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The influence of fixed temperature and fixed heat flux thermal boundary conditions
on rapidly rotating convection in the plane layer geometry is investigated for the
case of stress-free mechanical boundary conditions. It is shown that whereas the
leading-order system satisfies fixed temperature boundary conditions implicitly, a
double boundary layer structure is necessary to satisfy the fixed heat flux thermal
boundary conditions. The boundary layers consist of a classical Ekman layer adjacent
to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal
wind balance just outside the Ekman layers that adjusts the normal derivative of the
temperature fluctuation to zero. The influence of these boundary layers on the interior
geostrophically balanced convection is shown to be asymptotically weak, however.
Upon defining a simple rescaling of the thermal variables, the leading-order reduced
system of governing equations is therefore equivalent for both boundary conditions.
These results imply that any horizontal thermal variation along the boundaries that
varies on the scale of the convection has no leading-order influence on the interior
convection, thus providing insight into geophysical and astrophysical flows where
stress-free mechanical boundary conditions are often assumed.

Key words: convection, geophysical and geological flows, quasi-geostrophic flows

1. Introduction

One of the simplest and most commonly studied systems for investigating
convection dynamics is the so-called Rayleigh–Bénard configuration, consisting of a
Boussinesq fluid layer of depth H confined between plane-parallel boundaries, and
heated from below. The constant gravity vector g=−gẑ points vertically downwards.

† Present address: Department of Physics, University of Colorado,
Boulder, CO 80309, USA.
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Two limiting cases for thermal boundary conditions are often considered when posing
the problem mathematically: (1) ‘perfectly conducting’, or fixed temperature (FT),
boundary conditions in which the temperature is held fixed along the bounding
surfaces; and (2) ‘perfectly insulating’, or fixed flux (FF), boundary conditions
in which the normal derivative of the temperature is fixed at the boundaries
(e.g. Chapman & Proctor 1980). Thermal boundary conditions of geophysical and
astrophysical relevance are often considered to reside somewhere between these fixed
flux and fixed temperature limits.

For a Newtonian fluid of constant thermal expansivity α, kinematic viscosity ν and
thermal diffusivity κ , the non-dimensional Rayleigh number quantifies the strength of
the buoyancy force. For the FT and the FF cases we have respectively

RaFT = αg1TH3

νκ
, RaFF = αgβH4

νκ
, (1.1a,b)

where 1T is the fixed temperature difference between the top and bottom boundaries
and β is the fixed temperature gradient maintained at the boundaries. The Prandtl
number quantifies the relative importance of viscous and thermal diffusion as Pr= ν/κ .
Upon defining the non-dimensional measure of heat transfer via the Nusselt number,

Nu= total heat transfer
conductive heat transfer

= βH
1T

, (1.2)

it is straightforward to show that the two Rayleigh numbers defined above are related
simply by RaFF = NuRaFT . We thus see that for linear convection in which Nu ≡
1 the two Rayleigh numbers are equivalent. For nonlinear convection in which the
critical Rayleigh number has been surpassed, Nu > 1 is achieved by adjustment of
the temperature gradient β at fixed 1T for FT boundaries, and vice versa for FF
boundaries.

Linear stability shows that for the case of non-rotating convection the most unstable
wavenumber is finite for FT boundary conditions (e.g. Chandrasekhar 1961), but is
zero for FF boundary conditions (Hurle, Jakeman & Pike 1967). The two-dimensional
numerical simulations of Johnston & Doering (2009) showed that the statistics for
the two cases converge as the Rayleigh number is increased and the flow becomes
turbulent. It is now generally believed that this result also holds in three-dimensional
convection simulations when sufficient numerical resolution is employed (e.g. see
Ahlers, Grossman & Lohse 2009).

When the system is rotating with rotation vector Ω = Ω ẑ, the Ekman number,
EH = ν/2ΩH2, is an additional non-dimensional number required to specify the
strength of viscous forces relative to the Coriolis force. In this paper we are concerned
with the rapidly rotating quasi-geostrophic convection limit defined by EH → 0 and
Roc = √Ra/PrEH � 1, where Roc is the convective Rossby number and Ra denotes
either RaFT or RaFF depending upon the particular boundary conditions employed (e.g.
Julien et al. 1996; Liu & Ecke 1997; Sprague et al. 2006). Accessing the rapidly
rotating regime continues to be challenging for both laboratory experiments and
numerical simulations due to mechanical and computational limitations, respectively
(Stevens, Clercx & Lohse 2013; Ecke & Niemela 2014; Stellmach et al. 2014; Cheng
et al. 2015). As of the writing of this paper, only two investigations of FF boundary
conditions for the rotating plane layer geometry have been published in the literature,
with Dowling (1988) and Takehiro et al. (2002) examining the weakly rotating and
rapidly rotating linear cases respectively. Takehiro et al. (2002) utilized a modal
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Asymptotic equivalence of thermal boundary conditions

truncation approach to show that the critical parameters for the two cases should
converge as EH→ 0; the present work confirms this suggestion.

In the present work we distinguish between ‘interior’ and ‘boundary layer’
dynamics, and show that the interior governing equations are identical for the two
different thermal boundary conditions upon a simple rescaling of the Rayleigh
number and temperature. Because the EH → 0 limit is a singular perturbation
of the governing equations, the interior equations cannot satisfy the FF boundary
conditions at leading order; a double boundary layer structure is necessary to adjust
both the horizontal viscous stresses and the normal derivative of the temperature
fluctuation to zero (cf. Heard & Veronis 1971). It is shown that the boundary
layer corrections are asymptotically weak, however, showing that to leading order
the interior quasi-geostrophic convection dynamics are equivalent for both thermal
boundary conditions.

In § 2 we present the linear stability of the full Boussinesq Navier–Stokes equations.
In § 3 we present the asymptotic reduction of the Navier–Stokes equations in the
rapidly rotating limit. Concluding remarks are given in § 4.

2. Linear stability of the Navier–Stokes equations

In this section we briefly present the linear stability of the Boussinesq Navier–
Stokes equations for both FT and FF thermal boundary conditions. Upon scaling
lengths with the depth of the fluid layer H and time with the viscous diffusion time
H2/ν, the linear system becomes

∂tu+ 1
EH

ẑ× u=− 1
EH
∇p+ Ra

Pr
ϑ ′ ẑ+∇2u, (2.1)

∂tϑ
′ −w= 1

Pr
∇2ϑ ′, (2.2)

∇ · u= 0, (2.3)

where the velocity vector is denoted by u = (u, v, w), and the temperature is
decomposed into mean and fluctuating variables according to ϑ = ϑ + ϑ ′. For both
sets of thermal boundary conditions ϑ = 1− z, and the fluctuating thermal boundary
conditions therefore become

ϑ ′ = 0, at z= 0, 1 (FT) (2.4)
∂zϑ

′ = 0, at z= 0, 1 (FF). (2.5)

Stress-free impenetrable mechanical boundary conditions on the top and bottom
boundaries are assumed throughout and are given by

w= ∂zu= ∂zv = 0, at z= 0, 1. (2.6)

The system (2.1)–(2.3) is discretized in the vertical and horizontal dimensions
with Chebyshev polynomials and Fourier modes respectively, and formulated as a
generalized eigenvalue problem. We solve the system in primitive variable form and
enforce boundary conditions via the tau method. The eigenvalue problem is solved
with Matlab’s ‘sptarn’ function. For further details of the numerical methods the
reader is referred to Calkins, Julien & Marti (2013).
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FIGURE 1. Linear stability of the Navier–Stokes equations for fixed temperature (FT) and
fixed flux (FF) thermal boundary conditions. (a) Asymptotically scaled critical Rayleigh
number and (b) critical wavenumber as a function of the inverse Ekman number for
both steady (Pr = 1) and oscillatory (Pr = 0.1) convection. (c) Horizontal velocity and
(d) temperature eigenfunctions for Pr = 1 and EH = 10−4; the inset figure in (c) shows
a magnified view of the Ekman layer along the bottom boundary. In (a) and (b) the
solid line with open circles shows values calculated from the explicit formula of Dowling
(1988).

Figure 1 shows results from the linear stability calculations. Results are given for
both steady (Pr = 1) and oscillatory (Pr = 0.1) convection; we note that oscillatory
convection does not exist for Pr> 1 and becomes the primary instability for Pr. 0.68
(Chandrasekhar 1961). For EH . 10−5, both the asymptotically scaled critical Rayleigh
number RacE

4/3
H (figure 1a) and the wavenumber kcE

1/3
H (figure 1b) obtained from FT

and FF boundary conditions are observed to converge to nearly equivalent values. For
EH = 10−6, for instance, the differences in the critical parameters for the two cases
are found to be �1 %. The solid line with open circles shows values calculated from
the explicit formula of Dowling (1988) for which the instability is characterized by
kc = 0.

Figure 1(c) shows the horizontal (x) velocity eigenfunction for EH = 10−4, where
Ekman layers can be seen at the top and bottom boundaries for the FF (dashed curve)
case; a magnified view of the bottom Ekman layer is shown in the inset figure. The
temperature perturbation eigenfunctions plotted in figure 1(d) show that both the FT
and FF cases have identical structure in the fluid interior, whereas the two profiles
differ significantly near the top and bottom boundaries. In the following section we
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Asymptotic equivalence of thermal boundary conditions

present the asymptotic reduction of the Navier–Stokes equations to better understand
and quantify this behaviour.

3. Asymptotics

To proceed with the asymptotic development, we follow the work of Sprague et al.
(2006) and write the governing equations using a generic non-dimensionalization such
that

Dtu+ 1
Ro

ẑ× u=−Eu∇p+ Γ θ ẑ+ 1
Re
∇2u, (3.1)

∇ · u= 0, (3.2)

Dtϑ = 1
Pr Re

∇2ϑ, (3.3)

where Dt(·)= ∂t(·)+ u · ∇(·) and the velocity, pressure and temperature are denoted
by u, p and ϑ respectively. The above system has been non-dimensionalized utilizing
the velocity scale U, length L, time L/U, pressure P and temperature T̃ . For the FT
and FF cases the temperature scale becomes 1T and Nu1T respectively. The Rossby,
Euler, buoyancy and Reynolds numbers are defined by

Ro= U
2ΩL

, Eu= P
ρ0U2

, Γ = gαT̃L
U2

, Re= UL
ν
. (3.4a−d)

In the present work we are interested in the ε ≡ Ro→ 0 limit. In the fluid interior
we employ multiple scales in the axial space direction and time such that

∂z→ ∂z + ε∂Z, ∂t→ ∂t + ε2∂τ , (3.5a,b)

where Z= εz is the large-scale vertical coordinate and τ = ε2t is the ‘slow’ time scale.
It has been shown that the following distinguished limits can be taken to reduce the
governing equations to accurately model quasi-geostrophic convection (e.g. Sprague
et al. 2006):

Eu= 1
ε2
, Γ = Γ̃

ε
, Re=O(1), Pr=O(1), (3.6a−d)

where Γ̃ =O(1). On scaling the velocity viscously such that U = ν/L we have

ε = E1/3
H , Γ̃ = E4/3

H Ra
Pr

, Re= 1, (3.7a−c)

where we note that L is the characteristic horizontal scale of convection and behaves
as L = HE1/3

H in the limit of rapid rotation (Chandrasekhar 1961). Notably, this L
scaling can be derived from the linear axial vorticity equation by assuming a balance
between axial vortex stretching and horizontal viscous diffusion. In dimensional
terms, this becomes 2Ω∂zw ≈ ν∇2ζ , or 2ΩU/H ∼ νU/L3, where ζ = ẑ · ∇ × u
is the vertical vorticity; rearranging then yields L ∼ HE1/3

H . We recall that the
notation for the Rayleigh number is generic in the sense that Ra denotes either
RaFT or RaFF. Hereafter, we define the asymptotically reduced Rayleigh number as

R̃a ≡ E4/3
H Ra = O(1). The convective Rossby number then becomes Roc = ε

√
R̃a/Pr,

and is therefore assumed to be small in the present work.
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We utilize a composite asymptotic expansion approach (e.g. Nayfeh 2008) and,
following Heard & Veronis (1971), decompose each variable into interior (i), middle
(m) and Ekman layer (e) components. For instance, the dependent variable f can be
written as

f = f (i)(x, Z, t, τ )+ f (m)(x, y, ξ , t)+ f (e)(x, y, η, t), (3.8)

where ξ = z and η = ε−1/2z are boundary layer variables. The above representation
ensures that each dependent variable is uniformly valid throughout the domain. The
boundary layer variables consist of a sum of contributions from the top and bottom
boundary layers; for brevity, we focus on the bottom boundary layers. In the present
work we make use of the following limits and notation:

lim
ξ→∞

(f (m))= (f (m))(i) = lim
η→∞

(f (e))= (f (e))(m) = (f (e))(i) = 0, (3.9)

lim
ξ→0
(f (i))= (f (i))(m) = lim

η→0
(f (i))= (f (i))(e) = f (i)(Z = 0)= f (i)(0). (3.10)

We then expand each variable in a power series according to

f (i)(x, Z, t)= f (i)0 (x, Z, t, τ )+ ε1/2f (i)1/2(x, Z, t, τ )+ εf (i)1 (x, Z, t, τ )+O(ε3/2). (3.11)

Each dependent variable is further decomposed into mean and fluctuating components
such that

f (i)(x, Z, t, τ )= f
(i)
(Z, τ )+ f ′(i)(x, Z, t, τ ), (3.12)

where the horizontal averaging operator is defined by

f (Z, τ )= lim
[τ ],[A]→∞

1
[τ ][A]

∫
[τ ],[A]

f dx dy, and f ′ ≡ 0, (3.13a,b)

where A is the small-scale horizontal area.

3.1. The interior equations
By substituting decompositions for each variable of the form (3.8) into the governing
equations and utilizing the limits (3.9)–(3.10), equations for each region can be
derived; expansions of the form (3.11) are then utilized to determine the asymptotic
behaviour of each fluid region. Because the derivation of the interior equations has
been given many times previously, we present only the salient features and direct the
reader to previous work (e.g. Sprague et al. 2006) for details on their derivation. The
main point is that the interior convection is geostrophically balanced and horizontally
divergence-free to leading order,

ẑ× u(i)0 =−∇⊥p(i)1 , ∇⊥ · u(i)0,⊥ = 0, (3.14a,b)

where ∇⊥ = (∂x, ∂y, 0). The above relations allow us to represent the geostrophic
velocity via the geostrophic streamfunction ψ

(i)
0 ≡ p′(i)1 such that u(i)0,⊥ = −∇ × ψ (i)

0 ẑ.
The vertical vorticity is then ζ

(i)
0 = ∇2

⊥ψ
(i)
0 . The interior vertical vorticity, vertical

momentum, fluctuating heat and mean heat equations then become

D⊥t ζ
(i)
0 − ∂Zw′(i)0 =∇2

⊥ζ
(i)
0 , (3.15)

D⊥t w′(i)0 + ∂Zψ
(i)
0 =

R̃a
Pr
ϑ
′(i)
1 +∇2

⊥w′(i)0 , (3.16)
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D⊥t ϑ
′(i)
1 +w′(i)0 ∂Zϑ

(i)
0 =

1
Pr
∇2
⊥ϑ
′(i)
1 , (3.17)

∂τϑ
(i)
0 + ∂Z(w

′(i)
0 ϑ

′(i)
1 )= 1

Pr
∂2

Zϑ
(i)
0 , (3.18)

where D⊥t (·) = ∂t(·) + u · ∇⊥(·). The mean interior velocity field u(i)0 is zero and
the mean momentum equation reduces to hydrostatic balance in the vertical, ∂Zp(i)0 =
(R̃a/Pr)ϑ

(i)
0 .

The interior system is fourth order with respect to the large-scale vertical
coordinate Z. Two boundary conditions are supplied by impenetrability such that
w′(i)0 (0) = w′(i)0 (1) = 0. Although no Z derivatives with respect to ϑ

′(i)
1 are present

in (3.17), evaluation of this equation at the boundaries shows that the FT conditions
ϑ
′(i)
1 (0)=ϑ ′(i)1 (1)= 0 are satisfied implicitly for the fluctuating temperature. Evaluation

of (3.16) at either the top or bottom boundary with the use of impenetrability
shows that stress-free boundary conditions are implicitly satisfied as well since
∂Zψ

(i)
0 (0)= ∂Zψ

(i)
0 (1)= 0.

For the case of FT thermal boundary conditions, we have

ϑ
(i)
0 (0)= 1 and ϑ

(i)
0 (1)= 0 (FT). (3.19a,b)

Thus, for the FT case the boundary layer corrections are identically zero and the
above system is complete. Numerous investigations have used the above system of
equations to investigate rapidly rotating convection in the presence of stress-free
mechanical boundary conditions and have shown excellent agreement with direct
numerical simulations (DNS) of the Navier–Stokes equations (Stellmach et al. 2014).
In the presence of no-slip boundaries, order-one deviations in heat transfer are
observed between simulations of the reduced equation set and DNS and laboratory
experiments; these differences are thought to be the result of enhanced heat transfer
due to Ekman pumping (Stellmach et al. 2014; Aurnou et al. 2015).

For the FF case the mean temperature boundary conditions become

∂Zϑ
(i)
0 (0)=−1 and ∂Zϑ

(i)
0 (1)=−1 (FF). (3.20a,b)

We further require ∂Zϑ
′(i)
1 (0)= ∂Zϑ

′(i)
1 (1)= 0; boundary layer corrections are therefore

required since these conditions are not satisfied by (3.17). In the following two
subsections we determine the magnitude of these boundary layer corrections.

3.2. The middle layer equations
The first non-trivial fluctuating middle layer momentum equation occurs at O(ε) to
yield the thermal wind balance

ẑ× u′(m)2 =−∇p′(m)3 +
R̃a
Pr
ϑ
′(m)
2 ẑ, (3.21)

such that ∇⊥ · u′(m)2 = 0 and w′(m)2 ≡ 0. The mean velocity field u(m)2 ≡ 0.
The leading-order temperature equation for the middle layer is

∂tϑ
′(m)
2 + u′(i)0 (0) ·∇⊥ϑ ′(m)2 = 1

Pr
∇2ϑ

′(m)
2 , (3.22)
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with corresponding boundary conditions

∂Zϑ
′(i)
1 (0)+ ∂ξϑ ′(m)2 (0)= 0, ϑ

′(m)
2 (ξ→∞)→ 0. (3.23)

We find the first non-trivial mean temperature to be of magnitude O(ε5) (i.e. ϑ
(m) =

ε5ϑ
(m)
5 6= 0) and therefore omit any further consideration of this correction.

The first three orders of the stress-free mechanical boundary conditions along the
bottom boundary become

∂Zu′(i)0,⊥(0)= 0, ∂Zu′(i)1/2,⊥(0)= 0, ∂Zu′(i)1,⊥(0)+ ∂ξu′(m)2,⊥ (0)+ ∂ηũ′(e)0 (0)= 0. (3.24a−c)

Thus, the first two orders of the interior velocity satisfy stress-free conditions on their
own and therefore need no boundary layer correction. Here, we have rescaled the
Ekman layer velocity according to u′(e)5/2= ε5/2ũ′(e)0 ; this rescaling is simply highlighting
the fact that the Ekman layer velocities are significantly weaker than those in the
interior.

3.3. The Ekman layer equations
The Ekman layer equations have been studied in great detail in previous work (e.g.
Greenspan 1968), so we simply state the leading-order continuity and momentum
equations as

∇⊥ · ũ′(e)0 + ∂ηw̃′(e)1/2 = 0, ẑ× ũ′(e)0 = ∂2
η ũ′(e)0 , (3.25a,b)

where w′(e)3 = ε3w̃′(e)1/2. All of the mean Ekman layer variables can be shown to be zero.
A key component in the present analysis that differs from previous work is the middle
thermal wind layer that enters the Ekman layer solution via the stress-free boundary
conditions (3.24a−c). On utilizing the thermal wind relations for the middle layer that
follow from equation (3.21),

∂ξu
′(m)
2 =−

R̃a
Pr
∂yϑ

′(m)
2 , ∂ξv

′(m)
2 =

R̃a
Pr
∂xϑ

′(m)
2 , (3.26a,b)

the stress-free boundary conditions along the bottom boundary can be written as

∂Zu′(i)1,⊥(0)+
R̃a
Pr
∇⊥ϑ ′(m)2 (0)+ ∂ηũ′(e)0 (0)= 0, (3.27)

where ∇⊥ = (−∂y, ∂x, 0). Solving the Ekman layer momentum equations for the
horizontal components of the velocity field with the additional requirement that
(ũ′(e)0 , ṽ

′(e)
0 )→ 0 as ξ →∞, the continuity equation is then used to find the Ekman

pumping velocity

w̃′(e)1/2 =
[
∂Zζ

(i)
1 (0)+

R̃a
Pr
∇2
⊥ϑ
′(m)
2 (0)

]
e−η/

√
2 cos

(
η√
2

)
. (3.28)

Thus, vertical velocities of magnitude O(ε3) are induced by FF thermal boundary
conditions and result from both finite viscous stresses within the fluid interior and
horizontal variations of the temperature within the middle layer. This finding is closely
analogous to the Ekman pumping effect first reported by Hide (1964) for shallow layer
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quasi-geostrophic flow in the presence of lateral temperature variations along a free
surface. Evaluating (3.28) at η = 0 provides a parameterized boundary condition for
the effects of Ekman pumping.

The small magnitude of the Ekman pumping velocity (3.28) results in very weak
O(ε5) temperature fluctuations within the Ekman layer. Because of this, the dominant
correction of the FF thermal boundary conditions occurs within the middle layer and
we do not consider the Ekman layer temperature any further.

3.4. Synthesis

The thermal boundary layer correction given by (3.23) is passive in the sense that ϑ ′(m)2

can be calculated a posteriori with knowledge of ϑ ′(i)1 . Thus, the leading-order interior
dynamics is insensitive to the thermal boundary conditions. The Ekman layer analysis
shows that the first six orders of the interior vertical velocity satisfy the impenetrable
mechanical boundary conditions w′(i)i (0)= 0, for i= 0, . . . , 5/2. At O(ε3) we have the
Ekman pumping boundary conditions

w′(i)3 (0)=−w′(m)3 (0)− ∂Zζ
(i)
1 (0)−

R̃a
Pr
∇2
⊥ϑ
′(m)
2 (0), (3.29)

where we have used the Ekman pumping relation (3.28) evaluated at η= 0. From the
standpoint of linear theory, the first correction to the critical Rayleigh number will
therefore occur at O(ε3); this explains the linear behaviour previously discussed in
§ 2. Although the above velocity correction is asymptotically weak, we note that it
may be possible to identify this additional circulation in DNS studies by employing
the method outlined by Kunnen, Clercx & Geurts (2013).

4. Discussion

In light of the boundary layer analysis, we conclude that the leading-order
quasi-geostrophic dynamics is described by equations (3.15)–(3.18) for both FT
and FF thermal boundary conditions. Indeed, inspection of the system shows that it
is invariant under the following rescaling of the Rayleigh numbers and temperature
variables:

R̃aFT = R̃aFF

Nu
, ϑ

′(i)
1,FT =Nuϑ ′(i)1,FF, ϑ

(i)
0,FT =Nuϑ

(i)
0,FF. (4.1a−c)

Integration of the time-averaged mean heat equation with respect to Z yields

Pr(w′(i)0 ϑ
′(i)
1,FT)= ∂Zϑ

(i)
0,FT +Nu (FT), (4.2)

Pr(w′(i)0 ϑ
′(i)
1,FF)= ∂Zϑ

(i)
0,FF + 1 (FF), (4.3)

for the FT and FF cases respectively. The appropriate thermal boundary conditions
have been applied at Z = 0 in the above relations. Taking either (4.2) or (4.3) and
utilizing (4.1a−c) shows that the mean interior temperature gradient is described by
identical equations for the two cases.

The above results indicate that the findings of previous work on low-Rossby-number
convection employing FT thermal boundary conditions can be accurately applied to the
case of FF thermal boundary conditions by use of the rescalings given by (4.1a−c).
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FIGURE 2. (a) An example volumetric rendering of the temperature perturbation from a
simulation of the quasi-geostrophic convection equations showing the ‘convective Taylor
column’ (CTC) regime. (b) Mean temperature profiles obtained with both FT (solid blue)
and FF (dashed black) boundary conditions, and the rescaled FF temperature profile (red
open circles). The parameters are Pr= 7, R̃aFT = 46.74, R̃aFF = 1000 and Nu= 21.39.

Julien et al. (2012b) identified four flow regimes that occur in rapidly rotating
convection as a function of the Prandtl and (FT) Rayleigh numbers. The so-called
‘convective Taylor column’ (CTC) regime is distinguished by coherent vertically
aligned convective structures that span the depth of the fluid. Figure 2(a) shows a
volumetric rendering of the temperature perturbation for Pr = 7 and R̃aFT = 46.74,
or R̃aFF = 1000 and Nu= 21.39; this case was computed explicitly with FF thermal
boundary conditions. The CTC regime occurs over the FT Rayleigh number range of
20 . R̃aFT . 55, corresponding to an FF Rayleigh number range of 82 . R̃aFF . 1656
(e.g. see Nieves, Rubio & Julien 2014). Figure 2(b) shows mean temperature profiles
obtained utilizing the FT and FF thermal boundary conditions, along with the
remapped FF mean temperature profile. The Nusselt number Nu= 21.39 corresponds
to a mean temperature difference of 0.0468 between the top and bottom boundaries
for the FF case. Given that the mapping defined by (4.1a−c) is independent of the
Prandtl number, we note that the rescaling shown in figure 2(b) can be carried out
for any Prandtl number.

Of particular interest in convection studies is the dependence of the heat transfer
scaling on the strength of the thermal forcing input via Nusselt–Rayleigh number
scalings of the form Nu∼ R̃a

α

FT . With the rescaling given in (4.1a−c) the FF equivalent
of this relation becomes Nu ∼ R̃a

β

FF, where β = α/(α + 1). For the CTC regime the
exponent is α ≈ 2.1 (Julien et al. 2012b), yielding β ≈ 0.68. Additionally, the final
regime of geostrophic turbulence achieves a dissipation-free scaling law with α= 3/2
such that β=3/5 (Julien et al. 2012a). Similarly, the dependence of all other variables
of interest on the Rayleigh number (e.g. mean temperature gradient, vorticity, etc.) can
also be remapped to the case of FF thermal boundary conditions.

5. Conclusion

In this work we have shown that the leading-order dynamics of rapidly rotating
convection in a plane layer geometry are equivalent for both FT and FF thermal
boundary conditions. Fixed flux thermal boundary conditions give rise to a double
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boundary layer structure in the limit of rapid rotation that induces a vertical mass
flux, or Ekman pumping, that is given explicitly by (3.28). The Ekman pumping
velocity is asymptotically weak, however, and we conclude that all previous work
employing FT thermal boundary conditions also accurately describes FF thermal
boundary conditions as long as the Rossby number remains small. Practically
speaking, the influence of rotation can be expected to be strong when Ro . 0.1
(e.g. Vorobieff & Ecke 2002; Horn & Shishkina 2015). Our findings imply that
the reduced quasi-geostrophic model defined by (3.15)–(3.18) applies to both FT
and FF thermal boundary conditions within the regime of asymptotic validity, i.e.
Ro ∼ E1/3

H � 1, EH � Pr and R̃a . O(E−1/3
H ) (Julien et al. 2012a). For Pr = O(EH),

rapid oscillations occur such that the inertia can be large enough to balance the
Coriolis and pressure gradient forces (Zhang & Roberts 1997), whereas the bound on
R̃a further ensures that the Rossby number remains small.

The influence of both thermal and mechanical boundary conditions on non-rotating
convection has received significant attention (e.g. Johnston & Doering 2009; van der
Poel et al. 2014). For the case of rotating convection, plane layer investigations
have shown that both no-slip and stress-free mechanical boundary conditions yield
similar convective dynamics (King et al. 2009; Schmitz & Tilgner 2010), though
the presence of Ekman pumping for no-slip boundary conditions is now known to
significantly enhance heat transfer in comparison to stress-free simulations (Kunnen,
Clercx & Geurts 2006; Stellmach et al. 2014). To date, studies investigating the role
of thermal boundary conditions on nonlinear rotating convection have been focused
solely on spherical geometries. Zhang & Gubbins (1993) showed that convection
cells in a rotating spherical shell can resonate with inhomogeneous (spatially varying)
temperature boundary conditions. A subsequent investigation by Davies, Gubbins &
Jimack (2009) has shown that resonance is dependent upon both the rotation rate and
the spatial scale of the thermal anomaly along the outer boundary, with resonance
vanishing when the scale of the temperature variation is comparable to the most
unstable wavelength and the rotation rate of the system is large. Our asymptotic
analysis complements these previous numerical findings and rigorously shows that
any horizontal thermal variation along the boundaries that varies on the scale of the
convection, as allowed for with FF thermal boundary conditions, has no leading-order
influence on the interior convection. However, we note that resonance can occur
when the spatial scale of the thermal anomaly is comparable to the vertical scale
of convection (Davies et al. 2009); this is the mechanism likely to cause significant
changes in the magnetic and velocity fields observed in spherical dynamo simulations
with FF boundary conditions (Sakuraba & Roberts 2009, 2011).
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