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SUMMARY
Walking with a maximum speed is an interesting subject in
the field of biped motion. Giving an answer to the question
of “what is the maximum achievable speed of a certain
biped walking with a physically acceptable pattern?” is the
main objective of this work. In this paper, minimum time
motion of biped was studied during one step that consists of
single support phase (SSP) and double support phase (DSP).
The minimum time problem is formulated with stability and
non-slip conditions along with actuator limits expressed as
some inequality constraints. In addition, certain kinematic
constraints in terms of hip joint position are considered
that ensure an acceptable walking pattern. A phase-plane
technique is used to find the minimum time solution. A
numerical simulation is given to shed some light on how
the proposed method works. Validity and effectiveness of the
method are verified by comparing the results with those of
other researches.

KEYWORDS: Minimum time motion; Bipeds; Stability and
non-slip condition; Phase-plane analysis.

1. Introduction
Locomotion of biped robots has gained lots of attention
during the past few decades. While stability was initially
the main issue of research, optimization and improving the
pattern of motion are now the most important issues studied
by researchers.

Vukobratovic et al.1,2 proposed a stability criterion known
as zero moment point (ZMP) that guarantees walking
stability. They defined ZMP as a point on the ground where
moment of all gravitational and inertial forces acting on the
robot is zero about two axes lying in the plane of the ground.
A sufficient condition for stability was stated to keep this
point within the supporting polygon during motion. This
method was employed by many researchers to plan stable
walking gait for bipeds. Kajita et al.,3,4 Park and Kim,5 and
Erbatur and Kurt6 used a linear model of inverted pendulum
in path planning for a stable motion of biped. However, due to
approximations in the dynamic model, ZMP did not exactly
track the desired trajectory. Takanishi et al.7 and Yamaguchi
et al.8 considered a dynamic model of the biped. They used
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Fourier series functions for hip joint and track to design
the motion such that ZMP follows a prescribed trajectory.
However, it was difficult to determine the desired ZMP
trajectory to have appropriate performance. To deal with this
problem, Huang et al.9 proposed a method of gait synthesis
without first prescribing the desired ZMP trajectory. In this
method, foot and hip trajectories are planned beforehand
in Cartesian space using cubic spline interpolation. They
formulated the smooth hip motion using two parameters and
computed them to obtain largest stability margin, by which
they mean to keep ZMP trajectory near the center of the
stable region.

Besides dealing with motion stability, many researchers
tried to optimize the motion. Most attention is paid in
this field to minimization of the consumed energy.10–12

Optimization of actuator demand is another subject studied
in refs. [13–16]. Speed of bipeds is another important
characteristic that has been improving among different
generations of bipeds. Chevallereau and Aoustin17 obtained
optimal cyclic gait for a biped robot without actuated ankle.
The gait is composed uniquely of successive single support
phase (SSP) and instantaneous impact. They took the joints
variables as polynomial functions and then found their
coefficients in order to optimize the walking speed and to
insure cyclic motion of the biped. Miossec and Aoustin18

employed a time-optimal control law in double support
phase (DSP) to show how such control can improve stability
of the walk. In this research, they tried to present a one-
dimensional stability analysis based on Poincare map. Dip
et al.19 optimized bipedal walking gait by considering the
tradeoff between stability margin and speed. They applied a
genetic algorithm approach to optimize the key parameters
of the walking trajectory and the step length for a certain
step period such that stability margin is maximized. Torque
limits were not utilized for calculating the optimal speed.
In another work Tlalolini et al.20 tried to design a path that
could minimize the energy cost of a biped while walking
with a desired speed. They, then, tried to increase the walking
speed by a search strategy in which the desired speed was
increased step by step. One of the main conclusions of this
study is that the maximum velocity substantially increases
by the introduction of the foot rotation sub-phase in SSP.
Although this study could give a systematic approach to
increasing the walking speed, it could not give the answer
to the maximum achievable speed of the biped. Sadigh and
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Mansouri21 arranged a parameter study to find out effect of
step length and step period on biped motion. They employed
ZMP criteria for stable path planning for several values of
step size and step period. They then chose feasible motion
among them based on feasibility of actuator limits. This way
they found maximum possible speed of the biped for stable
walking. Although this parameter study could potentially
give a solution to the question of minimum time motion,
it could not practically be used due to huge amount of
computational effort needed to find the solution.

Essentially, two quite different methods have been
developed to generate optimal gait trajectories. The
most frequently used approach is based on parametric
optimization, whereas the second goes within the framework
of optimal control theory. Parametric optimization
techniques developed for the purpose of motion optimization
mostly rely on representing the motion of biped as
functions of time defined by a finite set of discrete
parameters to be dealt with as optimization variables. The
resulting nonlinear optimization problem can be solved by
implementing sequential quadratic programming algorithms,
genetic algorithm, etc. Parametric optimization is an efficient
means of computing suboptimal trajectories. However, due
to the fact that discrete optimization variables are reduced to
a finite number, complete fulfillment of constraints, defined
over the whole range of time, may be difficult to achieve. In
the second method, the optimization problem is considered
as an optimal control problem to be dealt with using the
Pontryagin maximum principle.

This paper is an effort toward giving a more rigorous
solution to the problem of minimum time motion of a
specified biped walking stably on a flat surface, while
satisfying kinematics constraints of a desired gait such as
preventing heel impact with the ground at the end of SSP.
One strategy to solve this problem is to minimize the total
time necessary for moving a certain distance. To this end,
one might minimize the index J = ∫

dt subject to equality
constraints of equations of motion and kinematic constraints,
and inequality constraints of actuator limits and stability and
non-slip conditions. Although such strategy is suitable for
problem formulation, it may not be for obtaining a solution.
This approach ends in solving a set of ordinary differential
equations with two-point boundary values that are to be
solved while considering inequality constraints of stability
and non-slip condition. Obtaining a solution to this problem
seems to be very difficult due to complexity of the dynamics,
its different nature during SSP and DSP, and difficulty of
dealing with Coulomb friction during numerical simulation
needed in shooting method.

Instead of this strategy an algorithm based on phase-plane
analysis was used to obtain the minimum time solution,
which was first introduced for serial manipulators by Bobrow
et al.22 In this strategy, we tried to find minimum time
motion during a complete step with known step length and
then to find the best step length that maximizes the walking
speed. The minimum time motion is solved for SSP and
DSP simultaneously. We introduce an algorithm to find
total solution that satisfies initial and final conditions that
ensure periodic walking constraint. One should note that
although frameworks of the minimum time problem for both

SSP and DSP are the same, the constraints are different;
moreover, complexity grows in DSP due to closed kinematic
configuration of system in this phase.

Phase-plane algorithm for solution of minimum time
problem of a non-redundant serial manipulator along
specified path subject to actuator limits was first introduced
by Bobrow et al.22 They stated that minimum time motion for
such system is bang-bang in terms of tangential acceleration
of tip of manipulator along the specified path. They also
argued that due to actuator limit there would be a speed
limit, along the path, beyond which no combination of
actuator efforts could keep the manipulator on desired path.
Such speed limit divides the phase plane into two feasible
and non-feasible regions. Considering the fact that in phase
plane the minimum time trajectory is the highest feasible
one, they proposed to move the manipulator either with
maximum or minimum acceleration along the path in such a
way that the solution trajectory never enters non-feasible
region. To this end, they used a trial-and-error method
to find the switching points such that solution curve in
phase plane comes in contact with non-feasible boundary
(NFB) without crossing it. While the proposed method
was theoretically an important advancement in solution of
minimum time motion of manipulators, from a practical point
of view it was very difficult and numerically inefficient.
Pfeiffer and Johanni23 improved the method proposed by
Bobrow. They introduced the concept of critical points
that are candidates of switching points for multi-switch
cases. They also proposed an algorithm to construct NFB
and to establish switching curve in phase plane for serial
manipulators. Zlajpah24 studied characteristics of solution
curve for a manipulator moving on a specified path in phase
plane and introduced concept of trapped area and locked
area that later on was proved by Ghasemi and Sadigh25 to be
very essential in establishing the switching curve. Verscheure
et al.26 presented a general theoretical method to transform
the problem of time-optimal path tracking to a convex optimal
control problem with a single state. They then presented some
convexity-preserving extensions that can be used for other
optimal problems.

Moon and Ahmad27,28 and Bobrow et al.29 extended
this method for cooperative non-redundant manipulators.
They employed a linear programming approach to find the
maximum and minimum acceleration along the path, which
needs lots of computation effort. This burden was later on
lifted by Sadigh and Ghasemi30 who proposed to solve a
set of linear equations, which takes advantage of pattern of
saturated actuators in the previous step, to find maximum
and minimum acceleration along the path. Afterwards, they
extended the method introduced by Pfeiffer and Johanni23

for computation of NFB and calculation of maximum and
minimum acceleration for parallel manipulators.31,32

As explained before, we try to find minimum time solution
for stable motion of biped during a complete gait for a specific
path in sagittal plane. To find a physical and realizable
solution, we need to consider a constrained solution. Stability
and slippage prevention are two important constraints that are
to be considered. In addition, we also need to consider some
kinematic constraints necessary for an acceptable pattern of
motion. For instance, a global minimum time solution that
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causes foot to hit the ground or a drastic motion for knee or
hip joint or even an oscillatory motion for trunk cannot be
regarded as an acceptable solution.

To this end, horizontal hip position was considered as
the independent parameter of motion and then all other
degrees of freedom were related to that by physical kinematic
constraints that ensures acceptable pattern of motion. Solving
this minimum time problem is equivalent to plan the path for
horizontal hip joint that minimizes the time elapse of motion
while satisfying all imposed constraints. This basically turns
the problem into one similar to what was solved by Bobrow
et al.22 and other researchers who followed this method;
however, one still faces the following difficulties in using the
phase-plane analysis to find the minimum time solution:

(1) The initial and final speeds, which in this technique are
supposed to be known, are not known here.

(2) Nature and form of the constraint equations—that plays
an important role in calculation of switching points and
maximum acceleration and deceleration in phase-plane
method—are different from what we are facing in this
problem.

To circumvent this problem, we tried to cast the constraints
of the problem in a form that can be handled by the phase-
plane technique and then introduced the solution algorithm
based on that.

Although this paper can be considered as one of the first
effort toward the minimum time path planning of a biped in
a complete step with SSP and DSP, yet its main contribution
can be considered in the way the problem is formulated
and casted in a framework that can be solved by a rather
straightforward method of phase plane. This method not only
is simpler than numerical methods, but it also guarantees
to give the solution. The main obstacles in using phase-
plane techniques, as mentioned before, were how to express
constraints of periodicity of motion, balance stability, and
non-slip walking in a framework that can be handled by the
phase-plane method.

Mathematical modeling of biped is given in the next
section. In the third section, we introduce kinematic
constraints of a desired motion. The proposed solution
algorithm is introduced in Section 4. Two numerical
examples are given in the fifth section to show how the
method works. One of these examples is chosen to compare
the results obtained in this study with those published by
Tlalolini et al.20 that help validate the effectiveness of the
proposed method in generating minimum time solution.
Concluding remarks of this study are given in the last
section.

2. Mathematical Modeling
As stated before, the objective of this study is to find
minimum time stable path during one step that consists of
SSP and DSP. Such minimum time motion needs to satisfy
equations of motion and stability and non-slip condition as
constraint equations. In this section, we first develop these
equations and then state mathematical form of minimum time
problem.

Fig. 1. Seven-link model of a planar biped robot.

2.1. Equations of motion
Considering the purpose of this study, we may use a seven-
link model of a planar biped consisting of a trunk and two
legs with three joints of hip, knee, and ankle in each leg,
as shown in Fig. 1. It is assumed that all joints are revolute
and actuated by rotational actuators co-located at the joints.
It is also assumed that motion is confined in sagittal plane.
We may describe the motion of biped using nine generalized
coordinates; i.e., q = [q1 . . . q7 x z]T as shown in Fig. 1.

Single support phase starts when toe of swing leg leaves
the ground and ends when its heel comes in contact with
the ground again. Considering that stance leg is virtually
pivoted to the ground during this phase, one may write
holonomic constraints, which state the condition for non-
slipping contact, as follows:

ϕ(q) =
⎡
⎣ zA

zB

xB − c1

⎤
⎦ = 0, (1)

where the subscripts A and B stand for heel and toe of
stance leg, as shown in Fig. 2, and c1 is a constant, which is
the horizontal position of point B in the inertial coordinate
system.

The forces applied on foot of stance leg can be replaced by
two normal forces at heel (Fz

A) and toe (Fz
B) and a tangential

force (Fx
AB). It means that contact forces during this phase

can be shown as:

F = [
Fz

A F z
B F x

AB

]T
. (2)

During one complete step, kinematic structure of biped
changes due to the fact that DSP alternates with SSP. DSP
starts when heel of swing leg comes in contact with ground
and ends when the toe of stance leg leaves the ground. In this
phase, the system has close-chain tree-like configuration.
In this study, we assume that heel of stance leg leaves the
ground as soon as DSP starts. In DSP, holonomic constraints
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Fig. 2. Contact forces applied on the stance foot in SSP.

Fig. 3. Contact forces applied on the contact points in DSP.

are defined as follows:

ϕ(q) =

⎡
⎢⎣

xB − c2

zB

xC − c3

zC

⎤
⎥⎦ = 0, (3)

and contact forces are given as:

F = [
Fx

B F z
B F x

C F z
C

]T
, (4)

where, in these relations, subscripts B and C stand for toe of
rear leg and heel of front leg, as shown in Fig. 3, and c2 and
c3 are some constants that are, respectively, the horizontal
position of point B and C in the inertial coordinate system.

Equations of motion of this system can be obtained in
general form as:

M(q)q̈ + H(q, q̇) = Bτ + JTF, (5)

where M(q) is a 9 × 9 symmetric inertia matrix; H(q, q̇)
is a 9 × 1 array representing coriolis, gravitational, and
centrifugal terms; B is a 9 × 6 matrix; and τ is the 6 × 1
vector of input torques. Also, the matrix J = ∂ϕ/∂q depicts
Jacobian of holonomic constraints due to contact with the
ground and F is the array of contact forces. One should note
that J and F are different during SSP and DSP, which implies

that we face two different sets of equations of motion during
SSP and DSP.

Equation (5) can be rewritten in the following form:

M(q)q̈ + H(q, q̇) = A (q)u, (6)

where A = [ B JT ] and u =
[
τ

F

]
.

2.2. Stability condition
As stated before it is sufficient that ZMP is located in the
supporting polygon for a biped to have stable walking.2 This
means xA ≤ xZMP ≤ xB during SSP and xB ≤ xZMP ≤ xC

during DSP. Writing moment equations around ZMP, one
can show that this stability criterion is equivalent to having
positive normal forces at contact points. In addition, to
prevent slippage the normal forces applied on contact points
must be large enough to supply enough friction force.
Considering free body diagram shown in Fig. 2, the following
conditions must hold to ensure stability and to prevent
slippage during SSP:

⎧⎪⎨
⎪⎩

Fz
A ≥ 0

Fz
B ≥ 0

μ
(
Fz

A + Fz
B

) ≥ ∣∣Fx
AB

∣∣ .
(7)

One may rewrite the above inequality constraints in the
following form:

DF ≥ 0, (8)

where F is the vector of contact forces as defined in Eq. (2)
and

D =

⎡
⎢⎣

1 0 0
0 1 0
μ μ 1
μ μ −1

⎤
⎥⎦ .

On the other hand, considering the free body diagram
shown in Fig. 3, one can show that the following conditions
must hold to ensure stability and non-slip condition in DSP:

{
μFz

B ≥ ∣∣Fx
B

∣∣
μFz

C ≥ ∣∣Fx
C

∣∣ . (9)

As before, one might rewrite the above inequality
constraints in the form of Eq. (8). In this case, however,
F is the vector of contact forces defined in Eq. (4) and

D =

⎡
⎢⎣

1 μ 0 0
−1 μ 0 0
0 0 1 μ

0 0 −1 μ

⎤
⎥⎦ .

2.3. Problem statement
We may now state the minimum time problem as follows:
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Problem (1): Find the optimum path q∗(t) to minimize∫ tf
ti

dt subject to

M(q)q̈ + H(q, q̇) = A (q)u,

DF ≥ 0,

ϕ(q) = 0,

τmin ≤ τ ≤ τmax, (10)

with initial and final conditions:

q(ti) = qi , q(tf ) = qf ,

where τmin and τmax show saturation limits of the actuators.
One should note that the matrices A, u, D, F, and ϕ are
different during SSP and DSP as explained before.

This problem can be restated in a more convenient form
by substituting Eq. (8) into Eq. (6). Let us define

� = Tu, (11)

where

� =
[
τ

E

]
, T =

[
I 0
0 D

]

and E depicts a 4 × 1 vector that equals to DF as defined in
Eq. (8).

Considering that A is a 9 × 9 non-singular matrix in SSP,
one may pre-multiply Eq. (6) by TA−1 and substitute E = DF
to obtain

M̄(q)10×9q̈ + H̄(q, q̇)10×1 = �10×1, (12)

where M̄ = TA−1M and H̄ = TA−1H.

Equation (12) shows 10 equations that can be solved along
with three holonomic constraints, Eq. (1), to find q9×1 and
E4×1 as unknown.

In a similar way, for DSP we may substitute u = T−1�

from Eq. (11) into Eq. (6) to get

M(q)9×9q̈ + H(q, q̇)9×1= Ā(q)9×10�10×1, (13)

where Ā = AT−1.

One should note that in DSP, T is a 10 × 10 non-singular
matrix. Equation (13) shows nine equations that can be solved
along with four holonomic constraints, Eq. (3), to give q9×1

and E4×1 as unknown.
Considering these extended equations of motion, Eqs. (12)

and (13), one may restate the minimum time problem in the
following form:

Problem (2): Find the optimum path q∗(t) to minimize∫ tf
ti

dt subject to

{
M̄(q)q̈ + H̄(q, q̇) = � for SSP
M(q)q̈ + H(q, q̇)= Ā(q)� for DSP

,

ϕ(q) = 0,

�min ≤ � ≤ �max, (14)

with initial and final conditions:

q(ti) = qi , q(tf ) = qf .

Considering the actuator limits τmin ≤ τ ≤ τmax and limits
due to stability criterion defined in Eq. (8) as E ≥ 0, the limits
on � can be written as:

�min =
[
τmin

0

]
, �max =

[
τmax

∞
]

.

As explained in the previous section, solution of
this problem may result in unacceptable solutions from
practical point of view for walking purpose. To circumvent
this problem, we should add some kinematic constraints
necessary for an acceptable walking pattern. In the next
section, we develop such kinematic constraints.

3. Kinematic Constraints of Natural Walking
Considering that moving hip joint in horizontal direction
might be regarded as main objective of walking, one might
try to express motion of the whole body as functions of that
in such a way to comply with physical constraints of walking.
To this end, we might define the non-dimensional parameter
of motion, s, as:

s = x − xi

Ds

, (15)

where x and xi are, respectively, the horizontal position of hip
joint and its value at the beginning of SSP and Ds is the step
length of walking as shown in Fig. 4. Equation (15) shows
that the value of s varies between zero and one during one
step. The value of s at the end of SSP is sc = (xc − xi)/Ds ,
in which xc is the horizontal position of hip joint at the end
of SSP. The value of sc also depicts the ratio of SSP of the
whole step.

Now, recalling that the system in SSP and DSP has
respectively six and five degrees of freedom, to have a fixed
pattern of motion we need some kinematic constraints in the
form of:

gi(q, s) = 0,

{
i = 1, . . . , 5 for SSP
i = 1, . . . , 4 for DSP . (16)

Fig. 4. Position of hip joint in the inertial coordinate system.
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Fig. 5. Motion pattern of biped robot during one step.

These kinematic constraints can be defined by assuming
natural motion for trunk, hip, and ankle joints. In another
word, we try to define geometric trajectories for trunk,
vertical motion of hip joint, horizontal and vertical motion
of ankle joint of swing leg, and angle of both foots during a
step in terms of non-dimensional horizontal position of hip
joint, s, defined in Eq. (15). We consider some polynomials
in terms of the parameter s and then the coefficients of
these polynomials are obtained by choosing proper values
of geometric constants and enforcing some constraints in
accordance with natural walking.

We consider vertical motion of hip joint such that it is at
the highest level in the middle of SSP and at the lowest in the
middle of DSP. Such conditions are expressed as follows:

z(s) =
{
Hmax s = 0.5sc

Hmin s = sc + 0.5(1 − sc) . (17)

To satisfy these two conditions, we may use two
polynomials of second order for z as follows:

z(s) =
{
α(s − 0.5sc)2 + Hmax s ≤ sc

β(s − sc − 0.5(1 − sc))2 + Hmin s > sc
. (18)

Coefficients α and β, in the above relation, are obtained such
that the continuity conditions in position and velocity are
satisfied.

It is also assumed that trunk remains vertical during
motion, which means:

q4(s) = 0. (19)

To design a suitable trajectory for angle of foots, we use a
fifth-order polynomial in DSP for q1 satisfying the following
geometric conditions:

q1(s) =
{

0 s = sc

θs s = 1 , q̇1(s) =
{

0 s = sc

0 s = 1 ,

q̈1(s) =
{

0 s = sc

0 s = 1 , (20)

and two fifth-order polynomials in terms of s for q7 during
SSP and DSP to satisfy the following requirements:

q7(s) =
⎧⎨
⎩

θs s = 0
θe s = sc

0 s = 1
, q̇7(s) =

⎧⎨
⎩

0 s = 0
0 s = sc

0 s = 1
,

q̈7(s) =
⎧⎨
⎩

0 s = 0
0 s = sc

0 s = 1
, (21)

where θs and θe are, respectively, foot angle of swing leg at
the beginning and end of SSP, as shown in Fig. 5.

The two last kinematic constraints that must be determined
are horizontal and vertical position of ankle joint of swing leg.
To define them, we use a fifth-order polynomial in terms of s
for its horizontal position, which should satisfy the following
requirements:

xa(s) =
{
xi − xs − Ds + lf − lf cos(θs) + la sin(θs) s = 0
xc − xe + Ds − lh + lh cos(θe) + la sin(θe) s = sc

,

ẋa(s) =
{

0 s = 0
0 s = sc

, ẍa(s) =
{

0 s = 0
0 s = sc

, (22)

where xs and xe are, respectively, horizontal position of hip
joint at the beginning and end of SSP measured from stance
ankle joint, as shown in Fig. 5. Also, lh and lf show the
length of heel and toe portions of foot and la is the height of
the foot (see Fig. 6).

On the other hand, vertical motion at ankle joint is not
normally symmetric during the motion. The vertical motion
of ankle joint can be defined by two cubic polynomials
in terms of horizontal position of ankle joint, xa . The
coefficients of these polynomials should be computed in such
a way that the following physical constraints are satisfied and
the first and second derivatives of the resulting polynomials
be continuous.

za(xa(s)) =
⎧⎨
⎩

lf sin(θs) + la cos(θs) s = 0

h xa = d

−lh sin(θe) + la cos(θe) s = sc

,

ża(xa(s)) = 0 xa = d, (23)
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Fig. 6. Schematic diagram of biped dimension.

Table I. The walking parameters of the biped robot.

Parameters Values

xs −0.545scDs

xe 0.455scDs

θs 0.28Ds/(la + lsh + lth)
θe −0.28Ds/(la + lsh + lth)
d −0.37Ds

h 0.2
Hmax

√
(lsh + lth)2 − (0.5Ds)2 + la − 0.06

Hmin Hmax − 0.02

where (d, h) shows the position of the highest point of the
swing foot as shown in Fig. 5.

Walking parameters in above relations are some arbitrary
values that are normally chosen to comply with normal
walking pattern. A typical choice of these parameters is given
in Table I. The coefficients of relations given in this table
are chosen to yield a normal walking pattern. Moreover,
the value of Hmax and Hmin are choosing to get as close
as possible to the situation of straight knee walking, while
avoiding singularity.

Equations (17)–(23) impose geometric constraints that
incorporate physical conditions of natural walking pattern.
So these relations must also be satisfied by the minimum
time solution. Considering these relations, the final form of
minimum time problem is stated in the next section and the
solution algorithm is also presented. One should note that
these kinematic constraints have fixed the pattern of motion.
Indeed, it is not the coefficients of the polynomials but the
parameter s∗(t) that is determined by the minimum time
solution. If s∗(t) is known, the whole path is known.

4. Minimum Time Solution
To solve the minimum time problem stated in the previous
section, we first try to restate it in terms of non-dimensional
path parameter s. Defining X = [q4 q7 x z xa za ]T

for SSP and X = [q1 q4 q7 x z ]T for DSP as the work
space trajectories that are to be followed, one can write them

in terms of s as follows:

X = f(s). (24)

On the other hand, direct kinematic equations of biped
describe X in terms of q as follows:

X = p(q). (25)

Substituting X from Eq. (24) into Eq. (25) and solving for
q yields:

q = p−1(f(s)) = q(s). (26)

Differentiating Eq. (26) with respect to time, one gets q̇
and q̈ as follows:

q̇ = q′(s)ṡ, (27)

q̈ = q′′(s)ṡ2 + q′(s)s̈, (28)

where (.)′ and (.)′′ denote first and second derivatives with
respect to s.

Plugging these equations in extended form of equations of
motion, Eqs. (12) and (13), these equations can be written
as:

c̄(s)s̈ + d̄(s)ṡ2 + ē(s) = �, (29)

c(s)s̈ + d(s)ṡ2 + e(s) = Ā(s)�. (30)

Now we may restate the minimum time problem as:
Problem (3): Find the optimum path s∗(t) to minimize∫ tf

ti
dt subject to

{
c̄(s)s̈ + d̄(s)ṡ2 + ē(s) = � 0 ≤ s ≤ sc

c(s)s̈ + d(s)ṡ2 + e(s) = Ā(s)� sc < s ≤ 1
,

�min ≤ � ≤ �max, (31)

with initial and final conditions:

s(ti) = 0, s(tf ) = 1.

Problem (3) is presented in a form similar to what was
first addressed by Bobrow et al.22 for serial manipulators
moving on a specified path and later on solved by Moon and
Ahmad27,28 and Bobrow et al.29 for parallel manipulators.
According to them, solution to this problem is bang-bang
in terms of s̈, which leaves the following two main steps to
complete the solution.

(1) To find the maximum and minimum value of s̈ at each
point along the path.

(2) To find the switching points.

Thanks to the fact that a higher solution in phase plane
takes shorter time to be accomplished, they suggested a
phase-plane analysis to solve the problem. They also showed
that due to inequality constraints, there would be a specific
value of ṡ for each point of the path beyond which no
combination of actuator torques could keep the manipulator
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Fig. 7. (Colour online) Categorization of phase plane according to
acceleration bounds.

on the specified path. These points form the boundary of non-
feasible region in phase plane, as entitled by Bobrow et al.22

In another words, as Fig. 7 shows, one might categorize
points of phase plane as follows:

(1) Feasible points (s, ṡ) from which the system can move
with a variety of accelerations s̈min ≤ s̈ ≤ s̈max.

(2) Non-feasible points for which s̈max < s̈min, which means
there is no solution satisfying the inequality constraints.

(3) Points on NFB for which s̈min = s̈max is the only possible
acceleration along the path.

Establishment of NFB is a very crucial step in finding
switching curve and the minimum time solution.

To find maximum or minimum acceleration at a desired
point (sd, ṡd ), one should solve the following linear
programming problem:

L (1): Find the control input τ to maximize or minimize s̈

subject to:{
c̄(sd )s̈ + d̄(sd )ṡ2

d + ē(sd ) = � 0 ≤ sd ≤ sc

c(sd )s̈ + d(sd )ṡ2
d + e(sd ) = Ā(sd )� sc < sd ≤ 1

,

�min ≤ � ≤ �max. (32)

To establish the boundary of non-feasible region, it is
necessary to find the value of ṡ that makes s̈min = s̈max for
all values of s. Such a procedure for constructing NFB is
very time consuming and tedious. Pfeiffer and Johanni23

introduced a method that directly gives s̈max, s̈min, and ṡ2
max at

each value of s for serial manipulators. They also proved that
the curve defined by (s, ṡmax) is the boundary of non-feasible
region. This way they gave a direct method to establish NFB
for serial manipulators. On the other hand, a similar problem
was studied by Sadigh et al.32 for parallel manipulators.
Details of these approaches and how they can be applied
to our system are given in the Appendix.

To establish the switching curve and present a solution
algorithm, we need to know the nature of points on NFB.
Points on NFB are categorized as sink or source depending
on whether the slope of solution curve in phase plane, s̈/ṡ, is
greater or smaller than slope of NFB (see Fig. 8(a)). Any
solution starting from a source continues in the feasible
region, whereas any solution starting from a sink immediately
leaves the feasible region. On the other hand, there is one
feasible solution trajectory that ends up to a sink; however, no
feasible solution trajectory ends up to a source. It means that

both forward and backward integrations from a sink to source
point on NFB would result in feasible solution trajectories.
These points being called critical points are candidates of
being switching points on NFB (more details could be found
in refs. [23, 25].)

Another point that is worthy of attention is that the value of
ṡ at the beginning and end of the step is not known. However,
to comply with periodicity condition ṡi = ṡf and to have
the fastest motion, they should take the maximum possible
values. The method of choosing ṡi and ṡf is described in
more detail in the solution algorithm of the problem.

4.1. Phase-plane algorithm
To find the minimum time path and appropriate initial and
final conditions for ṡ, the following steps should be taken:

Step 1: Construct NFB in phase plane either using a search
algorithm based on L (1) or by the method described in the
Appendix (see also Fig. 8).

Step 2: Find critical points on NFB where the points on
NFB changes from sink to source, e.g., points C1, C2, and C3

in Figs. 8(a) and 8(b). These points are candidates of being
switching points on NFB.

Step 3: From lowest critical point, C2, integrate backward
in time with minimum acceleration until either the line
of s = 0 is crossed or s̈min becomes greater than s̈max,
i.e., solution trajectory enters non-feasible region—point b1

in Figs. 8(a) and 8(b). Considering the fact that solution
trajectories in phase plane do not cross each other, any
solution that starts above this line can not continue in the
feasible region and eventually ends up in the non-feasible
region. The area between this trajectory (B1) and NFB is
called the trapped area (AT ). It means that any critical point
located in this area is of no importance and should be ignored.

Step 4: From point C2 integrate forward in time with
maximum acceleration until either the line of s = 1 is
crossed, point b2 in Fig. 8(a), or the solution trajectory, B2,
crosses NFB at point b2 (Fig. 8(b)). In this case the area
above line B2 is a locked area (AL), which means no solution
trajectory that starts in feasible region can enter this area.
This means that any critical point that is located in this area
can never be reached and must be ignored, e.g., point C3 in
Figs. 8(a) and 8(b). Point C2 would be one of the switching
points on NFB.

Step 5: Repeat Steps 3 and 4 from the lowest neighboring
critical point outside trapped and locked area, like point C1

in Figs. 8(a) and 8(b), to generate solution trajectories B3

and B4. The point S2 in Fig. 8(a) or S3 in Fig. 8(b) in
which B4 crosses B1 is another switching point. Continue
this procedure until either both lines of s = 0 and s = 1
is crossed, like Fig. 8(a), or there remains no critical
point outside trapped and locked area, like the case shown
in Fig. 8(b). After doing this, lowest portion of solution
curves B1 to Bn generates the switching curve, e.g., curve
b3 C1 S2 C2 b2 in Fig. 8(a) and curve b3 C1 S3 C2 b2 in
Fig. 8(b).

Switching curve, which is itself a solution curve, divides
the phase plane into admissible and non-admissible areas,
i.e., any motion starting from a point below this curve
remains in the feasible region; however, any motion starting
from a point above this curve will eventually end up in the
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Fig. 8. (Colour online) Schematic diagram of the solution curve.

non-feasible region. It means that this curve would be the
highest feasible solution curve in the phase plane. It gives
the idea that the minimum time solution can be found by
integrating forward (backward) in time with s̈max (s̈min) from
initial (final) condition until this switching curve is crossed.

It is clear from Figs. 8(a) and 8(b) that the maximum
achievable values of ṡ at s = 0 and s = 1 are ṡi and ṡf for
the case that switching curve intersects lines s = 0 or s = 1,
respectively, e.g., points Di and Df in Fig. 8(a) and point Di

in Fig. 8(b). The maximum achievable ṡ, on the other hand,
equals ṡ at intersection of NFB with lines s = 0 and s = 1
in cases where switching curve does not cross lines s = 0
or s = 1, e.g., point Df in Fig. 8(b). Although these initial
and final points are feasible, they do not generally satisfy

periodicity constraint of ṡi = ṡf . This problem is resolved
by taking the next step.

Step 6: Choose the minimum of ṡi and ṡf as the initial and
final values for ṡ (see points D′

i and Df in Fig. 8(a) and Di

and D′
f in Fig. 8(b)). Integrate from initial or final condition

that is changed until the solution curve crosses the switching
curve, i.e., points S ′

1 in Fig. 8(a) and S5 in Fig. 8(b).
The solution that starts from initial point and follows on

the switching curve and ends up at the final point is the
minimum time path, i.e., curve D′

i S
′
1 C2 Df in Fig. 8(a)

and curve Di C1 S3 C2 S5 D′
f in Fig. 8(b). It should be noted

that for the first and last step of walking, the periodicity
constraint is removed and ṡi = 0 or ṡf = 0 will be used
accordingly.
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Table II. The physical parameters of the biped robot.

Links Feet Shin Thigh Trunk
Length (m) 0.23 0.3 0.3 0.5
Mass (kg) 3.3 5.7 10 30
Inertia (kg.m2 ) 0.01 0.02 0.03 1.7
Mass center position (m) 0 0.15 0.15 0.25

Feet characteristics lh lf la
0.1 m 0.13 m 0.1 m

Motors Ankle Knee Hip
Torque max (N.m) 70 100 70

5. Numerical Examples
In this section, two numerical examples are presented. The
objective of the first example is twofold: first, to show how
the method works and second to show the effectiveness of
the method by comparing the maximum achievable speed
with what was obtained in a previous study by Sadigh and
Mansouri21 for the same biped. The next example is adopted
from a recent work20 on optimal path of biped motion to
show the ability of the proposed algorithm by comparison of
obtained results.

5.1. Example 1
To illustrate how the method works, in this section the
proposed algorithm is applied to solve the minimum time
motion of a seven-link biped. Physical parameters of biped
and actuator limits are given in Table II. The position of mass
center of links and their length are shown in Fig. 6.

It is assumed that sc = 0.80, Ds = 0.45m, and μ = 0.2.
Considering the inertial coordinate system shown in Fig. 5 is
located beneath the ankle joint of the stance foot, the value
of xi equals xs . By this assumption, Eq. (15) yields:

x(s) = 0.45s − 0.196. (33)

One should note that s is a non-dimensional parameter,
which means that it has no unit of measurement. Substituting
physical and walking parameters from Tables I and II,

respectively, into the geometric conditions given by Eqs.
(17)–(23) and solving linear equation, the polynomial
coefficients of geometric trajectories defined in Section 3
can be calculated, which gives:

z(s) =
{−0.1(s − 0.4)2 + 0.596 s ≤ 0.8

0.4(s − 0.9)2 + 0.576 s > 0.8
, (34)

q1(s) = 3375(s − 0.8)5 − 1687(s − 0.8)4

+225(s − 0.8)3 s > 0.8, (35)

q7(s) =

⎧⎪⎪⎨
⎪⎪⎩

−6.592s5 + 13.184s4 − 7.031s3

+0.18 s ≤ 0.8
3375(s − 0.8)5 − 1687(s − 0.8)4

+225(s − 0.8)3 − 0.18 s > 0.8

, (36)

xa(s) = 15.756s5 − 31.512s4 + 16.806s3

−0.430 s ≤ 0.8, (37)

za(xa(s)) =

⎧⎪⎪⎨
⎪⎪⎩

2.982x3
a + 1.145x2

a + 0.133xa

+0.204 xa ≤ −0.167
0.194x3

a − 0.253x2
a − 0.101xa

+0.190 xa > −0.167

s ≤ 0.8.

(38)

The boundary of non-feasible region, which is calculated
using the Pfeiffer polygons, is shown in Fig. 9. Values of s̈/ṡ

and slope of NFB are compared in Fig. 10 that shows that
the behavior of the boundary changes from sink to source at
six critical points: s = 0.075, 0.559, 0.665, 0.829, 0.841, and
0.968. These points, as explained before, are candidates of
being switching points. The switching curve is established by
backward integration with s̈min and forward integration with
s̈max from point C1(0.075, 1.599), the lowest critical point
in the phase plane, which results in branches B1 and B2,
as shown in Fig. 9. Solution curve B1 crosses line s = 0 at
ṡi = 1.989s−1, which gives the maximum possible speed of
hip joint at the beginning of SSP. As parameter ṡ shows time
derivative of a non-dimensional parameter, its unit would be

Fig. 9. (Colour online) Schematic diagram of the NFB and solution curve.
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Fig. 10. (Colour online) The difference between s̈/ṡ and slope of
NFB.

s−1. Branch B2, on the other hand, enters non-feasible region
at point b2(0.519, 2.009). The algorithm continues from the
next lowest critical point, C2(0.559, 2.060). Solution curve
B3 that is obtained by backward integration with s̈min crosses
branch B2 at point S2(0.478, 1.882), which is a switching
point. The forward path from point C2, on the other hand,
does not cross NFB, but crosses line s = 1 at ṡf = 3.039,
which gives the maximum possible speed of hip joint at
the end of step. An interesting fact is that in this problem
four critical points—C3, C4, C5, and C6—are not switching
points. This is due to the fact that the area between line B4

and NFB is the locked area, which means no solution starting
below line B4 can enter this area.

As the last step, we locate D′
f (1, ṡ ′

f ) such that ṡ ′
f =

min(ṡi , ṡf ) and integrate backward in time until the switching
curve is intersected at S ′

2(0.396, 1.575). The solution curve
shown in Fig. 9 is depicted by curve DiC1S

′
2D

′
f , which is

the highest admissible path in the phase plane that satisfies
periodicity constraint.

In summary, the minimum time motion during a step starts
at hip joint speed of ṡi = 1.989 and decelerate to ṡ1 = 1.599
in which the acceleration is switched to its maximum value
to reach a speed of ṡ ′

2 = 1.575. The motion again switches
to the minimum acceleration at this point and ends up at
ṡ ′
f = 1.989. One should note that moving with minimum

acceleration does not, in general, mean decelerating and vice
versa. In fact, depending on the situation, s̈min might take
positive values while it should normally be negative, and on
the other hand, s̈max may, in some cases, become negative.

This problem needs two switches, which are
S1(0.075, 1.599) and S ′

2(0.396, 1.575), as shown in
Fig. 9. The maximum admissible speed at the beginning
and end of a step is also calculated as ṡ = 1.989. The
time elapse for this step is calculated as 0.603 s, which is
almost 40% less than the minimum time reported by Sadigh
and Mansouri,21 calculated for the same biped based on
a parameter study. Considering that Ds = 0.45m means
the maximum achievable speed of this biped would be
Vmax = 2.69km/h.

Figures 11–13 show actuator torques of stance and swing
leg during one step, where the solid line corresponds to
the stance leg and dotted line corresponds to the swing leg.
Figures 14 and 15 show how stability constraints given by

Fig. 11. (Colour online) Ankle torques.

Fig. 12. (Colour online) Knee torques.

Fig. 13. (Colour online) Hip torques.

Eqs. (7) and (9) are satisfied during the motion. Figure 16
shows ZMP track during the motion that is, as expected,
located within the stable region.

As it is visible from Figs. 11–15, at each instance at least
one of the constraints—either actuator bounds or stability
and non-slip constraints—is saturated in SSP while two of
them are saturated in DSP. In another words, moving with
maximum or minimum acceleration is limited at least by
one of the constraints for SSP and two of them for DSP.
Figure 17 shows different intervals in which each constraint is
saturated. As shown, non-slipping and ankle actuator bounds
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Fig. 14. (Colour online) Normal ground reaction forces.

Fig. 15. (Colour online) Non-slip constraints.

Fig. 16. (Colour online) ZMP diagram and stable region.

are the two most important constraints for this biped. A stick
diagram of this motion is shown in Fig. 18.

This solution can be used either as an upper limit for
achievable speed by this biped or as a guide to design a
near-minimum time motion trajectory that could be
implemented practically. Design and implementation of such
practical near-minimum time solution could be considered
as future works to be done. Another point that is worth
mentioning is that this minimum time solution is an off-
line procedure, which means computation cost is another
interesting subject. That computation cost is not a critical
issue in that. However, as a reference value we should
mention that it takes 16.91 s to perform all forward and

Fig. 17. (Colour online) Intervals of constraint saturation during
one step.

Fig. 18. (Colour online) Stick diagram of biped motion during a
step.

Fig. 19. (Colour online) Variation of walking speed vs. step length.

backward integrations necessary for this solution, which is
performed by ODE45 function of MATLAB 2011 with step
size 0.001 on a core (TM) i5–2430 M CPU@ 2.4 GHz
personal computer.

So far, the minimum time necessary to take one step was
calculated. It is believed that the overall speed of biped is
increased with choosing larger Ds . To see the effect of Ds

on the overall speed, 11 values were chosen for Ds within
physically possible bounds of 0.3 m to 0.55 m and the
minimum motion time was solved for each value of Ds . The
study revealed that for this biped the maximum overall speed
of 2.79km/h is achieved at Ds = 0.50m and increasing Ds

beyond this value has an undesirable effect on increasing the
speed. The variation of walking speed in terms of step length
is shown in Fig. 19.
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Fig. 20. (Colour online) Schematic diagram of the NFB and solution curve.

Table III. The physical parameters of the biped robot.

Links Feet Shin Thigh Trunk
Length (m) 0.21 0.3 0.3 0.7
Mass (kg) 2.3 2 1.7 44
Inertia (kg.m2 ) 0.01 0.025 0.022 2.53
Mass center position (m) 0.05 0.15 0.17 0.31

Feet characteristics lh lf la
0.09 m 0.12 m 0.1 m

Motors Ankle Knee Hip
Torque max (N.m) 130 170 150

5.2. Example 2
The purpose of this example is to compare the results of the
proposed method with those reported by Tlalolini et al.20

for minimum time motion. They solved a multi-objective
optimization problem to find a path that gives the best
energy-efficient stable motion of a biped while moving
with a desired speed. They tried to find the maximum
speed of biped through a parameter study approach where
the maximum speed is found by increasing the desired
speed step by step. The physical parameters of this biped
are given in Table III. The maximum speed reported by
Tlalolini et al.,20 which is obtained for a friction coefficient
of μ = 2/3, is Vmax = 4.8km/h. Solving the same problem
with the method presented in this paper gives the maximum
achievable speed of Vmax = 6km/h showing an almost 25%
improvement in the maximum speed. This result is obtained
for Ds = 0.60m and sc = 0.80 and for the other kinematic
parameters as given in Table I. Figure 20 shows the
minimum time path of this problem that starts at Di(0, 2.98)
with s̈min, which is switched at points S1(0.115, 2.649) and
S2(0.857, 3.276) and ends at D′

f (1, 2.98).

6. Conclusion
A phase-plane analysis was presented for the minimum time
path planning for a biped during one step that consists of SSP

and DSP. The motion is planned to satisfy both kinematic
constraints of motion such as avoiding impact with the
ground and dynamic constraints such as the non-slipping
condition and joint torque limits together with the stability
criteria. To this end, all geometric, dynamics, and stability
and non-slip constraints are expressed in terms of non-
dimensional horizontal position of hip joint, s. The problem
was then casted in a form similar to the problem of minimum
time motion of a manipulator moving on a specified path and
solved through a phase-plane algorithm. Solution is given for
both SSP and DSP, which needs solution algorithms for serial
and parallel manipulators. An algorithm was proposed to
enforce periodicity condition at the beginning and end of each
step. Numerical examples are given to clarify and validate
the proposed method. Although the proposed algorithm was
successful in planning minimum time motion on a specified
gait, it cannot be used to perform gait optimization. This
should be considered as a further extension of the present
work.

Appendix: Construction of the non-feasible boundary
As explained in Section 4, construction of NFB in phase plane
based on a search algorithm for points at which s̈min = s̈max

is tedious and numerically expensive was done. Recalling
constraint equations of the problem (3), they may be written
for s = sd as follows:

{
c̄(sd )s̈ + d̄(sd )ṡ2 + ē(sd ) = � (SSP)

c(sd )s̈ + d(sd )ṡ2 + e(sd ) = Ā(sd )� (DSP)
,

�min ≤ � ≤ �max. (39)

These equations are linear in terms of s̈ and ṡ2 for any
specific value of sd . It is clear that the values of s̈max, s̈min,
and ṡ2

max occur on the boundary of a polygon in s̈ − ṡ2 plane.
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Fig. 21. (Colour online) Typical polygon for certain value of s.

Inspection of these equations reveals that the form
of equations during SSP is similar to those of a serial
manipulator. On the other hand, the form of equations during
DSP is similar to those of a parallel manipulator, for which
the matrix Ā is not square. What follows introduces a direct
method that can be used to construct NFB during both SSP
and DSP.

Single support phase
Pfeiffer and Johanni23 stated that for a n DOF serial
manipulator, equations of motion can be written as n
independent equations in the following form:

c̄i s̈ + d̄i ṡ
2 + ēi = �i i = 1, . . . , n,

�mini
≤ �i ≤ �maxi

. (40)

The solution to each of these n equations is an area between
two parallel straight lines in s̈ − ṡ2 plane. Intersection of
these areas shows a polygon whose interior area gives the
admissible values for s̈ and ṡ for sd (see Fig. 21). It can be
seen from Fig. 21 that for each value of sd , ṡd there exists
a range of admissible s̈ while there exists one ṡmax for each
value of sd , corresponding to the point on NFB. This method
could be used for any sd ≤ sc, i.e., in SSP to construct NFB.

Double support phase
It seems that the same solution as presented by Pfeiffer
and Johanni23 holds for parallel manipulator except that
the 2n parallel lines must be obtained using the maximum
and minimum of �̄ = Ā�. Sadigh et al.32 showed that, due
to coupling of equations with respect to �, the admissible
area in s̈ − ṡ2 plane is not equal to the interior area of the
polygon constructed from the 2n lines corresponding to the
n equations of motion.

Considering Ā is a n × m matrix where n < m, McCarthy
and Bobrow33 showed that for any feasible solution at least
m – n + 1 actuators could be saturated. Considering this
fact, one might rewrite Eq. (39) during DSP in the following

partitioned form:

c s̈ + d ṡ2 + e = [Āan×n
Ābn×(m−n) ]

[
�an×1

�b(m−n)×1

]
, (41)

and pre-multiplying Eq. (41) with Ā−1
a results:

c̃ s̈ + d̃ ṡ2 + ẽ = �an×1, (42)

where

c̃ = Ā−1
a c, d̃ = Ā−1

a d, ẽ = Ā−1
a (e − Āb�b).

This relation means that at each point (sd, ṡd ) m – n
additional � selected as �b may adopt its saturation value
compared to the case of a serial manipulator, e.g., at least m
– n + 1 out of m quantities of �i are saturated on the solution
trajectory.33

Equation (42) is now of the same format as Eq. (40)
of a serial manipulator, whose solution is the interior
area of a polygon constructed from n couples of parallel
straight lines. As we have C(m, m − n) choices for �b,
i.e., different choices of saturated quantities of �, there
would be C(m, m − n) polygons that the interior area of
their intersection shows the area of admissible s̈, ṡ for the
certain value sd . Although construction of such a polygon is
rather time consuming, it does not need any search algorithm
to find ṡmax and it is still much more numerically efficient as
compared to the search algorithm described in Section 4.
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