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Marangoni instabilities of droplets on the liquid
substrate under the action of a spatial
temperature modulation
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The dynamics of a droplet on an inhomogeneously cooled liquid substrate is investigated
numerically. The longwave approximation is applied. It is shown that spatial temperature
modulation leads to the droplet’s motion towards the region of lower temperature, which
is accompanied by the change of the droplet shape. An intensive cooling from below can
lead to periodic or quasiperiodic oscillations or the droplet’s decomposition. A spatial
temperature modulation can suppress the oscillatory instability.
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1. Introduction

The motion of a viscous liquid droplet on a solid substrate, which contradicts the non-slip
condition, has attracted much interest from scientists for a long time (de Gennes 1985;
de Gennes, Brochard-Wyart & Quéré 2004). The exploration of the dynamic phenomena
(specifically, the difference between the dynamic and static contact angles and the
existence of the dynamic contact angle hysteresis) led to a significant progress in interfacial
science.

The dynamics of a liquid droplet on the surface of another liquid (‘liquid lens’) attracted
still less attention. Its analysis was started in the context of spreading (Suciu, Smigelschi
& Ruckenstein 1970; Bacri, Debrégeas & Brochard-Wyart 1996), wetting (Joanny 1987)
and dewetting (Brochard Wyart, Martin & Redon 1993).

In the case of a slender droplet, the description of the droplet dynamics can be
significantly simplified using the longwave approximation, which allows one to diminish
the number of dependent and independent variables of the problem. The sharp-interface
description (Kriegsmann 1999; Kriegsmann & Miksis 2003; Huth et al. 2015) includes an
evolution equation for the triple line motion. There exists also another approach, which
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allows one to get rid of the boundary and matching conditions characteristic for the
sharp-interface approach, the droplet on the liquid substrate is considered as a two-layer
film. The latter approach is similar to the precursor model developed in the case of a
droplet on a solid substrate (Fisher & Golovin 2005; Pototsky et al. 2005; Craster & Matar
2006; Jachalski et al. 2013; Pototsky, Oron & Bestehorn 2019). The latter model describes
the droplet on the liquid substrate as a two-layer film. The same equations are used in the
whole region, but outside the droplet, where the top layer is ultrathin, the corresponding
disjoining pressure is taken into account. This approach was formerly applied for the
description of the droplet formation due to a monotonic instability of a two-layer film
caused by intermolecular forces in the isothermal case (Fisher & Golovin 2005) and
non-isothermal case (Pototsky et al. 2005; Nepomnyashchy & Simanovskii 2006, 2007,
2009).

In applications (e.g. in microfluidic devices) it can be necessary to move a droplet
in a controllable way. The simplest way to influence the dynamics of a droplet is a
temperature inhomogeneity that creates a Marangoni flow. Let us mention the basic
publications devoted to the thermocapillary migration of droplets under the action
of a spatial inhomogeneity of temperature. Typically, the droplet is advected by the
thermocapillary motion in the liquid layer in the direction opposite to the surface
temperature gradient, but there is a contribution to the droplet velocity due to the
thermocapillary stresses on the droplet interfaces and due to the shear in the substrate
liquid (Greco & Grigoriev 2009). The direction of motion can be different depending
on the details of the generated convective flow (Rybalko, Magome & Yoshikawa 2004)
and the droplet shape (Yakshi-Tafti, Cho & Kumar 2010). Moreover, by the laser heating
of a droplet, the direction of motion can change periodically with time (Rybalko et al.
2004; Song et al. 2014). Let us mention also experiments on droplet evaporation where
the buoyancy-thermocapillary convection caused by the evaporative cooling creates
hydrothermal waves (Buffone 2019) and leads to the droplet disintegration (Keiser et al.
2017).

Recently, Nepomnyashchy & Simanovskii (2021) considered the influence of a spatially
homogeneous heating or cooling of the liquid substrate on the stability of a floating droplet.
A number of instability modes leading to droplet oscillations, droplet decomposition or the
substrate layer’s rupture were revealed.

In the present paper, the dynamics of a droplet on a liquid substrate under the
action of a spatial temperature modulation is studied. We show that spatial temperature
inhomogeneity can significantly change the shape of the droplet and lead to the complete
suppression of droplet oscillations.

The structure of the paper is as follows. The formulation of the problem is given in § 2.
Droplet oscillations generated by an oscillatory Marangoni instability in the case of the
homogeneous cooling as well as the action of spatial modulation of temperature in the
horizontal plane on nonlinear structures are presented in § 3. Section 4 contains some
concluding remarks. A brief description of the thermocapillary flow generated by the
deflection of interfaces, the discussion of the flows created by interfacial tensions, gravity
and disjoining pressures, the list of dimensional parameters of the system and an estimate
of the value of the non-dimensional Hamaker constant used in the simulation are given in
appendices.

2. Formulation of the problem

Let us consider a droplet of liquid 2 placed between liquid substrate 1 and gas 3 (see
figure 1a). The angles between interfaces are determined by the balance of interfacial
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Figure 1. Geometric configuration of the region and coordinate axes.

tensions σij of interfaces separating fluids i and j on the triple line (Neumann conditions,
Neumann 1894). An equilibrium droplet (‘partial wetting’) is possible only if the spreading
coefficient, S = σ31 − σ12 − σ23, is negative (see Langmuir 1933). If σ12 + σ23 < σ31, the
separation of fluids 1 and 3 by a film of fluid 2 diminishes the energy of the system.
If the Hamaker constant A2 characterizing the interaction of fluids 1 and 3 through the
film of fluid 2 is negative, a macroscopic layer of liquid 2 is created (‘complete wetting’).
However, if it is positive, the minimum of energy corresponds to an ultrathin film of a
definite thickness H∞ (‘pseudo-partial wetting’), see figure 1(b) (Burton et al. 2010), hence
the droplet coexists with an ultrathin film.

Macroscopically, both cases are identical. Therefore, in the case of pseudo-partial
wetting, the film can be considered as an ‘interface’ with a certain effective surface tension
σ̃31. At the same time, in both cases the approach can be applied where the sharp interface
is replaced by a precursor film of liquid 2 separating liquid 1 from gas 3 (Craster & Matar
2006; Jachalski et al. 2013). The latter approach, which allows us to significantly simplify
the description of the contact line dynamics, is applied in the present paper.

Following Craster & Matar (2006), we assume that outside the droplet, liquid 1 is
separated from the gas phase by an ultrathin precursor film of liquid 2. In the absence
of the droplet, the equilibrium thickness of layer 1 is H0

1, while the thickness of the
precursor film is H∞. The temperature of the solid substrate is Ts(x, y), the temperature
of the gas is Tg. Later on, we use subscript i for variables referring to the ith liquid. The
ith fluid has density ρi, dynamic viscosity ηi and heat conductivity κi. Assuming that the
temperature differences in the system are not too large, we disregard the dependence of
liquid parameters on the temperature, with the only exception. Because the Marangoni
convection, which is the subject of the present research, is caused by the dependence
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of surface tension coefficients on the temperature, that dependence has to be taken into
account. The surface tension coefficients on the lower and upper surfaces of the droplets,
σ1 and σ2, are assumed to be linear functions of temperature T: σ1 = σ 0

1 − α1(T − Tg),
σ2 = σ 0

2 − α2(T − Tg), where α1 = −dσ1/dT and α2 = −dσ2/dT are constants. We
consider only the case where the thicknesses of the layer and the droplet are so small
that the buoyancy convection is negligible compared with the thermocapillary convection.
Therefore, we can disregard the dependence of the density on the temperature and the
buoyancy force. The gravity acceleration is g, and the heat exchange coefficient at the
liquid/gas interface is q.

The full mathematical description of the presented problem is rather complex. It
includes the system of nonlinear equations governing the viscous flow and the heat
transfer with nonlinear boundary conditions on the unknown interfaces between fluids
(see appendix A.1), as well as Neumann’s expressions for contact angles on the contact
line (Neumann 1894). Those technical difficulties can be partially eliminated in the
case where the characteristic scales of the motion in vertical and horizontal directions
are significantly different (Oron, Davis & Bankoff 1997). In that case, the longwave
asymptotic approach can be applied. There are several conditions for the applicability of
that approach. First, the surface tension has to be strong, so that any shortwave deformation
of the interfaces are suppressed. The analysis (see Oron et al. 1997) shows that the ratio of
the characteristic thickness of the system in the vertical direction to the characteristic scale
of the interfacial deformations in the horizontal direction is O(ε), ε � 1, if the surface
tension is O(ε−1/2). Also, the droplet has to be slender due to a small negative spreading
coefficient or because of the action of gravity. In that case, the velocity, pressure and
temperature fields are enslaved to the interfacial deformations (see Pototsky et al. 2005).
That circumstance allows us to reduce the difficult nonlinear problem to a closed system of
evolution equations for variables that describe the shape of interfaces (see (A39a,b)–(A41)
in appendix A.4). Thus, the mathematical formulation of the problem is significantly
simplified, while all the essential physical effects are retained.

The sketch of the derivation of those equations is given in Appendix A. Here we
take (A39a,b)–(A41) as the basic mathematical problem and reformulate it in the
non-dimensional form. The equilibrium thickness of the lower layer, H0

1, is chosen as the
vertical length scale. The choice of the horizontal scale L∗ is arbitrary (Nepomnyashchy &
Simanovskii 2012). Below we choose L∗ large compared with H0

1 but small compared with
the horizontal size of the computational region and the characteristic size of the droplet.
We choose

t∗ = η1(L∗)4

σ 0
1 (H0

1)3
(2.1)

as a time scale and

p∗ = σ 0
1 H0

1
(L∗)2 (2.2)

as a pressure scale.
Let us describe the non-dimensional parameters of the problem.
The heat transfer at the free boundary is characterized by the Biot number,

Bi = qH0
1

κ2
. (2.3)
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Marangoni instabilities of droplets on the liquid substrate

Generally, one can expect that this parameter is rather small. However, the effective Biot
number can be significantly enhanced by some physical processes, e.g. the evaporation
(see Haut & Colinet 2005). Below we do not assume that the Biot number is small.

The action of gravity is determined by the Bond number,

Bo = gρ1(L∗)2

σ 0
1

. (2.4)

We define the local Marangoni number as

M(X, Y) = α1(Ts(X, Y) − Tg)

σ 0
1

(
L∗

H0
1

)2

, (2.5)

which is a function of X and Y rather than a number. Also, we shall use the mean
Marangoni number

M̄ = α1(T̄s − Tg)

σ 0
1

(
L∗

H0
1

)2

, (2.6)

where T̄s is a characteristic mean temperature of the substrate.
Following Fisher & Golovin (2005), we define η = η1/η2 and σ = σ

(0)
2 /σ

(0)
1 . Also, we

define κ = κ1/κ2, α = α2/α1 and ρ = ρ2/ρ1 (Nepomnyashchy & Simanovskii 2012).
The temporal evolution of the surface deformations is governed by the volume

conservation equations. In the non-dimensional, the governing equations (A39a,b) become

h1τ + ∇ · (qT
1 + qP

1 ) = 0, h2τ + ∇ · (qT
2 + qP

2 ) = 0. (2.7a,b)

Here τ is the non-dimensional time,

qT
1 = g11∇a + g12∇b, qT

2 = g21∇a + g22∇b, (2.8a,b)

a = M(1 − Bih1d), b = Mdκ, (2.9a,b)

g11 = −1
2

h2
1, g12 = −1

2
αh2

1, (2.10a,b)

g21 = −1
2
(2h2 − h1)h1, g22 = −

[
1
2
αηh2

2 + 1
2
α(1 − η)(2h2 − h1)h1

]
, (2.11a,b)

d = [κ + Bih1 + Biκ(h2 − h1)]−1; (2.12)

qP
1 = f11∇p1 + f12∇p2, qP

2 = f21∇p1 + f22∇p2, (2.13a,b)

p1 = −∇2h1 − σ∇2h2 + Boh1 + Boρ(h2 − h1) + π1(h1, h2), (2.14)

p2 = −σ∇2h2 + Boρh2 + π2(h1, h2); (2.15)

f11 = −1
3

h3
1, f12 = −1

2
h2

1(h2 − h1), (2.16a,b)

f21 = 1
6

h3
1 − 1

2
h2

1h2, f22 = −(h2 − h1)

[
1
2

h1(2h2 − h1) + η

3
(h2 − h1)

3
]

. (2.17a,b)

Note that

f21 = f11 + f12, f22 = f12 − h1(h2 − h1)
2 − η

3
(h2 − h1)

3. (2.18a,b)
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In the case of a droplet on a liquid substrate, the thickness of the liquid layer 1 is
macroscopic, while h2 − h1 is microscopic in the region of the precursor; therefore,
one can take the non-dimensional disjoining pressure π1 (see (A32)) equal to zero. In
the expression for π2, one can keep only the last term, a2/(h2 − h1)

3, where a2 is the
non-dimensional Hamaker constant (C1). In order to avoid the rupture of the precursor and
keep its equilibrium thickness equal to h∞ = H∞/H0

1, we apply the following modified
expression for the disjoining pressure:

π2 = a2

(h2 − h1)3

[
1 −

(
h∞

h2 − h1

)3
]

. (2.19)

This corresponds to the minimum of the free energy of the film thickness at h2 − h1 = h∞
(for details, see Craster & Matar 2006; Pototsky et al. 2019).

Let us estimate the physical values of parameters needed for the observation of the
phenomena described in the paper. Let us choose the following values of parameters:
η1 = 2.55 × 10−2 kg m−1 s−1, H0

1 = 5 × 10−6 m, σ1 = 7.6 × 10−3 N m−1, and take L∗ =
5 × 10−5 m. Applying the definition of the Marangoni number (2.5), we find that the
value M = −4 used in our computations corresponds to the temperature difference
Tg − Ts = 1K.

Note that time scale (2.1) is equal to 1.7 × 10−1 s. Thus, the typical dimensional
frequency of droplet oscillations observed in simulations is equal to 1.8 × 10−4 – 2.6 ×
10−4 s−1.

3. Numerical simulations

In the present section we discuss the nonlinear regimes observed in the case of a
one-dimensional modulation of the local Marangoni number,

M(X) = M̄
(

1 + δX sin
2πX

L

)
= M̄ − 
X sin

2πX
L

, (3.1)

where M̄ < 0, δX > 0, 
X = |M̄|δX .

3.1. Thermocapillary convection by homogeneous cooling
Let us describe briefly the results of the investigation of stability (i) in the system of two
infinite liquid layers (Nepomnyashchy, Simanovskii & Legros 2012), and (ii) that of a
droplet floating on a homogeneously cooled liquid substrate, 
X = 0.

In the case of infinite layers, the evolution of small interface distortions h̃j(t) exp(ikX),
where k is the disturbance wavenumber, is governed by the linear problem

dh̃j

dτ
=

2∑
l=1

Ajl(k)h̃l, j = 1, 2, (3.2)

where matrix A describes the hydrodynamic and thermal interaction between the
deformations of interfaces through the flows and temperature field distortions. In
a contradistinction to the isothermal case where that matrix can be transformed
to a symmetric one, hence it has only real eigenvalues (Pototsky et al. 2005), in
the non-isothermal case that matrix is asymmetric, due to the asymmetry of the
interaction mediated by the thermocapillary flows, which are generated by the temperature
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inhomogeneities at the interfaces, hence, the eigenvalues can be complex. The analysis
shows that in a certain interval of the values of the Biot number, Bi− < Bi < Bi+, an
oscillatory instability takes place.

Let us emphasize that in a two-layer system the Marangoni convection can develop
for either way of heating and cooling, depending on the system parameters and the
wavenumber of the disturbance (Simanovskii & Nepomnyashchy 1993). For the system
under consideration, there exists a certain value Bic, Bi− < Bic < Bi+, such that the
instability develops as Ts > Tg, if Bi < Bic, and as Ts < Tg, if Bi > Bic. The expressions
for Bi−, Bi+ and Bic have been obtained by Nepomnyashchy & Simanovskii (2007).

The instability threshold is determined by the minimum admissible disturbance
wavenumber: the larger the region, the lower the instability threshold.

In the case of a droplet on a liquid substrate, one has to take into account that in the
absence of gravity, a liquid layer with a deformable interface is subject to a monotonic
Marangoni instability for arbitrary small M > 0, i.e. for arbitrary weak heating from
below (Scriven & Sternling 1964). That instability is not saturable, and it leads to the
rupture of the substrate layer. When a temperature gradient across the substrate layer
is applied, the temperature on both droplet interfaces becomes inhomogeneous. The
temperature disturbance caused by the droplet acts as ‘a seed’ of instability. Therefore,
in the presence of the temperature gradient, one can expect the existence of a stable
configuration containing a droplet on a layer flat on the infinity only if M < 0, i.e. by
cooling from below.

In the latter case, for sufficiently small values of |M|, the thermocapillary convection in
the droplet and the substrate is stationary and axisymmetric. With an increase of cooling
from below, the droplet can become oscillatory unstable, if Bi is within that appropriate
interval indicated above. The instability corresponds to azimuthal wavenumber m = 1, and
it creates periodic oscillations characterized by the symmetry

hj(X, Y, τ + T/2) = hj(L − Y, L − X, τ ), j = 1, 2, (3.3)

where T is the period of oscillations. At higher values of |M|, the intensive Marangoni
convection leads to a significant change of the droplet shape: a trough near the centre of
the droplet is developed, the components with m > 1 become visible. The change in the
droplet’s shape is irreversible: by the decrease of |M|, the new shape of the droplet is
retained. With a further decrease of M convection becomes so intensive that the droplet is
spread over the liquid substrate forming a liquid layer.

3.2. The influence of temperature modulation on the droplets
Let us consider now the case 
X /= 0.

A moderate inhomogeneity of cooling changes the stationary shape of the interfaces
of both liquid substrate and floating droplet. In the absence of the droplet the stationary
shape of the substrate surface under the action of the inhomogeneous cooling (3.1) would
be determined by the equation

g11
∂a
∂X

+ f11
∂p1

∂X
= 0, (3.4)

which is obtained by the corresponding reduction (h2 = h1, α = 0) of (2.8a,b). In the
limit of strong cooling, when the thermocapillary contribution into the flow rate prevails,
the substrate is stationary when the surface temperature a is constant, which gives the
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Figure 2. The stationary shapes of (a) interface h2(X, Y) and (b) interface h1(X, Y) for M = −2, Bo = 0,
Bi = 20, τ = 106.

expression for the substrate surface shape,

h1(X) = 1
B̃i

(
M(X)

a
− 1

)
, B̃i = Bi

κ
= qH0

1
κ1

. (3.5a,b)

Note that M(X) < a < 0. Thus, the substrate is thicker where cooling is stronger.
In the case of a two-layer system, the approximation of constant interface temperature,

a = const. and b = const., gives the following expressions for interface shapes:

h1(X) = κ(M(X) − a)

bBi
, h2(X) − h1(X) = a − b

bBi
. (3.6a,b)

Let us emphasize however that formulae (3.6a,b) cannot be directly applied in the case
of a floating droplet, where h1 and h2 depend on both coordinates X and Y . In the latter
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Figure 3. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2, 
X = 0.5, Bo = 0, Bi = 20,
τ = 1 × 106.

case, the shape of the interfaces has to be obtained numerically. Below we describe the
results of simulations performed for the system of two immiscible liquids, fluorinert FC70
(liquid 1) and silicon oil 10 (liquid 2), formerly used in microgravity experiments (see, e.g.
Géoris et al. 1999). That liquid system is characterized by the following set of parameters
(Nepomnyashchy & Simanovskii 2012): η = 3.04, κ = 0.522, α = 2, ρ = 0.482, σ = 2.6
(the list of dimensional parameters is presented in Appendix B). The coefficients in
(2.19) have been taken as h∞ = 0.01 and a2 = 3 × 10−6 (see Appendix C). Equations
(2.7a,b)–(2.15) were discretized by central differences for spatial derivatives and solved
using an explicit scheme with periodic boundary conditions in the computational region
L × L = 240 × 240 on the grid 80 × 80. The verification of numerical computations
was carried out by means of trial simulations on the grids 100 × 100 and 120 × 120;
no qualitative changes have been observed. Some additional convergence tests can
be found in figure 4 of Nepomnyashchy & Simanovskii (2015), where one can see
that the lines of hmax(X, Y, τ ) obtained on different grids are almost indistinguishable.
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Figure 4. The fields of h2(X, Y, τ ) for M̄ = −2.5, 
X = 0.5, Bo = 0, Bi = 20; (a) τ = 100; (b) τ = 1000;
(c) τ = 4000; (d) τ = 10 000.

The steady and periodic oscillatory states have been obtained by simulations during at
least 106 non-dimensional time units. The change of the fields hj, j = 1, 2, was less than
0.1 % in all the simulations. The time step typically changed between 0.00125 and 0.005,
which is significantly below the linear scheme stability boundary. The simulations done
with different time steps did not reveal any qualitative changes.

Let us describe the results of numerical simulations at M̄ = −2. On the first step,
we performed numerical simulations with 
X = 0 (see Nepomnyashchy & Simanovskii
2021) and obtained a round stationary droplet shown in figure 2. Then we switched on a
horizontal temperature modulation, 
X = 0.5.

According to (3.1), the substrate temperature is lower than its mean value T̄s in the
left part of the computational region, 0 < X < L/2, and it is higher than T̄s for L/2 <

X < L. Hence, a thermocapillary flow in the substrate is directed leftward in the central
part of the computational region, L/4 < X < 3L/4, while in the regions 0 < X < L/4
and 3L/4 < X < L it is directed rightward. Therefore, the substrate becomes thicker in
the region 0 < X < L/2 and thinner in the region L/2 < X < L. That deformation of the
liquid substrate surface is clearly seen in figure 3.

936 A26-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.81


Marangoni instabilities of droplets on the liquid substrate

50 100 150 2000

50

100

150

200

1.0

1.5

0.5

2.0

2.5

3.0

3.5

4.0

4.5

50 100 150 2000

50

100

150

200

1.0

1.5

0.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

(a)

(b)

Figure 5. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0.5, Bo = 0,
Bi = 20, τ = 1 × 106.

The modulation (3.1) of the local Marangoni number violates the rotational symmetry
of the problem. The Marangoni stresses acting on the droplet’s interfaces in different
directions are not balanced anymore. Under the action of the thermocapillary flow in the
substrate directed leftward, the liquid in the droplet moves to the left changing its shape
and height. Finally, we get the steady droplet with the maximum, shifted to the left part of
the computational region (see figure 3), where the local value of |M| is higher (i.e. into the
cooler part of the region).

Let us consider in more detail the stages of the evolution of the initially round droplet
(see figure 2) under the action of the temperature modulation at a larger value of the
average Marangoni number (M̄ = −2.5; 
X = 0.5). In the absence of the modulation that
value of M̄ is beyond the oscillatory instability threshold. On the early stages, the liquid
in the droplet moves slowly leftward; see figures 4(a,b). One can see a visible change
of the droplet’s shape between figures 4(a) and 4(b). The division of the droplet and the
creation of the satellite is presented in figures 4(c) and 4(d). At τ ≥ 10 000, the further
evolution of the droplet and the equilibration takes place. A snapshot of the fields of (a)
h2(X, Y, τ ) and (b) h1(X, Y, τ ) at the equilibrium stage is shown in figure 5. One can see
that the droplet becomes significantly shorter in the X-direction. The inhomogeneity of the
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Figure 6. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0.25, Bo = 0, Bi = 20,
τ = 1 × 106 obtained with initial conditions corresponding to an oscillatory regime.
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Figure 7. The oscillations of hmax,2(τ ) (solid line) and hmax,1(τ ) (dashed line) for M̄ = −2.5, 
X = 0,

Bo = 0, Bi = 20.
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Figure 8. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0, Bo = 0,
Bi = 20, τ = 1 × 106.

local Marangoni number enhances the threshold value of |M̄| of the oscillatory instability:
at M̄ = −2.5, the oscillatory instability is not developed though the value of |M(X)| in
the region, where the droplet is located, is even higher than 2.5. As explained above,
the instability threshold of longwave oscillatory instability depends on the wavelength
of the disturbance: the smaller the wavelength, the higher the threshold, due to enhanced
dissipative factors. Apparently, the decrease of the horizontal size of the droplet hinders the
development of oscillations. Again, the shapes of the liquid surfaces outside the droplet
are also changed under the action of the thermocapillary stresses: the thickness of the
substrate is higher in the region of higher |M(X)| (see figure 5).

Now, let us consider the action of the spatial temperature modulation on the oscillatory
flows. As the initial condition, we take the fields of h1 and h2 corresponding to the
oscillatory regime with M̄ = −2.5; 
X = 0. With the growth of 
X (at 
X ≥ 0.25), the
oscillations are suppressed. The shape of the steady droplet with the maximum shifted to
the left part of the computational region is presented in figure 6.

When the spatial temperature modulation is switched off, the oscillations are restored,
but the change of the droplet shape is irreversible. Let us take the steady state presented
in figure 6 as an initial condition and switch off the modulation (we put 
X = 0). We
observe oscillations of a droplet shown in figure 7. Because the problem is not symmetric
with respect to translations along the axis X, relation (3.3) is violated, hence, the adjacent
maximum values of hmax,m, m = 1, 2, are not equal. Oscillations presented in figure 7 have
period T = 34 210. Since we consider the region with periodic boundary conditions, one
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Figure 9. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0, Bo = 0, Bi = 20,
τ = 1 × 106.
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Figure 10. The oscillations of hmax,2(τ ) (solid line) and hmax,1(τ ) (dashed line) for M̄ = −4, 
X = 0.1,
Bo = 0, Bi = 20.

936 A26-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.81


Marangoni instabilities of droplets on the liquid substrate

0 50 100 150 200

50

100

150

200

0 50 100 150 200

50

100

150

200

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5
(a)

(b)

Figure 11. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.1, Bo = 0,
Bi = 20, τ = 807 730.

can see the appearance of a finger that moves ‘vertically’ (i.e. along the region with the
maximum value of the Marangoni number) and meets the fingers of the neighbour drops
at the boundary of the computational region (see figures 8 and 9).

Let us take now M̄ = −4. With the growth of 
X (at 
X = 0.1), the periodic
oscillations with an essentially different adjacent maxima develop in the system (see
figure 10); the period of oscillations T = 49 760. The snapshots of the fields of (a)
h2(X, Y, τ ) and (b) h1(X, Y, τ ) at different instants of time, corresponding to adjacent
maxima are presented in figures 11 and 12. The small and big maxima of hmax,j(τ ) j = 1, 2,
correspond to different spatial points.

With an increase of 
X (
X = 0.25), the oscillations of hmax,m, m = 1, 2, become of
a rather complex form (see figure 13). The main droplet is destroyed into separate parts
(see figures 14–16). One can see some kind of recombination of the droplet parts during
an oscillatory process (figures 14 and 15). With an increase of modulation (
X = 0.5),
the values of hmax,m, m = 1, 2, essentially decrease (see figure 17). Probably, it can be
explained by the fact that during the droplet’s motion to its new place some liquid is left in
the ‘tail’, therefore, the ‘main’ droplet becomes smaller. The droplet has a rather complex
shape (see figures 18 and 19).

For sufficiently large values of |M̄| and 
X , irregular oscillations have been obtained.
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Figure 12. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.1, Bo = 0,
Bi = 20, τ = 832 850.

3.3. The influence of gravity on the droplet dynamics
Now, let us consider the action of gravity on the droplets. If we take the round stationary
droplet obtained with M̄ = −2; 
X = 0; Bo = 0 as the initial condition (see figure 2),
under the action of gravity (Bo = 0.1) the droplet is essentially flattened (see figure 20).

Let us take as an initial condition the state presented in figure 4(a) (M̄ = −2.5; 
X =
0.5; Bo = 0). At Bo = 0.1, an essentially flattened droplet moves to the left side of the
computational region. The intermediate stages of the transition process are presented in
figures 21(a) and 21(b). One can compare figures 21(a) and 4(b); 21(b) and 4(c). The
isolines and the shapes of the interfaces, corresponding to the final equilibrium state are
shown in figures 22 and 23 (cf. for example, figures 22 and 5). For the larger values of
|M̄|, under the action of gravity the stationary droplets are also flattened significantly (see
figures 24 and 25).

4. Conclusions

The dynamics of a droplet on a liquid substrate in the case of an inhomogeneous cooling
from below has been investigated. The problem is studied numerically in the framework
of longwave amplitude equations.
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Figure 13. The oscillations of hmax,2(τ ) (solid line) and hmax,1(τ ) (dashed line) for M̄ = −4, 
X = 0.25,
Bo = 0, Bi = 20.
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Figure 14. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.25, Bo = 0,
Bi = 20, τ = 1 × 106.
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Figure 15. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.25, Bo = 0,
Bi = 20, τ = 1 003 500.

A number of phenomena have been observed. The non-homogeneous cooling creates a
disbalance of thermocapillary stresses that leads to the redistribution of the liquids in the
droplet and in the substrate: they become thicker in the colder region and thinner in the
hotter region. The oscillatory instability of a two-liquid system formerly found for liquid
layers takes place also in the case of a slender droplet floating on the liquid substrate.
That instability manifests itself as a periodic or irregular change of the droplet shape. The
gravity flattens the droplet and freezes the droplet’s shape suppressing the oscillations.

While some non-stationary phenomena were formerly observed in droplets under laser
heating (Rybalko et al. 2004; Song et al. 2014) and by evaporative cooling (Buffone 2019),
the oscillations predicted in the present paper have not yet been observed in experiments.
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Appendix A. Derivation of the evolution equations for deformations of interfaces

In this appendix we describe briefly the way of the derivation of the evolution equations
for interfaces from the original system of equations and boundary conditions.
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Figure 16. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.25, Bo = 0, Bi = 20,
τ = 1 × 106.

A.1. Original boundary value problem
For the sake of simplicity, on the first stage we disregard the gravity and the disjoining
pressures.

The complete system of nonlinear equations governing Marangoni convection is written
in the following form (Simanovskii & Nepomnyashchy 1993):

∂vj

∂t
+ (vj · ∇)vj = − 1

ρj
∇pj + νj
vj, (A1)

∂Tj

∂t
+ vj · ∇Tj = χj
Tj, (A2)

∇ · vj = 0, j = 1, 2. (A3)

Here, vj and pj are the velocity and the difference between the overall pressure and the
atmospheric pressure in the mth liquid, correspondingly. The boundary conditions on the
rigid boundary are

v1 = 0, T1 = Ts(x, y); at z = 0. (A4)

On the deformable interface z = H1, the following boundary conditions hold: the balance
of normal stresses,

p2 − p1 + 2σ1K1 =
[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
n1in1k; i, k = 1, 2, 3;

(A5)
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Figure 17. The oscillations of hmax,2(τ ) (solid line) and hmax,1(τ ) (dashed line) for M̄ = −4, 
X = 0.5,
Bo = 0, Bi = 20.

the balance of tangential stresses,[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
τ

(l)
1i n1k

− α1τ
(l)
1i

∂T1

∂xi
= 0, l = 1, 2; i, k = 1, 2, 3; (A6)

the continuity of the velocity field,
v1 = v2; (A7)

the kinematic equation for the interface motion,

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z; (A8)

the continuity of the temperature field,

T1 = T2; (A9)

and the balance of normal heat fluxes,(
κ1

∂T1

∂xi
− κ2

∂T2

∂xi

)
n1i = 0. (A10)

We disregard the viscosity of the gas, which is small compared with the liquids’
viscosities, and impose the following boundary conditions on the deformable interface
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Figure 18. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.5, Bo = 0,
Bi = 20, τ = 1 × 106.

z = H2:

−p2 + 2σ2K2 = −η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
n2in2k, (A11)

−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
τ

(l)
2i n2k − α2τ

(l)
2i

∂T3

∂xi
= 0, l = 1, 2, i, k = 1, 2, 3, (A12)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z. (A13)

In the formulae presented above, K1 and K2 are the mean curvatures, n1 and n2 are the
normal vectors and τ

(l)
1 and τ

(l)
2 are the tangential vectors of the lower and upper interfaces.

In the quantities with two subscripts, the first subscript corresponds to the number of
the liquid (m = 1, 2) and the second subscript determines the number of the Cartesian
coordinate (i, k = 1, 2, 3; x1 = x, x2 = y, x3 = z). The usual summation convention is
applied. For a heat flux on the liquid–gas interface, we use an empirical condition,

κ2
∂T2

∂xi
n2i = −q(T2 − Tg), (A14)

where q is the heat exchange coefficient which is assumed to be constant.
Below we assume that the dependence of interfacial tensions on the temperature is

relatively weak and can be neglected in the boundary conditions for normal stresses (but
not in those for tangential stresses where it is the source of a thermocapillary motion).
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Figure 19. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.5, Bo = 0, Bi = 20,
τ = 1 × 106.

A.2. Longwave approach: scaling
We assume that the characteristic spatial scale of the temperature modulation of the
substrate is much larger than the thickness of the layer, i.e. the temperature modulation
depends on the scaled coordinates X̃ = εx and Ỹ = εy, ε � 1, rather than on x and y.
Later on, we denote the vectors (X̃, Ỹ) as X̃ and (∂/∂X̃, ∂/∂Ỹ) as ∇̃.

We intend to apply the longwave approach for studying the instability phenomena.
That is possible if the physical system is subject to a longwave instability rather than a
shortwave Marangoni instability leading to creation of short-scale hexagonal cells. There
exist several types of longwave Marangoni instabilities. For instance, the characteristic
horizontal scale of patterns is large near the instability threshold in the case of a small
Biot number (Sivashinsky 1982; Knobloch 1990). Another kind of Marangoni instability,
which is characterized by a large wavelength near the threshold, develops in thin films or
under microgravity conditions (Scriven & Sternling 1964).

Below we apply the formal asymptotic expansions of variables in powers of ε. The
appropriate scaling of variables for a long-scale flow governed by system (A1)–(A14) is as
follows:

(vjx, vjy) = εV j + o(ε), vjz = ε2Wj + o(ε2), pj = Pj + o(ε2); m = 1, 2. (A15a–c)

The appropriate rescaling of time is τ̃ = ε2t.
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Figure 20. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2, 
X = 0, Bo = 0.1, Bi = 20,
τ = 1 × 106.

A.3. Thermocapillary flow generated by deformations of interfaces
Solving the system of equations and boundary conditions at the leading order in ε, we
obtain expressions for the temperature fields,

T1(X̃ , z, τ̃ ) = Ts(X̃ ) − (Ts(X̃ ) − Tg)D(X̃ , τ̃ )qκ2z; (A16)

T2(X̃ , z, τ̃ ) = Ts(X̃ ) − (Ts(X̃ ) − Tg)D(X̃ , τ̃ )q[(κ2 − κ1)H1(X̃ , τ̃ ) + κ1z], (A17)

where
D(X̃ , τ̃ ) = [κ1κ2 + q(κ2 − κ1)H1(X̃ , τ̃ ) + qκ1H2(X̃ , τ̃ )]−1. (A18)

Therefore, the temperature on the interface between liquids is

A(X̃ , τ̃ ) = T1(X̃, H1(X̃, τ̃ ) = Ts(X̃ ) − (Ts(X̃ ) − Tg)D(X̃ , τ̃ )qκ2H1(X̃ , τ̃ ); (A19)

hence,
A − Tg = (Ts − Tg)(1 − qκ2H1D), (A20)

and the temperature on the upper surface is

B(X̃ , τ̃ ) = T2(X̃, H2(X̃, τ̃ )) = Ts(X̃ ) − (Ts(X̃ )−Tg)D(X̃ )q[(κ2−κ1)H1(X̃ ) + κ1H2(X̃ )];
(A21)

hence,
B − Tg = (Ts − Tg)κ1κ2D. (A22)
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Figure 21. The fields of h2(X, Y, τ ) for M̄ = −2.5, 
X = 0.5, Bo = 0.1, Bi = 20; (a) τ = 1000;
(b) τ = 4000.

The horizontal components of the flow velocities V T
m (m = 1, 2) generated by the

thermocapillary stresses are

V T
1 = −

(
α1

η1
∇̃A + α2

η1
∇̃B

)
z, (A23)

V T
2 = −α1

η1
H1∇̃A − α2

(
z − H1

η2
+ H1

η1

)
∇̃B, (A24)

and the flow rates produced by the thermocapillary effect are

Q̃
T
1 =

∫ H1

0
V 1 dz = G11∇̃(α1A) + G12∇̃(α2B), (A25)

Q̃T
2 =

∫ H1

0
V 1 dz +

∫ H2

H1

V 2 dz = G21∇̃(α1A) + G22∇̃(α2B), (A26)

where

G11 = − H2
1

2η1
, G12 = − H2

1
2η1

, (A27a,b)

G21 = −H1(2H2 − H1)

2η1
, G22 = − 1

2η1η2
[H2

2η1 + (2H2 − H1)H1(η2 − η1)].

(A28a,b)
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Figure 22. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0.5,
Bo = 0.1, Bi = 20, τ = 1 × 106.

The evolution of a heated two-layer film under the action of the thermocapillary effect
is governed by the closed system of equations

H1τ̃ + ∇̃ · QT
1 = 0, H2τ̃ + ∇̃ · QT

2 = 0. (A29a,b)

A.4. Flows created by interfacial tensions, gravity and disjoining pressures
We do not intend to impose any restrictions on the values of the Marangoni and Biot
numbers. Even far from the instability threshold, the longwave approach is justified if the
interfacial tensions are strong. In the case of infinite horizontal layers, the linear stability
theory predicts that the disturbances are unstable for wavenumbers k2 < k2

m, where k2
m is

inversely proportional to the interfacial tensions. Therefore, following Fisher & Golovin
(2005), we retain the Laplacian pressures at the leading order of the asymptotic expansions.

The Laplacian, hydrostatic and disjoining pressures form together the following fields
of pressures in a two-layer film:

P1 = −Σ1∇̃2H1 − Σ2∇̃2H2 + ρ1gH1 + ρ2g(H2 − H1) + Π1(H1, H2), (A30)

P2 = −Σ2∇̃2H2 + ρ2gH2 + Π2(H1, H2). (A31)

Note that though ∇̃2Hj = O(ε2) for longwave deformations, the Laplacian pressures are
included (see the explanation above). Formally, that corresponds to k2 ∼ k2

m ∼ Σ−1
1 ∼
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Figure 23. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −2.5, 
X = 0.5, Bo = 0.1, Bi = 20,
τ = 1 × 106.

Σ−1
2 = O(ε2). If only the van der Waals intermolecular forces are taken into account,

then disjoining pressure can be written as

Π1(H1, H2) = A0 − A1 − A2

6πH3
2

+ A1

6πH3
1
, (A32)

Π2(H1, H2) = A0 − A1 − A2

6πH3
2

+ A2

6π(H2 − H1)3 . (A33)

Here A0, A1 and A2 are Hamaker constants characterizing the interactions between the
solid substrate and the gas across the two layers, between the solid substrate and an infinite
layer of liquid 2 across liquid 1, and between the gas phase and an infinite layer of liquid 1
across liquid 2, correspondingly (see Fisher & Golovin 2005).

The pressure gradients create flows with the flow rates

Q̃P
1 = F11∇̃P1 + F12∇̃P2, Q̃P

2 = F21∇̃P1 + F22∇̃P2, (A34)

where pressures P1 and P2 are determined by expressions (A30), (A31), and the mobility
functions are

F11 = − 1
3η1

H3
1; F12 = − 1

2η1
H2

1(H2 − H1); (A35)

F21 = 1
6η1

H3
1 − 1

2η1
H2

1H2; (A36)
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Figure 24. A snapshot of the fields of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.25,
Bo = 0.25, Bi = 20, τ = 1 × 106.

F22 = −(H2 − H1)

[
1

2η1
H1(2H2 − H1) − 1

3η2
(H2 − H1)

2
]

. (A37)

Finally, we obtain the following evolution equations:

H1τ̃ + ∇̃ · (Q̃T
1 + Q̃P

1 ) = 0, H2τ̃ + ∇̃ · (Q̃T
2 + Q̃P

2 ) = 0. (A38a,b)

The asymptotic expansions and rescaling of the variables have allowed us to calculate
the total flow rates and derive the closed equations governing the temporal evolution of
the interface shapes. Now we can return to original variables and rewrite (A38a,b) as

∂H1

∂t
+ ∇ · Q1 = 0,

∂H2

∂t
+ ∇ · Q2 = 0, (A39a,b)

Q1 = G11∇(α1A) + G12∇(α2B) + F11∇P1 + F12∇P2, (A40)

Q2 = G21∇(α1A) + G22∇(α2B) + F21∇P1 + F22∇P2, (A41)

where the coefficients Gij and Fij are determined by formulae (A27), (A28), (A35)–(A37).
In the main text of the paper, we use (A39a,b)–(A41) as the basic equations governing

the problem.

Appendix B. The list of dimensional parameters

The system of liquids under consideration was used in microgravity experiments (see,
e.g. Géoris et al. 1999), and its physical parameters are well known: η1 = 2.55 ×

936 A26-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.81


A. Nepomnyashchy and I. Simanovskii

3.0

2.5

1.5

2.0

1.0

0
50

100
150

200
250

0

0.5

3.0

2.5

1.5

2.0

1.0

0

0.5

50
100

150
200

250

0

50
100

150
200

250

50
100

150
200

250

(a)

(b)

Figure 25. The shapes of (a) h2(X, Y, τ ) and (b) h1(X, Y, τ ) for M̄ = −4, 
X = 0.5, Bo = 0.25, Bi = 20,
τ = 1 × 106.

10−2 kg m−1 s−1, η2 = 8.40 × 10−3 kg m−1 s−1, κ1 = 7.00 × 10−2 J m−1 s−1 K−1, κ2 =
0.134 J m−1 s−1 K−1, ρ1 = 1.94 × 103 kg m−3, ρ2 = 0.935 × 103 kg m−3, σ 0

1 = 7.6 ×
10−3 N m−1, σ 0

2 = 1.97 × 10−2 N m−1, α1 = 3 × 10−5 N m−1 K−1, α2 = 6 ×
10−5 N m−1 K−1.

Appendix C. Estimate of parameter a2

The non-dimensional Hamaker constant a2 can be calculated using the formula
(Nepomnyashchy & Simanovskii 2007)

a2 = A2(L∗)2

6πσ 0
1 (H0

1)4
, (C1)

where A2 is the corresponding dimensional Hamaker constant which is typically of the
order of 10−19 N m. Let us consider a film with H0

1 = 5 × 10−6 m with a typical value of the
surface tension σ 0

1 = 7 × 10−3 N m−1, and choose L∗ = 5 × 10−5 m. Then formula (C1)
gives a2 = 3 × 10−6.
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