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SUMMARY
In the current investigation, a novel navigational controller has been designed and implemented for
humanoids in cluttered environments. Here, regression analysis is hybridized with genetic algorithm
(GA) for designing the controller. The obstacle distances collected in the form of sensor outputs are
initially fed to the regression controller; and based on the previous training pattern data, an inter-
mediate advancing angle (AA) is obtained as the first output. The intermediate AA obtained from
the regression controller along with other inputs is again fed to the GA controller, which generates
the final AA as the desired final output to avoid the obstacles present in a complex environment and
reach the destination successfully. The working of the controller is tested on a V-REP simulation
platform. In the current work, navigation of both single as well as multiple humanoids has been
attempted. To avoid inter-collision among multiple humanoids during their navigation in a com-
mon platform, a Petri-Net model has been proposed. The simulation results are validated through a
real-time experimental platform developed under laboratory conditions. The results obtained from
both the simulation and experimental platforms are compared against each other and are found to
be in good agreement with acceptable percentage of errors. Finally, the proposed controller is also
compared with other existing navigational controller and an improvement in performance has been
observed.

KEYWORDS: Humanoid NAO; RA controller; GA controller; Petri-Net; Hybridization; V-REP.

1. Introduction
The ever-growing population diversity and the scarcity of available resources have forced researchers
to develop intelligent techniques to increase production through industrial automation and smart
manufacturing. As a result, the use of robotic agents has become popular in every sector of daily
life. Humanoids are considered advantageous than their mobile robot counterparts with ability to
assist and replace human efforts in complicated terrains. Therefore, navigation and path planning of
humanoids has emerged as one of the most promising and challenging area of investigation among
robotic researchers since last few decades. Path planning approaches are primarily categorized as
global and local path planning based on the initial information available to the robot regarding the
environmental conditions. Global path planning refers to having prior knowledge regarding the arena
conditions and local path planning refers to being unaware regarding the same. Along with that,
based on the approach to design the algorithm, navigational techniques are again categorized as
classical approaches and computational or artificial intelligent (AI) approaches. Classical approaches
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are generally statistical approaches known for their high convergence rate within a limited time. AI
approaches are known for their better accuracy than the classical ones. Over the last few years, several
researchers have focussed on the development of different navigational techniques for robotic agents.
Some of them can be summarized over here.

Atkinson1 investigated some specific problems related to least square estimation and regression
analysis (RA) and found out regression to be largely dependent upon the linear model that repre-
sents the problem. Frank et al.2, 3 used Gaussian regression as a potential path planning approach
for manipulator robots with deformable objects. They tried to reduce the computational cost by the
application of their approach. Qi et al.4 modified the basic potential field-based approach as artificial
potential field approach and used the same in mobile robot navigation. Lee and Bien5 used parameters
like stable gait trajectory, obstacle avoidance and goal seeking behaviour in designing the naviga-
tional controller for a quadruped robot by using an artificial thermal field. Kim et al.6 have developed
a kernel subspace learning algorithm for predicting pedestrian motion and subsequent control of an
autonomous robot towards safe navigation. Dirik7 has used fuzzy logic as a potential navigational
technique for designing a safe navigational approach for mobile robots in indoor and outdoor envi-
ronments. Keshmiri and Payandeh8, 9 designed a solution for multi-robot and multi-recharging station
problem by enabling the robots to use their nearest recharging station rather than using a specific sta-
tion and avoiding disturbance to other robots on the basis of regression technique. Li et al.10, 11 used
an artificial potential field-based regression search technique for navigation of autonomous mobile
robots in known and unknown environments. They have modified the algorithm to overcome the
limitations like being trapped at local minima and avoiding oscillations. Lazaro et al.12 collected
sensory information regarding obstacles present in the environment and used it in a regression search
for navigation of mobile robots. Dongre and Raikwal13 used RA as a user web browsing prediction
method based on previous training pattern. Kumar et al.14–17 have discussed regarding the use of var-
ious nature inspired algorithms for navigational analysis of humanoid robots. Al et al.18 used genetic
algorithm (GA) to control the motion of a hybrid actuator by optimization of the parameters affecting
the smooth movement. Wang et al.19 modified basic GA with fitness scaling for solving the multi-
ple depot vehicle routing problem in an efficient way. Nagib and Gharieb20 designed a GA-based
controller for path planning of a mobile robot in a static environment. Raouf and Pourtakdoust21

optimized the reliability redundancy of a launch vehicle using GA combined with swarm optimiza-
tion. Saraswathi et al.22 have hybridized cuckoo search method with bat algorithm for navigation
of a mobile robot in a simulation environment. Singh and Thongam23 have used sonar data in a
fuzzy logic-based system for generating a collision-free path for a mobile robot. Zhang et al.24 used
an improved GA(IGA)-based approach for navigation of a mobile robot in both static and dynamic
environments. Tuncer and Yildirim25 used a modified mutation operator in a GA-based dynamic path
planning of a mobile robot. Allaire et al.26 used GA for motion planning of an unmanned aerial vehi-
cle (UAV) in a complex environment. Hu et al.27 designed an effective vehicle navigation system
using GA combined with an A*-based approach. Elshamli et al.28 used a generic fitness function in
designing a GA-based dynamic path planner of a mobile robot. Kwaśniewski and Gosiewski29 have
designed a GA-based technique to generate a smooth navigational pattern for a mobile robot. Lamini
et al.30 have proposed to modify the crossover operator in a standard GA approach to achieve perfor-
mance enhancement. A GA-based path planner was designed by Bakdi et al.31 for the navigation of a
mobile robot using image processing techniques for collecting surrounding information and an adap-
tive fuzzy logic controller to keep track of its desired smooth path. Arantes et al.32 proposed a safe
emergency landing path re-planning for a UAV considering all unexpected environmental hazards.
Meléndez et al.33 used a fuzzy navigation system for a mobile robot using evolutionary algorithms for
tuning of parameters. Hartjes and Visser34 used GA-based approach for designing the safe departure
trajectory of aircrafts. Sachin and Gaonkar35 developed simulated model of a humanoid using 8051
microcontrollers and tested it for stability control and obstacle avoidance. Kim et al.36 developed a
control strategy for a bipedal walking on an uneven inclined floor. Hereid et al.37 developed a fast and
reliable method of stable gait synthesis for a walking humanoid model. Baskoro and Priyono38 used
zero moment point (ZMP) and inverse kinematics data for generating a stable walking pattern of a
humanoid. Lin et al.39 proposed a fuzzy logic controlled approach for dynamic balancing of a waist
in an adult-sized humanoid robot. Inomata and Uchimura40 developed a ZMP-based control strategy
for a humanoid robot using three-dimensional contact points data along with ground reaction forces.
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It can be inferred from the extensive literature surveys that most of the classical and AI approaches
are predominantly applied to mobile robots. The use of the same in humanoid platforms is limitedly
reported. At the same time, the use of a hybrid method consisting of both classical and AI approach is
very rare to find in case of humanoid navigation. Therefore, the current work is devoted towards the
use of a hybrid methodology using RA and GA in humanoid navigation. A two-step hybridization
model has been adopted in the current investigation where the initial output of the RA controller is
again fed to the GA controller along with other inputs to find out the final output. Here, navigation
of both single and multiple humanoids is attempted in complex platforms. NAO has been used as the
humanoid platform, which has a large sensory network41 consisting of SONARs, Infrareds, tactile
sensors, cameras, etc. While the developed hybrid controller takes care of the navigation of a single
humanoid; a Petri-Net model along with the proposed controller is required for navigation of multiple
humanoids to avoid inter-collision. The working of the proposed hybrid scheme has been verified on
a V-REP simulation platform and validated through an experimental platform.

2. RA Control Architecture
RA is popularly used as a statistical tool of data forecasting taking into consideration the trend of
past data.

2.1. Basic overview
It is a simple method of relating dependent and independent variables with the help of some standard
parameters. A basic mathematical expression of RA can be written as follows.

z p = ∧
z p +ζp (1)

where∧
z
p
= μ1x p,1 + μ2x p,2 + ... + μpx p,n , μ = (μ1, μ2, ..., μp) are taken as the parameters used in RA,

ζp = Error term.
In a similar way, humanoid navigation can be related to the logic of RA by careful consideration

of navigational parameters.

2.2. Humanoid navigation using RA model
The prime motive of a navigational algorithm is to find a collision-free path and advance towards
the destination by maintaining an optimized path. To do the same, a robot has to detect the obstacles
present in the environment and reach the destination by avoiding the detected obstacles. The RA
model considered in the current work has three input factors namely (i) Front Sonar Output (FSO),
(ii) Left Sonar Output (LSO) and (iii) Right Sonar Output (RSO) and one output factor namely AA.
The inputs are measured by the help of ultrasonic sensors present on the humanoid NAO. Figure 1
demonstrates the input and output parameters for RA model of humanoid navigation.

The regression model works in such a way that taking into consideration the three input parame-
ters; the controller generates the output based on previous training pattern. Table I shows a sample
training pattern data that has been used in the current investigation.

Right Obstacle 

Left Obstacle 

Front Obstacle Destination 

AA 

LSO 
RSO 

FSO 

Fig. 1. Input and output parameters of RA model.
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Table I. A sample set of training pattern data used in RA model.

SN FSO LSO RSO AA SN FSO LSO RSO AA SN FSO LSO RSO AA

1 61 34 47 6 11 49 66 31 −13 21 39 38 47 11
2 40 45 60 10 12 61 32 46 3 22 65 46 60 2
3 35 70 40 −10 13 52 44 71 12 23 45 64 53 −17
4 30 50 35 −15 14 32 32 56 14 24 53 56 49 0
5 75 30 45 0 15 41 73 31 −18 25 40 52 66 10
6 30 40 40 −26 16 46 37 52 20 26 48 37 40 5
7 55 42 30 −27 17 51 52 41 −16 27 58 66 44 −13
8 41 64 43 −15 18 42 36 64 20 28 56 46 66 13
9 83 45 55 0 19 54 82 42 −23 29 34 50 66 −11

10 38 59 42 −10 20 46 38 59 14 30 60 43 53 14

While considering the AA towards the destination, basic sign convention has been followed. A
turn towards left side is considered negative and a turn towards right side is considered positive. 800
data points are fed to the regression tool box of Minitab software and an equation is generated as
follows.

Q4 = −0.005869Q1 − 0.2672Q2 + 0.765592Q3 − 24.0495 (2)

where Q1 is the FSO, Q2 the LSO, Q3 the RSO and Q4 the AA.
With a definite source and destination position, the humanoid proceeds towards the destination.

After detection of a potential obstacle within the set threshold range, the RA controller is activated
and the required AA is calculated using the regression equation. Here, the threshold range is taken
as 30 cm. To maintain an optimal path throughout the journey, some reactive behaviours such as
destination following, obstacle avoidance and barrier following behaviours are implemented on the
humanoid. By the help of destination following behaviour, the humanoid always maintains an AA
towards the destination. In obstacle avoidance behaviour, the humanoid avoids a detected obstacle by
taking a suitable AA. Barrier following is a complimentary behaviour by virtue of which it follows a
long barrier without the activation of the controller to save energy and reach the destination.

3. GA Control Architecture
Inspired from natural genetics, GA has emerged as one of the most efficient method of solving
engineering optimization problems.

3.1. Basic overview
GA works on a principle of transferring best genes to the next generation and discarding the weak
ones. By selection of a particular set of chromosomes as parent set, an optimal solution is generated
by following standard steps such as selection, crossover and mutation. Each chromosome represents
a potential solution to the problem out of the initial set of chromosomes, which is considered as the
parent set. The solutions are coded in binary where each bit represents a gene of the chromosome.
Based on the calculated fitness value, the viability of a solution is represented. The continuous iter-
ation that occurs throughout the process of GA aims to achieve a better solution in each step than
its previous step up to the final optimality condition. The above-mentioned objective is achieved by
selection of better parents with enhanced qualities, crossover among parents to generate offspring
and mutation to introduce genes of diverse qualities to adopt the environmental changes.

3.2. Humanoid navigation using GA model
In the current investigation, the primary aim of the GA controller is to generate a safe position once
the sensors detect a potential obstacle within the set threshold range. The current position of the
humanoid is always taken into consideration while calculating the AA towards the destination. In
the GA model, the inputs to the controller are (i) Nearest Sensor Output (NSO) and (ii) Destination
Distance (DD). NSO represents the distance of the nearest obstacle to the humanoid and DD rep-
resents the distance of the destination point from the humanoid’s current position. While NSO is
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Fig. 2. Population generation by GA model.

obtained directly from the sensor output of the humanoid, DD is calculated by the following equation.

DD =
√

(Px − Dx)2 + (Py − Dy)2 (3)

where (Px , Py) and (Dx , Dy) represent the two-dimensional coordinates of humanoid’s current
position and destination point, respectively.

The steps of a standard GA model can be represented as follows.

3.2.1. Generation of initial population. The humanoid advances towards the destination from the
source position as per the destination following behaviour. Once the sensors of the humanoid detect
a potential obstacle within the set threshold range, GA controller is activated. The first step in the GA
model is to generate possible next points for the humanoid movement. The next points are generated
in a cluster around the obstacle. Figure 2 represents a typical population generation process by GA.

The points are generated as per the following set of rules.

(i) The next position should be inside a circular space having centre at the humanoid’s current
position and radius

r =
√

(NSOx − Px)2 + (NSOy − Py)2 − Th (4)

where Th is the set threshold range.
(ii) If Px ≤ Dx , 75% of points will have Px ≤ Qx

Else 75% of points will have Px > Qx

where (Qx , Qy) is the two-dimensional coordinate of the next position.
(iii) If Py ≤ Dy , 75% of points will have Py ≤ Qy

Else 75% of points will have Py > Qy

The number of solutions taken as the initial solution or parent is completely user defined. In
the current work, 50 chromosomes are selected as the initial solution set. The two-dimensional
coordinates for the parent solutions are generated by the following rule base.

(a) If Px ≤ Dx

i. x-coordinates of 35 chromosomes are generated by

Qx = Px + K1(0, 1) × (NSOx − Px) (5)

ii. x-coordinates of 15 chromosomes are generated by

Qx = Px − K1(0, 1) × (NSOx − Px) (6)

iii. Else the above two rules are reversed with each other
(b) If Py ≤ Dy

i. y-coordinates of 35 chromosomes are generated by

Qy = Py + K2(0, 1) × (NSOy − Py) (7)

https://doi.org/10.1017/S0263574719000869 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000869


570 Intelligent hybridization of regression technique

ii. y-coordinates of 15 chromosomes are generated by

Qy = Py − K2(0, 1) × (NSOy − Py) (8)

iii. Else the above two rules are reversed with each other

3.2.2. Generation of objective function. While designing the objective function of the humanoid
navigation problem, criteria such as obstacle avoidance, path optimization and destination following
are taken as the primary objectives. Therefore, the objective function is initially formulated for each
part and individual parts are joined finally taking suitable weightage.

(i) Obstacle avoidance
The humanoid must maintain a maximum distance from the obstacles to avoid them safely. As the

obstacle distance has to be maximized, the objective function has to be inversely proportional to the
distance.

OF1 ∝ 1

min(OAD)
(9)

where OAD = √
(Qx − NSOx)2 + (Qy − NSOy)2

(ii) Path optimization
The humanoid must follow the shortest possible path to reach the next position. As this distance

is to be minimized, it can be considered a direct proportionality.

OF2 ∝ min(POD) (10)

where POD = √
(Qx − Px)2 + (Qy − Py)2

(iii) Destination following
The destination following behaviour is designed in such a way that in absence of any obstacles

in the environment, the humanoid always heads towards the destination. As the movement of the
humanoid has to happen in the shortest path, it is considered as a direct proportionality.

OF3 ∝ min(DFD) (11)

where DFD = √
(Dx − Qx)2 + (Dy − Qy)2

As already stated, the final objective function is generated by the weighted combination of the
individual objective functions.

OF = δ1 × OF1 + δ2 × OF2 + δ3 × OF3 (12)

where δ represents the weights assigned to individual parts of objective function.
In the current problem, the next point should lie close to the destination. So, the objective function

with the least fitness value can be considered as the best solution. Hence, the current optimization
problem is a minimization one. While deciding the fitness value of each individual solution, the
weights assigned to the individual parts play a major role. Higher value of δ1 would ensure that the
humanoid is far away from the obstacles. By selecting a higher value of δ2, the path length can be
reduced as the next possible point would lie closer to the current position. Similarly, a higher value
of δ3 would reduce the path length by always advancing the humanoid towards the destination. As
the primary motive is to avoid the obstacles present in the path, δ1 value must be kept higher than δ2

and δ3. However, less value of scaling factors may lead to premature convergence in the GA model.
Therefore, trial and error method has been adopted here to select the values of the weights assigned
to the objective functions.

3.2.3. Selection of parent. Optimality check (to be discussed in further steps) has to be carried out
before proceeding to selection of parent. If any of the optimality criteria is met, the algorithm is
terminated and the parent with highest fitness (lowest objective function value) is selected as the best
solution. If optimality criteria are not met, parent selection step is carried out. While selecting the
parent, the good solutions are included and the bad ones are omitted. However, it has to be taken
care of that a good parent with highest fitness value should not be included in the parent selection;
otherwise, it may lead to premature convergence of the algorithm. Along with that, maintaining
a diversified population would lead to successful solution generation in GA. In the current work,
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Fig. 3. Process of crossover.

fitness proportionate method has been used for parent selection. The probability of a certain parent
to be selected can be written as:

Prq = 1 − OFq∑50
q=1 OF

(13)

where Prq is the probability of a parent q to be selected and OFq is the objective function of the
parent q to be selected.

While performing parent selection, parents with less than 15% probability of getting selected are
rejected and replaced by better ones.

3.2.4. Crossover. The parents selected for producing the next generation are ordered as per their
fitness value. With an objective of producing better offspring, crossover operation is carried out. Here,
8-bit chromosome length is selected and to keep the generated solutions within a limited space, first
gene of the chromosomes is kept un-altered, and rest of the genes are crossed by the help of uniform
crossover method. The genes are exchanged with the other parent if the random number generated
for it has a probability greater than equal to 50%. Figure 3 represents the process of crossover.

3.2.5. Mutation. Mutation is the process of adding new characteristics in a population keeping in
view of the environmental changes. It introduces diversity in a population. To prevent GA from
becoming a random search, mutation probability has been kept limited to 3% in the population. In
the current problem, the initial population is generated around the obstacle itself. Although in most
of the cases, it may provide the best solution, there may be cases where the best solution may lie
far away from the obstacle locality. Therefore, if the random number generated for each parent has a
probability of greater than equal to 98%, mutation is carried out.

3.2.6. Optimality check criteria. Although in each iteration GA produces better solutions than the
previous step, there may be a time when the difference between the solutions generated from two
consecutive steps becomes very minimal or the improvement becomes negligible. This is called as
the saturation state of GA. In the current work, two termination criteria are set, and one of them will
lead to termination of the algorithm.

(i) When the successive solution improvement is less than 2%.
(ii) When the number of iterations exceeds 100.

Unless until the algorithm meets its optimality criteria, it would repeat the steps as mentioned
above. After generation of next best point, the AA to that point is calculated by the help of simple
geometrical measures.

4. Proposed RA–GA Hybrid Controller
Classical methods are popular in converging within a limited sample space, and AI techniques
are famous for their better accuracy. Humanoid navigation being a challenging area of investi-
gation demands both accuracy and convergence within a limited time and space. Therefore, the
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Fig. 4. RA–GA hybridization scheme.

hybridization of a classical method with an AI one is always interesting. Here, RA is hybridized
with GA to avoid the limitations available in standalone methods. First, sensory information regard-
ing obstacle distances (FSO, LSO and RSO) are fed as inputs to the RA controller. Based on the
training pattern data provided to the RA controller, an intermediate IAA is generated from the con-
troller. Then, the GA controller is fed with IAA along with other inputs (NSO and DD) to generate
the final AA (FAA). Figure 4 demonstrates the scheme of hybridization that has been implemented
in the current analysis.

The steps followed in the proposed RA–GA hybrid model for humanoid navigation can be
summarized as follows.

(i) Define the source and destination points for the humanoid.
(ii) Advance towards the destination until the sensors detect any potential obstacle within the set

threshold range.
(iii) Activate RA controller once the sensors detect an obstacle.
(iv) Feed FSO, LSO and RSO to the RA controller as inputs and obtain IAA as the first output.
(v) Feed GA controller with NSO, DD and IAA.

(vi) Generate the initial population, select the parents, perform crossover, introduce mutation and
select the best solution as per the fitness value.

(vii) Check for optimality and terminate if the optimality criteria are met; otherwise, repeat the steps
mentioned in (vi) until the optimality criteria are reached.

(viii) Generate the FAA.

Figure 5 represents the pseudo code of the RA–GA control scheme, and Fig. 6 represents the
flowchart of the complete process.

5. Petri-Net Model for Navigation of Multiple Humanoids in a Common Platform
Petri-Net model42, 43 is used to design dynamic navigational systems. In the current work, naviga-
tion of multiple humanoids is also encountered along with single ones. In navigation of multiple
humanoids, the system becomes a dynamic one as each humanoid acts as the dynamic obstacle for
each other. The logic of the proposed RA–GA controller can avoid the obstacles and reach the des-
tination; however, in deciding the priority when multiple humanoids come across same obstacle,
it may not be self-sufficient. Therefore, along with the proposed hybridization scheme, a Petri-Net
model is also designed to avoid the possible inter-collisions. Figure 7 represents the Petri-Net model
used in the current work.

In the navigational mode, a circle represents the current position of a robot. A bar symbol denotes
a phase transition. A black symbol represents the current phase of the robot. Here, six phases are
shown in the model which can be described as follows.

Phase 1: Here, the robots are at random locations of the navigation environment being unaware
regarding each other’s position and ready to start the journey towards respective destinations.

Phase 2: By activation of destination following behaviour, the robots start their journey and track
for obstacles in the environment.

Phase 3: It represents the detection of a dynamic obstacle.
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Fig. 5. Pseudo code of RA–GA controller.

Phase 4: Phase 4 shows the negotiation stage where the robot having less distance towards the
destination advances forward by getting higher priority.

Phase 5: Here, checking for any further conflicting situation occurs and in the absence of the same,
the robot advances towards the destination.

Phase 6: Phase 6 shows a waiting condition. When a robot detects another set of robots already in
phase 3, it will behave as a static obstacle. After conflict resolution, the robot moves further starting
from phase 2.

By implementing the above logic, navigation of multiple humanoids can be approached in a
common platform.

6. Implementation of RA–GA Controller in Humanoid Navigation
The RA–GA hybrid controller has been tested in both simulation and experimental environments
taking humanoid NAO as the platform.

6.1. Navigation of a single NAO
Collision detection, minimum distance calculation and better motion planning are some of the advan-
tageous properties of V-REP simulation software, which make it more suitable for the analysis of
humanoid navigation than other counter parts. Here, V-REP has been selected as the simulation soft-
ware with an arena size of 240 × 160 units. A code consisting of the logic of the proposed hybrid
scheme has been written in LUA language and implemented on the humanoid in the simulation plat-
form. Six obstacles are placed at arbitrary locations of the arena, specific source and destination
positions are defined and the humanoid is advanced towards the destination. Figure 8 represents the
simulation results obtained from the navigation of a single NAO. It can be observed that the humanoid
is able to avoid the obstacles present in the arena and reach the destination smoothly. It is to be noted
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Fig. 6. Flowchart of RA–GA controller.

Phase 1 Phase 2 

Phase 3 

Phase 5 

Phase 4 

Phase 6 

Fig. 7. Petri-Net model.
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Fig. 8. Simulation results for navigation of a single NAO.

that simulation has been performed under several environmental conditions and only one case has
been depicted pictorially.

To validate the simulation results, the navigational pattern is repeated in an experimental plat-
form developed under laboratory conditions. Each scenario analyzed in the simulation platform is
recreated in the experimental platform with similar arena conditions such as arena size, obstacle
size, obstacle locations, source and destination positions. In the experimental platform, NAO is oper-
ated using Python programming with a Wi-Fi control. Figure 9 represents the experimental results
obtained from the navigation of a single NAO. The experimental results have also revealed successful
navigation of the NAO.

The validation of the simulation results with the experimental ones is not only done through
the trajectory followed, but also through the comparison of some navigational parameters. In the
current analysis, path to destination and time to destination are selected as the two navigational
parameters for comparison purpose. These two are directly recorded from the simulation window of
V-REP software and calculated by the help of a measuring tape and stopwatch from the experimental
environment. Tables II and III demonstrate the comparison among simulation and experimental
environments in terms of path to destination and time to destination, respectively.

The errors expressed in the above tables are limited to the acceptable bounds, which prove
the smooth working of the proposed controller in humanoid navigation. It can be noticed that the
experimental results possess higher values than the simulation counter parts in all the instances. This
happens due to the presence of external factors like slippage, friction, data transmission loss, etc. in
the experimental environment.
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Fig. 9. Experimental results for navigation of a single NAO.

Table II. Comparison of path to destination between simulation and experimental
results for navigation of a single NAO.

Path to destination Path to destination
Sl. no. in simulation (cm) in experiment (cm) % Error

1 345.28 363.5 5.01
2 346.7 365.7 5.2
3 345.96 366.4 5.58
4 346.2 367 5.67
5 346.54 365.8 5.27
Average 346.14 365.68 5.35

Table III. Comparison of time to destination between simulation and experimental
results for navigation of a single NAO.

Time to destination Time to destination
Sl. no. in simulation (s) in experiment (s) % Error

1 46.53 49.47 5.94
2 46.82 49.62 5.64
3 47.31 50.24 5.83
4 46.9 49.8 5.82
5 47.14 50.1 5.91
Average 46.94 49.85 5.83

6.2. Navigation of multiple NAOs
As already stated, Petri-Net model is combined with the proposed RA–GA controller for navigation
of multiple humanoids. V-REP platform with same arena size of 240 × 160 units is used for multiple
humanoid navigation. Six obstacles of random size are placed at arbitrary locations of the arena.
Here, two NAOs are fed with RA–GA controller along with Petri-Net model and advanced to their
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Fig. 10. Simulation results for navigation of multiple NAOs.

respective destinations. Figure 10 represents the simulation results obtained from the navigation of
multiple humanoids in a common arena.

The simulation results are also verified through experimental observations. Keeping similar
environmental conditions, two NAOs are tested for destination following and obstacle avoidance
behaviour by controlling them through Wi-Fi module. Figure 11 represents the experimental results
obtained from the navigation of multiple NAOs.

The results obtained from both the environments are compared in terms of path to destination and
time to destination as was performed for the navigation of a single NAO and depicted in Tables IV
and V, respectively.

The comparison of navigational parameters for multiple NAOs has also revealed satisfactory
results with minimal error range. So, it can be inferred that the proposed RA–GA controller has
worked well in smooth and collision-free navigation of single and multiple humanoids.

7. Comparison of the Proposed RA–GA Navigational Controller with Other
Existing Techniques

The working of the proposed RA–GA controller has been successfully tested in both simulation and
experimental environments. The humanoids have reached their destination points having a collision-
free navigation by implementation of the proposed controller. However, to have a better insight
into the efficiency of the controller, it has been compared against other existing navigational con-
troller. Zhang et al.24 have developed an IGA-based navigational controller for navigation of mobile
robots in a complex arena. Figure 12 demonstrates a comparison of the proposed RA–GA controller
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Fig. 11. Experimental results for navigation of multiple NAOs.

Table IV. Comparison of path to destination between simulation and experimental results
for navigation of multiple NAOs.

Simulation results Experimental results

Path to destination (cm) % Errors

Sl. no N1 N2 N1 N2 N1 N2

1 348.5 352.64 369.7 374.8 5.73 5.91
2 349.28 352.93 370.4 375.4 5.7 5.99
3 348.78 353.18 370 376.7 5.74 6.24
4 349.55 353.4 371.5 376 5.91 6.01
5 348.93 352.74 370.8 375.6 5.9 6.09
Average 349.01 352.98 370.48 375.7 5.8 6.05

Table V. Comparison of time to destination between simulation and experimental results
for navigation of multiple NAOs.

Simulation results Experimental results

Time to destination (s) % Errors

Sl. no N1 N2 N1 N2 N1 N2

1 45.24 49.61 48.55 53.25 6.82 6.84
2 45.68 49.82 48.76 53.67 6.32 7.17
3 46.29 50.94 49.18 54.27 5.88 6.14
4 45.91 50.43 48.93 53.8 6.17 6.26
5 46.48 49.68 49.5 53.82 6.1 7.69
Average 45.92 50.1 48.98 53.76 6.26 6.82
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Fig. 12. (a) Path followed in IGA approach, (b) path followed in RA–GA approach.

Table VI. Comparison of path to destination between IGA approach24

and RA–GA approach.

Technique used Path length (cm) Deviation (%)

IGA24 (Fig. 12(a)) 26.75 4.93
RA–GA (Fig. 12(b)) 25.43

with the IGA controller in terms of trajectory followed, and Table VI shows the path to destination
comparison.

The proposed RA–GA controller has predicted better results than the existing navigational
controller, which shows the enhancement in using the hybrid scheme.

8. Conclusions
Navigation and path planning of humanoids is the talk of the town among robotics practition-
ers. In the current work, a novel hybrid navigational controller has been proposed for smooth and
collision-free movement of humanoids. Here, RA has been hybridized with GA for the performance
improvement of standalone methods. The RA controller is initially fed with the obstacle distances
in terms of sensor outputs, and an intermediate AA has been obtained as the first output. The IAA
is again fed to the GA controller along with other inputs and the final AA has been obtained as the
required angle to avoid obstacles present in the environment and reach the destination. The naviga-
tion of single and multiple humanoid NAOs has been attempted in the current study. To resolve the
inter-collision conflict among multiple humanoids, a Petri-Net model has been proposed, which has
been used in the navigation of multiple humanoids. The working of the controller has been verified
in a V-REP simulation arena and validated through an experimental platform. The results obtained
from both the arenas are compared against each other in terms of selected navigational parameters,
and close agreement has been found with negligible error limit. Finally, the proposed hybrid scheme
has been compared against an existing navigational model and performance improvement has been
observed. By the use of the developed hybrid scheme, the navigation of other forms of robots can
also be attempted which can be considered as a future endeavour of the current work.

References
1. A. C. Atkinson, “Robust and diagnostic regression analyses,” Commun. Stat. Theory Methods 11(22),

2559–2571 (1982).
2. B. Frank, C. Stachniss, N. Abdo and W. Burgard, “Using Gaussian Process Regression for Efficient

Motion Planning in Environments with Deformable Objects,” Proceedings of the 9th AAAI Conference
on Automated Action Planning for Autonomous Mobile Robots, San Francisco, USA (2011) pp. 2–7.

https://doi.org/10.1017/S0263574719000869 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000869


580 Intelligent hybridization of regression technique

3. B. Frank, C. Stachniss, N. Abdo and W. Burgard, “Efficient Motion Planning for Manipulation Robots in
Environments with Deformable Objects,” 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), San Francisco, USA, IEEE (2011) pp. 2180–2185.

4. N. Qi, B. Ma, X. E. Liu, Z. Zhang and D. Ren, “A Modified Artificial Potential Field Algorithm for Mobile
Robot Path Planning,” 7th World Congress on Intelligent Control and Automation, Chongqing, China, IEEE
(2008) pp. 2603–2607.

5. Y. J. Lee and Z. Bien, “Path planning for a quadruped robot: an artificial field approach,” Adv. Robot. 16(7),
609–627 (2002).

6. E. Kim, S. Choi and S. Oh “Structured kernel subspace learning for autonomous robot navigation,” Sensors
18(2), 582 (2018).

7. M. Dirik, “Collision-free mobile robot navigation using fuzzy logic approach,” Int. J. Comput. Appl. 179(9),
33–39 (2018).

8. S. Keshmiri and S. Payandeh, “Multi-robots, Multi-locations Recharging Paradigm: A Regression Route
Technique,” Proceedings of the 14th IASTED International Conference, Robotics and Applications,
Cambridge, MA, USA (2009) pp. 160–165.

9. S. Keshmiri and S. Payandeh, “Regression analysis of multi-rendezvous recharging route in multi-robot
environment,” Int. J. Soc. Robot. 4(1), 15–27 (2012).

10. G. Li, A. Yamashita, H. Asama and Y. Tamura, “An Efficient Improved Artificial Potential Field Based
Regression Search Method for Robot Path Planning,” 2012 International Conference on Mechatronics and
Automation (ICMA), Chengdu, Sichuan, China, IEEE (2012), pp. 1227–1232.

11. G. Li, Y. Tamura, A. Yamashita and H. Asama, “Effective improved artificial potential field-based regres-
sion search method for autonomous mobile robot path planning,” Int. J. Mechatron. Autom. 3(3), 141–170
(2013).

12. J. L. Lazaro, A. Gardel, C. Mataix, F. J. Rodriguez and E. Martin, “Adaptive Workspace Modeling, Using
Regression Methods, and Path Planning to the Alternative Guide of Mobile Robots in Environments with
Obstacles,” 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation,
Barcelona, Spain, IEEE, vol. 1 (1999) pp. 529–534.

13. V. Dongre and J. Raikwal, “An improved user browsing behavior prediction using regression analysis on
Web Logs,” Int. J. Comput. Appl. 120(19), 19–23 (2015).

14. P. B. Kumar, C. Sahu and D. R. Parhi, “A hybridized regression-adaptive ant colony optimization approach
for navigation of humanoids in a cluttered environment,” Appl. Soft Comput. 68, 565–585 (2018).

15. P. B. Kumar, S. Mohapatra and D. R. Parhi, “An intelligent navigation of humanoid NAO in the light of
classical approach and computational intelligence,” Comput. Animat. Virt. Worlds 30(12), e1858 (2018).

16. P. B. Kumar, C. Sahu, D. R. Parhi, K. K. Pandey and A. Chhotray, “Static and dynamic path planning of
humanoids using an advanced regression controller,” Sci. Iran. 26(1), 375–393 (2019).

17. P. B. Kumar, M. Sethy and D. R. Parhi, “An intelligent computer vision integrated regression based
navigation approach for humanoids in a cluttered environment,” Multimedia Tools Appl. 1–24 (2018).

18. S. Al, L. C. Dülger and A. Kirecci, “Hybrid actuator: Motion control using genetic algorithms,” Proc. Inst.
Mech. Eng., Part C: J. Mech. Eng. Sci. 223(7), 1657–1665 (2009).

19. S. Wang, Z. Lu, L. Wei, G. Ji and J. Yang, “Fitness-scaling adaptive genetic algorithm with local search for
solving the multiple depot vehicle routing problem,” Simulation 92(7), 601–616 (2016).

20. G. Nagib and W. Gharieb, “Path Planning for a Mobile Robot Using Genetic Algorithms,” International
Conference on Electrical, Electronic and Computer Engineering, Cairo, Egypt (2004) pp. 185–189.

21. N. Raouf and S. H. Pourtakdoust, “Launch vehicle multi-objective reliability-redundancy optimization
using a hybrid genetic algorithm-particle swarm optimization,” Proc. Inst. Mech. Eng., Part G: J. Aerosp.
Eng. 229(10), 1785–1797 (2015).

22. M. Saraswathi, G. B. Murali and B. B. V. L. Deepak, “Optimal path planning of mobile robot using hybrid
cuckoo search-bat algorithm,” Procedia Comput. Sci. 133, 510–517 (2018).

23. N. H. Singh and K. Thongam, “Mobile robot navigation using fuzzy logic in static environments,” Procedia
Comput. Sci. 125, 11–17 (2018).

24. X. Zhang, Y. Zhao, N. Deng and K. Guo, “Dynamic path planning algorithm for a mobile robot based on
visible space and an improved genetic algorithm,” Int. J. Adv. Robot. Syst. 13(3), 91 (2016).

25. A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with improved genetic algorithm,”
Comput. Electr. Eng. 38(6), 1564–1572 (2012).

26. F. C. Allaire, M. Tarbouchi, G. Labonté and G. Fusina, “FPGA Implementation of Genetic Algorithm for
UAV Real-Time Path Planning,” In: Unmanned Aircraft Systems (Springer, Dordrecht, 2008) pp. 495–510.

27. L. Hu, Z. Q. Gu, J. Huang, Y. Yang and X. Song, “Research and realization of optimum route planning
in vehicle navigation systems based on a hybrid genetic algorithm,” Proc. Inst. Mech. Eng., Part D: J.
Automobile Eng. 222(5), 757–763 (2008).

28. A. Elshamli, H. A. Abdullah and S. Areibi, “Genetic Algorithm for Dynamic Path Planning,” Canadian
Conference on Electrical and Computer Engineering, Ontario, Canada, IEEE, vol. 2 (2004) pp. 677–680.
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