkn that there exists Q ∈ Pk so that

Qn ⊂ Bδ(Q) and µn(Qn) ≤ µn(Bδ(Q)) ≤ µ(Bδ(Q))+
ζ

2
≤ µ(Q)+ ζ ,

which ensures by the choice of the pair (ζ , ω) that

1

k
Hµn(P

k
n) ≤

1

k
(Hµ(P

k)+ ω) ≤
1

k
Hµ(P

k)+
ω

k

for all large enough n depending on ω. Since ω > 0 is arbitrary, this shows that

lim sup
n→∞

1

k
Hµn(P

k
n) ≤

1

k
Hµ(P

k)

and completes the proof of the lemma. �
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