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The time-dependent flow driven by electromagnetic forcing of an electrolytic fluid in
the gap of a concentric spheres set-up is studied experimentally and theoretically. The
driving Lorentz force is generated by the interaction of an alternating current radially
injected through electrodes located at the equatorial zone of the spheres and a dipolar
magnetic field produced by a permanent magnet inside the inner sphere. Experimentally,
the time-dependent flows were explored in the laminar regime with a Reynolds number
Re = 640 and different forcing frequencies, which resulted in oscillatory Reynolds
numbers ranging from 28 to 2820. Velocity profiles in the equatorial line between spheres
were obtained with particle image velocimetry. Given the symmetry of the problem at
the equatorial plane, asymptotic and approximate solutions for the azimuthal velocity
are obtained for the limiting cases of low-Reω (in real arguments) and high-Reω (in
complex arguments). Furthermore, a general methodology is proposed in such a way
that an exact solution for the problem is obtained. The analytical solutions reproduce
the main characteristic behaviour of the flow. An estimation of the oscillatory boundary
layer due to the electromagnetic forcing is obtained through the exact solution. A full
three-dimensional numerical model, that introduces the dipolar magnetic field and the
radial dependency of the applied current, is able to quantitatively reproduce both the
analytical solutions and the experimental measurements. Additionally, numerical results
show a resonant behaviour of the flow when the forcing frequency is approximately
Reω ≈ 560.
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1. Introduction

Oscillatory flows are one of the fundamental problems in classical fluid dynamics due
not only to their underlying basic physics, but also to their applications. These types of
flows can be induced by different means, with those induced by the motion of boundaries
being the most widely studied. The simplest case corresponds to a pure hydrodynamic
flow induced by an oscillating rigid plate in a semi-infinite Newtonian fluid. This problem
is referred to as the Stokes problem, named after G. Stokes, who first studied it in 1851
(Stokes 1851). Analogously, oscillatory flows in cylindrical configurations can be induced
by torsional (Rivero et al. 2019) or axial movements (Drazin & Riley 2006). In contrast,
oscillatory flows in spherical configurations have attracted less attention (Hollerbach
et al. 2002), and especially experimental investigations (Box, Thompson & Mullin 2015),
despite their relevance in several areas such as geophysics and astrophysics.

It is well known that the spherical Couette (SC) flow is induced in a fluid filling the gap
between two concentric spheres when either one or both of the spheres are rotated. In this
way, the fluid rotates differentially. Given the experimental conditions, the most common
case corresponds to the inner sphere rotating while the outer sphere remains stationary.
This flow is fully defined by the radius ratio and the Reynolds number, and has been widely
investigated (Proudman 1956; Stewartson 1966; Wicht 2014). In the majority of cases, the
rotation of the spheres is induced mechanically by coupling them to rigid rods, which
have little influence on the flow (Hollerbach et al. 2002). In contrast, Box et al. (2015)
investigated a torsionally oscillating sphere, with near neutral buoyancy, submerged in a
very viscous fluid, held in position by magnetic fields, that is, without mechanical contact.
The rotational motion of spheres with a magnetic dipole axis can be controlled through an
external magnetic field.

A more complete formulation of the problem can be obtained if, in addition to
the rotation of one or both spheres, the working fluid is electrically conducting and
the whole system is immersed in a magnetic field. This flow has been referred to as
the ‘magnetized’ SC (MSC) flow. Namely, the purely hydrodynamic SC flow becomes
magnetohydrodynamic (MHD), which requires new dimensionless parameters in order to
be completely defined, that is to say, the magnetic Reynolds number and the Hartmann
number. It is important to highlight that, although this latter flow has been commonly
referred to as MSC flow (Gissinger, Ji & Goodman 2011; Figueroa et al. 2013; Kasprzyk
et al. 2017; Garcia & Stefani 2018; Kaplan, Nataf & Schaeffer 2018; Ogbonna et al. 2020),
it does not imply the use of a magnetizable fluid. In this sense, a better definition would
be the MHD Couette flow. The MSC flow has been investigated numerically (Figueroa
et al. 2013; Kaplan et al. 2018; Garcia et al. 2020), theoretically (Hollerbach 2009;
Soward & Dormy 2010; Gissinger et al. 2011) and experimentally (Sisan et al. 2004;
Kasprzyk et al. 2017). Even though this problem is simple, the interplay of viscous,
inertial and electromagnetic forces gives rise to a wide variety of instabilities (Schrauf
1986; Travnikov, Eckert & Odenbach 2011; Garcia & Stefani 2018; Garcia et al. 2020)
and features depending on the electrical conductivity of the fluid and the electrodes, as
well as on the magnetic field distribution (Hollerbach 2009; Gissinger et al. 2011). One
example of this fact is the magneto-rotational instability, in which a flow is destabilized by
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Oscillatory flow between concentric spheres

the action of a magnetic field. The effect of the mantle’s electrical conductivity has been
also investigated (Mizerski & Bajer 2007).

Flows induced by boundaries in motion in a spherical configuration are important
to understand the dynamics of geophysical flows. In particular, the investigation of
electrically conductive fluid flows in the presence of a magnetic field in a spherical
geometry is mainly motivated by the desire to unveil the physics behind the Earth’s core.
Research in this field is relevant to understanding the dynamo in planets, stars, accretion
disks and interstellar media. Although these investigations are far from being able to
reproduce the real conditions at the Earth’s core and the dynamo effect, they lead to
helpful MHD phenomena in the development of analytical and numerical tools which
give guidance for understanding the complex underlying physics.

An alternative, and less intrusive, way to drive the fluid in spherical geometries is with
the use of electromagnetic forces. In this case, in addition to the applied magnetic field,
an electric current is also injected into the electrically conductive fluid. The interaction
of the injected current and an imposed magnetic field gives rise to the Lorentz force that
drives the fluid. Coincidentally, a spherical configuration involving magnetic and electric
fields has been reported for the case when a human head is approximated by a four-shell
sphere model with especially placed electrodes and sensors for the measurement of the
magnetic field (Ahadzi et al. 2004). Electromagnetically driven flows have been widely
investigated in rectangular (Figueroa et al. 2009) and cylindrical coordinates (Suslov,
Pérez-Barrera & Cuevas 2017), but scarcely in the spherical coordinate system, which
could contribute significantly to the study of geophysical sciences. Hollerbach et al. (2013)
numerically investigated the flow of an electrically conducting fluid confined in a rotating
spherical shell, where a directly imposed electromagnetic body force is created by the
interaction of an electric current flowing from the conductive inner sphere to a ring-shaped
electrode around the equator of the outer sphere and an imposed predominantly axial
magnetic field. In contrast to the configuration presented by Hollerbach et al. (2013), a
new proposal was introduced: the flow between concentric spheres solely driven by the
injection of a dc electric current and an imposed dipolar magnetic field (Figueroa et al.
2016; S. Piedra, personal communication). In this case, the electric current is injected
through two copper rings located at the equator of both spheres. Experiments were carried
out with an electrolytic solution which allows the implementation of the particle image
velocimetry (PIV) technique. It must be noted that, in the SC and the MSC (with and
without an imposed external electric current), the boundary conditions for one or both
spheres correspond to an azimuthal constant or oscillating movement which introduces a
dependence on the polar coordinate. In contrast, in the flow addressed in this work, both
spheres remain static, which implies significant physical differences in the flow.

Along the research line of the novel electromagnetically driven flow in non-conductive
shells proposed by Figueroa et al. (2016), this work analyses experimentally and
theoretically a time-dependent flow by injecting an oscillating electric current. To the best
knowledge of the authors, there is little experimental and theoretical evidence regarding
this type of flow, which is the main aim of this work. This paper is organized as follows:
in § 2, the experimental set-up is introduced. In § 3, approximate and exact solutions for
this problem and the numerical solution are described, which corresponds to the core of
this work. In this section, the numerical method to simulate this problem is also presented.
In § 4, analytical, numerical and experimental results are compared and discussed, and the
estimation of the inner boundary layer is provided. Finally, main concluding remarks are
summarized in § 5.
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Figure 1. The spherical coordinate system we use is shown. Both spheres are set at rest. An electrolytic solution
fills the gap between the outer and the inner spheres of radii a and b, respectively. The inner sphere encloses
a permanent magnet, which produces the imposed dipolar magnetic field B0. The time-dependent electric
current j0 is injected through two cooper rings located at the equators of the spheres, and the main direction
of the Lorentz force is denoted by F 0 which is also time dependent. (a) Sketch of the experimental device and
(b) Meridional cut of the sketch.

2. Experimental procedure

The experimental set-up used in the present investigation is similar to the one used in a
previous study by Figueroa et al. (2016). The experiment was developed in a concentric
spheres set-up, see figure 1. The spheres are made of glass. The radii of the outer and the
inner sphere are a = 10.6 and b = 3.9 cm, respectively. The inner sphere is held by a 11
mm diameter glass shaft. The gap between the spheres is filled with a weak electrolytic
solution of sodium bicarbonate (NaHCO3) at 8.6 % by weight. The mass density, kinematic
viscosity and electrical conductivity of the electrolyte are ρ = 1090 kg m−3, ν = 1 × 10−6

m2 s−1 and σ = 6.36 S m−1, respectively. An ac electric current is injected through two
5 mm height copper rings, located externally and internally on the equators of the smaller
and bigger spheres, respectively.

Working with an aqueous solution may limit practical applications and experimental
developments because the injection of an electric current unavoidably produces gas
bubbles around the electrodes due to electrolysis. These bubbles disrupt the flow by
modifying the electric current distribution, changing the boundary condition of the flow
(Rivero & Cuevas 2012), occluding and interacting with the main flow and may oxidize
the electrodes. These effects can be avoided or significantly reduced by two means: (i) in
order to avoid disruption of the flow, several designs have been proposed to keep bubbles
separated from the main region where main flow takes place (Rivero & Cuevas 2012,
2018), or (ii) using ac current (Lemoff & Lee 2000). In the experiments reported in
this manuscript, the ac frequencies and applied electric currents used show no effect of
electrolysis on the flow of interest.
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Oscillatory flow between concentric spheres

The dipolar magnetic field is generated by a rectangular parallelepiped Neodymium
magnet with a side length of 50.8 mm, height of 25.4 mm and maximum strength of 0.38 T.
The magnet is located in the centre inside the hollow inner sphere. The axis of the magnet
is aligned with the vertical gravity vector. It is noteworthy to mention that it was found that
the use of this magnet does not affect the symmetry of the flow. In fact, at the equatorial
plane, which is where our work is focused, experimental measurements of the magnetic
field, numerical simulations and the mathematical model (described in § 3) are in good
agreement. The sinusoidal current is injected through the pair of electrodes and interacts
with the non-uniform magnetic field distribution, generating an azimuthal Lorentz force
that sets the fluid in motion. The ac electric current is obtained from a Stanford Research
System DS345 function generator that produces a voltage of ±20 V at frequencies in the
range of 1 μHz to 30.2 MHz with 1 μHz frequency resolution. Three different frequencies
were explored: 10, 50 and 100 mHz. The lower limit of this range has been selected as that
is where distinguishable profiles are obtained, while the upper limit is determined in order
to ensure the correct temporal resolution in accordance with the features of the camera
(described below). Coincidentally, this range was found to be relevant for this study since
a resonant behaviour and the decay of the boundary layer as a function of the forcing
frequency were observed, as will be detailed in the following sections. The amplitude of
the injected current was kept fixed to 50 mA (which corresponds to an electric current
density of ≈41 A m−2) with a serially connected potentiometer. With this value, laminar
flow was explored, as will be shown in § 4. The electric signals were monitored with an
oscilloscope and a digital multimeter, ensuring their oscillatory nature.

Since the electrolyte is a transparent medium, experimental velocity fields were obtained
with PIV. A continuous 5 mW bright red (635 nm) laser module (Coherent Lasiris SNF
Alignment and Structured Light Module) was placed in order to create a laser light
plane parallel to the equator of the spheres. The light sheet was placed 5 mm above the
equatorial plane and parallel to it, in order to avoid the electrodes, as shown in figure 1(b).
The concentric spheres set-up was placed inside a rectangular container partially filled
with water, the latter with the aim of reducing the aberration of the light sheet with
the surface of the outer sphere. Flow images were extracted from video captured with
a Nikon D80 camera with an AF micro-Nikkor 60 mm f/2.8 D lens. The camera was
supported on a holder 30 cm below the experimental set-up. The actual area of the captured
image was 14 cm × 8 cm. The images had 1280 × 720 pixel resolution. The time interval
for the PIV measurements was T/20, where T is the period of the forcing frequency.
Avoiding transient flow, we obtained 40 snapshots per cycle; the time interval between two
subsequent images was 33 ms. The relative phase of the forcing and observations was not
experimentally recorded. Thus, for a given forcing frequency, numerical and theoretical
results were shifted in order to minimize errors with experimental results. A minimum
of ten cycles were averaged for the frequencies of 10 and 50 mHz, while only five cycles
were averaged for the frequency of 100 mHz. The PIVlab software was used to perform
the analysis (Thielicke & Stamhuis 2014); we used interrogation areas of 16 × 16 pixels
with 50 % overlap in the horizontal and vertical directions, and vector validation. These
conditions gave us a spatial resolution of 0.11 mm × 0.11 mm. Images were masked for
the PIV analysis in order to perform the analysis only on the flow zone.

3. Theoretical model

It is important to remember that, in non-relativistic flows (such as those with electrolytes
and liquid metals), charge density and displacement currents play no significant role, and
therefore are disregarded (Davidson 2001). Thus for MHD flows, the two variables of
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interest are the fluid velocity and magnetic field. In the most general case, fluid velocity
and magnetic field are coupled, but for experiments at the laboratory scale the problem
can be simplified due to the low magnetic Reynolds number or quasi-static approximation.
The magnetic Reynolds number is defined as Rm = Uc�μ0σ where, Uc and � are the
characteristic velocity and length, while μ0 is the magnetic permeability of vacuum
and σ the electrical conductivity of the medium. It can be interpreted as the ratio of
advection to diffusion of the magnetic field. At the limiting case where Rm→ 0, magnetic
diffusion dominates, and thus the fluid motion has no effect on the magnetic field, that
is, the Navier–Stokes equations can be decoupled from the magnetic diffusion equation,
which significantly reduces the complexity of the problem. For most of the experiments
performed on Earth, such as that presented in this work, the magnitude of Rm � 1 and
the low-Rm approximation is valid. For the present experiment, this can be corroborated
if we take � = 0.067 m (gap between spheres) while Uc can be estimated from the
balance between the inertial and Lorentz force terms, namely, Uc ∼ (�j0B0/ρ)

1/2, with
j0 and B0 the applied electric current density and the external magnetic field (0.065 T),
respectively. Substitution of the corresponding values leads to Uc = 0.01 m s−1, and thus
Rm = 5.35 × 10−9. This means that the induced magnetic field is nine orders of magnitude
smaller that the applied magnetic field. In turn, the induced magnetic field b0 owing to the
injected electric current j0 can be estimated from Ampére’s law as b0 ∼ L0μ0j0, which
represents a factor of 5.3 × 10−5 with respect to the applied magnetic field, and thus the
total magnetic field can be taken as the applied one. In turn, the induced electric current is
given by Ampére’s law can be expressed in dimensionless form as

N∇∗ × b∗ = j∗i , (3.1)

where the following dimensionless variables have been used r∗ = r/d, j∗i = ji/j0 and
b∗ = b/(RmB0), with b the induced magnetic field, d the gap between the spheres and j0
the externally applied electric current. In this expression, N corresponds to the magnetic
interaction parameter (also referred to as the Stuart number) defined in terms of the
Hartmann number Ha and the Reynolds number Re as

N = Ha2

Re
=

B2
0d2 σ

ρν

U0d
ν

= σdB2
0

ρU0
. (3.2)

Based on this definition, the magnetic interaction parameter corresponds to the ratio of
electromagnetic to inertial forces, and thus is a measure of the influence of the magnetic
field on the fluid flow. Based on the characteristic values in this work, Ha2 = 0.11 and
30 < Re < 723, which lead to 1.5 × 10−4 < N < 3.7 × 10−3. From the dimensionless
form of Ampere’s law, it can be observed that ji ∼ O(N). On the other hand, in
dimensionless form, the applied electric current j0 is of order O(1). Thus, the total electric
current in dimensionless form can be written as j∗T = j∗0 + j∗i , which for our experiments
allows us to express the total electric current just as the externally applied electric current.
In fact, flows driven by Lorentz forces created by the interaction of injected electric
currents with applied magnetic fields in weak electrolytic solutions have been successfully
modelled by neglecting induced effects for quasi-two-dimensional (Figueroa et al. 2009,
2014) and three-dimensional models (Figueroa, Cuevas & Ramos 2011). This means that
currents induced by the motion of the fluid in the magnetic field, as well as Lorentz
forces produced by these currents, can be completely disregarded. In this case, the flow
is governed by the continuity equation and the Navier–Stokes equation with the Lorentz
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Oscillatory flow between concentric spheres

force term (only the product of the applied electric current and external magnetic field). In
dimensionless terms the governing equations read

∇ · u = 0, (3.3)

Reω
∂u
∂t

+ (u · ∇)u = −∇p + ∇2u + Q j0 × B0, (3.4)

where u stands for the velocity vector, normalized by u0 = ν/d, ν and d being the
kinematic viscosity of the fluid and the characteristic length, namely, the gap between
spheres d = a − b. The pressure field is denoted by p, normalized by ρu2

0, where ρ is
the density of the fluid. Coordinates are normalized by d. In turn, time t is normalized
with the angular frequency of the forcing ω = 2πf , where f is the ordinary frequency
of the ac current. The last term on the right-hand side of (3.4) represents the oscillating
Lorentz force created by the non-uniform magnetic field distribution B0 normalized by
the amplitude of the magnetic field at the equator of the inner sphere B0 = 0.065 T,
and the time-dependent applied electric current j0, which is normalized by the current
amplitude j0. The flow is governed by the flow parameter Q = U0/u0, that compares two
velocity scales: the scale defined from the balance between the Lorentz and viscous forces
U0 = j0B0d2/ρν (Figueroa et al. 2009) and the viscous velocity scale u0 = ν/d. In fact,
the parameter Q can be interpreted as the ratio of the electromagnetic and mechanical
energies. Considering that (3.4) was obtained under the low-Rm approximation, it is
possible to estimate an upper limit for the parameter Q in the actual experiment, above
which modifications to the governing equations are required. It seems plausible to consider
that Rm ∼ 0.01 satisfies the low-Rm approximation, allowing us to estimate a value for the
injected current that would induce a magnetic field b0 ∼ 0.01B0. From Ampére’s law,
this injected current is found to be j0 ∼ 7720 A m−2, which means that theoretically Q ≤
3 × 1010. Nevertheless, it is important to point out that, even when analytical solutions
exist, this does not imply that those solutions are stable through all of the range, but this
analysis is not within the scope of this work. The oscillatory Reynolds number is defined
as Reω = ωd2/ν. For the explored frequency range, and considering the corresponding
characteristic scales, the oscillatory Reynolds number explored experimentally is in the
range 28 < Reω < 2820. The system of (3.3) and (3.4) is fully determined, providing the
injected current j0 and the applied magnetic field B0. In dimensionless terms, the applied
magnetic field is denoted as

B0 = b3

r3

(
2 cosφr̂ + sinφφ̂

)
, (3.5)

where φ is the colatitude, r̂ and φ̂ are the unitary vectors in the radial and polar directions
and b is the dimensionless radius of the inner sphere. The expression for the current density
comes from Ohm’s law for weakly conducting fluids, which in dimensionless terms reads

j = ∇ϕ, (3.6)

where ϕ is the electric potential. Considering an electrolyte as the working fluid, that is,
the induced effects are neglected, and there is charge conservation ∇ · j = 0, the electric
potential ϕ obeys a Laplacian equation, that is

∇2ϕ = 0. (3.7)

Assuming that both spheres act as perfect electrical conductors, that is perfect
conductive shells (0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π), the electric potential is only r-dependent.
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Considering time-dependent Dirichlet boundary condition at the inner sphere ϕ(b) =
sin(t) and fixed at the outer sphere ϕ(a) = 0, leads us to the following solution:

ϕ (r, t) = b (a − r)
r (a − b)

sin (t) . (3.8)

The electric current density jr can be obtained from Ohm’s law, (3.6)

jr (r, t) = ab
(a − b) r2 sin (t) . (3.9)

Analogously, the radial electric current density for the case of ring electrodes located at
the equator (φ = π/2 and 0 ≤ θ ≤ 2π), as in Figueroa et al. (2016), is found to be

jr (r, t) = b2

r2 sin (t) . (3.10)

For this case, it must be mentioned that the solution of (3.7) implies the existence of
a current density component in the polar direction. It is important to highlight two facts.
Firstly, considering the most general case where the external magnetic field and applied
electric current have components only in the radial and polar coordinates leads to a Lorentz
force with only one component in the azimuthal direction with at most two terms. Since
the polar component of the current and the radial component of the magnetic field vanish
at the equator, only one term remains in this plane. Secondly, derived from the previous
point and considering that both spheres remain static, in the laminar regime the resulting
movement is such that a particle will follow a closed circular motion within its plane and
parallel to the equator.

It can be observed that, in both (3.9) and (3.10), the electric current density is in the
form of r−2. The system of (3.3) and (3.4) along with the expression for the magnetic
field, (3.5), and the current density (3.9) or (3.10) form a closed system for solving the
electromagnetically driven flow in the gap between the spheres.

3.1. Analytical solutions
As described in previous sections, the main aim of this work is to find a solution that can be
compared against experimental measurements performed at the equatorial plane. In order
to do this, only the existence of the azimuthal velocity component will be assumed, which
has a radial and temporal dependence, namely u = [0, 0, uθ (r, t)]. In addition, there is no
imposed pressure gradient in the azimuthal direction in such way that, at most, p = p(r, φ).
Now, the interaction of the external magnetic field (with components in the r and φ
directions) and the radially injected electric current produces a Lorentz force with a unique
component in the azimuthal direction. Under these assumptions, the continuity equation
is satisfied identically. In turn, the equation for the velocity component in the radial
direction establishes a balance between the centrifugal force and the pressure gradient
in the radial direction that counteracts it. For the equation of the velocity component in
the polar direction φ, a pressure gradient in the polar direction is assumed, which balances
the remaining inertial term whose dependence is also in this direction. Finally, for the
azimuthal direction, the inertial terms vanish and a viscous term appears which depends
on the azimuthal Lorentz force, as well as on the polar coordinate as sin−2 θ .

Let us address the problem in a very simplified way that allows us to obtain some
analytic solutions for the flow at the equatorial plane. In this plane, φ = π/2, uθ no
longer depends on φ (since sin−2 φ = 1), yielding a component that only depends on the
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r−direction, leading to an axisymmetric flow. In this symmetry plane, the electric currents
point in the radial direction, while the magnetic field points in the vertical direction (as
observed in figure 1). Under these assumptions, the set of (3.3)–(3.4) reduces to

Reω
∂uθ
∂t

= ∂2uθ
∂r2 + 2

r
∂uθ
∂r

− uθ
r2 − Q

ab4

(a − b)r5 sin t. (3.11)

The last term on the right-hand side of (3.11) corresponds to the applied Lorentz force
when both spheres are conducting shells, that is, the electric current comes from (3.9). We
must note that the electromagnetic dependence in the r-direction decays as r−5. Neglecting
the transient flow, and considering that

uθ (r, t) = Im
[
f (r) eit

]
, (3.12)

where Im indicates the imaginary part inside the brackets, the following expression for
f (r)

d2f (r)
dr2 + 2

r
df (r)

dr
− f (r)

(
1
r2 + iReω

)
= A

r5 , (3.13)

is obtained, where A = Qab4/(a − b). Since the velocity satisfies the no-slip condition on
both radii, the boundary conditions for f lead to f (b) = f (a) = 0.

3.1.1. Asymptotic and approximate solutions
Equation (3.13) corresponds to the inhomogeneous spherical Bessel function of irrational
order, which is not easy to solve, as will be seen in § 3.1.2. However, if we take the limiting
case Reω→ 0, it gets easier and we are able to find an asymptotic solution. In this limiting
case, (3.13) reduces to

d2f (r)
dr2 + 2

r
df (r)

dr
− f (r)

r2 = A
r5 . (3.14)

For (3.14), the homogeneous part is a second-order Euler equation, which can be easily
solved. The solution to the inhomogeneous equation can be obtained by the variation of
parameters method. The asymptotic solution to the low Reω approximation is found to be

uθ (r, t) = − A sin (t)

5
(

a
√

5 − b
√

5
)

r3

[
b
√

5 − blrm + alr−l
(

r
√

5 − b
√

5
)

+ a
√

5
(

blr−l − 1
)]
,

(3.15)

where the superscript indices are l = 1/2(
√

5 − 5) and m = 1/2(5 + √
5). It is important

to note that this expression has real arguments. If we try to find an asymptotic solution for
the opposite case, Reω → ∞, this leads to a particular solution which cannot be expressed
easily. As a first approach, and in order to find an approximate solution, we assume that
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r−2 � iReω in the third term of the left-hand side of (3.13), which leads to

d2f (r)
dr2 + 2

r
df (r)

dr
− iReωf (r) = A

r5 . (3.16)

Expressed in terms of the exponential integral function Ei, the approximate solution of
(3.16) is

uθ (r, t) = Im

{
eit · A e−ζ r

12a2b2r3
(
e2aζ − e2bζ

) {
2

[
b2r2

(
e(a+2b)ζ − e(a+2r)ζ

)

+ a2
[
b2

(
e(2a+r)ζ − e(2b+r)ζ

)
− r2

(
e(2a+b)ζ − e(2r+b)ζ

)]]
− ia2b2Reωr2

{[
e2(a+b)ζ − e2(a+r)ζ

]
Ei (−aζ )+

[
e2bζ − e2rζ

]
Ei (aζ )

− e2(a+b)ζEi (−bζ )+
[
e2rζ − e2aζ

]
Ei (bζ )

+ e2(b+r)ζ [Ei (−bζ )− Ei (−rζ )]

+ e2(a+r)ζEi (−rζ )+ e2aζEi (rζ )− e2bζEi (rζ )
}}}

, (3.17)

where ζ = √
iReω. It should be noted that this approximate solution (3.17) is expressed in

terms of complex arguments (see the definition of ζ ), and the imaginary part must be taken
as the approximate solution for the velocity. So far, we have found an asymptotic solution
for Reω→ 0 and an approximate solution for Reω → ∞. Now we turn our attention to
trying to find the full solution of (3.11) in terms of real arguments, which is described in
the following subsection.

3.1.2. Exact solution
As stated previously, the analytical solution of (3.11) is obtained by considering (3.12),
which leads to (3.13), and whose solution can be written as

f (r) = C1y1 (r)+ C2y2 (r)+ yP (r) , (3.18)

where subindex P refers to the particular solution, and y1 and y2 are the solutions of the
homogeneous equation. In order to find a solution in terms of real arguments, we expand
f (r) in its real, R, and imaginary, I , parts

f (r) = (C1R + iC1I)
[
y1R (r)+ iy1I (r)

]
+ (C2R + iC2I)

[
y2R (r)+ iy2I (r)

]
+ yPR (r)+ iyPI (r) . (3.19)

Therefore, f (r) can be expressed in terms of real and imaginary components

f (r) = yR (r)+ iyI (r) . (3.20)

Real and complex solutions of the homogeneous equation were obtained by substituting
the complex expression and getting a fourth-order ordinary differential equation.
The particular solution was obtained by the variation of parameters method, whereas the
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constants were obtained from boundary conditions. From (3.12) and (3.20) it can be seen
that

uθ (r, t) = yI (r) cos (t)+ yR (r) sin (t) , (3.21)

where
yR (r) = −C1Iy1I (r)+ C1Ry1R (r)

− C2Iy2I (r)+ C2Ry2R (r)+ yPR (r) , (3.22a)

yI (r) = C1Ry1I (r)+ C1Iy1R (r)

+ C2Ry2I (r)+ C2Iy2R (r)+ yPI (r) . (3.22b)

The solutions to the homogeneous part of (3.13) are

y1R (r) = +r−(1/2)bei5/2
(√

Reωr
)
,

y1I (r) = −r−(1/2)ber5/2

(√
Reωr

)
,

y2R (r) = +r−(1/2)kei5/2
(√

Reωr
)
,

y2I (r) = −r−(1/2)ker5/2

(√
Reωr

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.23)

where bei, ber, kei and ker are the Kelvin functions. In turn, the real and imaginary
solutions of the particular equation are given in Appendix A. This allows us to express
the real and imaginary parts of the particular solution as

yPR (r) = −yP1I (r) y1I (r)+ yP1R (r) y1R (r)− yP2I (r) y2I (r)+ yP2R (r) y2R (r) , (3.24)

yPI (r) = yP1R (r) y1I (r)+ yP1I (r) y1R (r)+ yP2R (r) y2I (r)+ yP2I (r) y2R (r) . (3.25)

It is now possible to obtain the coefficients of (3.22). For the sake of clarity, the
coefficients C1R, C1I , C2R and C2I are presented in Appendix B. Even though the analytical
solutions obtained are based on strong assumptions, they are helpful for the physical
understanding of the flow, as will be shown in § 4.

In order to test the validity of the approximate solutions (3.15) and (3.17), they are
compared against the exact solution (3.21). This comparison is done in terms of the squared
deviation between the two functions F1 and F2 on [b, a] defined as

ε2 =

∫ a

b
|F1 (x)− F2 (x) |2 dx∫ a

b
|F1 (x) |2 dx

, (3.26)

where F1 corresponds to the exact solution, and F2 is the corresponding asymptotic or
approximate solution. Figure 2 shows the squared deviation between the exact and the
asymptotic or approximate solutions as a function of the oscillatory Reynolds number
within the ranges of interest. Based on this criterion, considering a squared deviation
of 10−2 shows that the upper and lower limits for the low-Reω asymptotic solution
and the high-Reω approximations are Reω ∼ 1, respectively. If ε2 = 10−3, then these
limits are Reω ≤ 0.3 for the low-Reω asymptotic solution and Reω ≥ 50 for the high-Reω
approximations. The radial profiles of the azimuthal velocity uθ at the equatorial plane for
the approximate and exact solutions are compared in figure 3 at different phases α of the
oscillation. Within the validity ranges of each approximate solution (continuous lines), the
profiles overlap on the exact solution (dashed lines).
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Figure 2. Squared deviation between exact and approximate solutions as a function of the oscillatory
Reynolds number within the ranges of interest.
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–0.006 –0.004 –0.002 0 0.002 0.004 0.006
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Figure 3. Radial profiles of azimuthal velocity uθ at the equatorial plane with Q = 1 for different phases α for
(a) Reω = 1 and (b) Reω = 100. Red lines and dots denote α = 1/6π and α = 7/6π. Green lines and crosses
correspond to α = 1/3π and α = 4/3π. For blue lines and circles, α = 1/2π and α = 3/2π. Dashed lines:
exact analytical solution, (3.21). Continuous lines in (a) show the low Reω approximation, (3.15), and in (b) the
high Reω approximation, (3.17). Markers: numerical calculations.

3.2. Numerical solution
The one-dimensional analytical solutions obtained in the last subsection approximate
the velocity profiles at the equatorial plane and, as discussed in the previous section,
do not take into account convective effects. In general, convective effects may promote
the three-dimensionality of the flow and therefore, an accurate modelling requires a
three-dimensional (3-D) numerical approach. In order to get the complete velocity field at
different locations of the flow region, the system of (3.3) and (3.4) was solved numerically.
An in-house code using the finite difference method based on the procedure described
in Griebel, Dornseifer & Neunhoeffer (1998) and Cuevas, Smolentsev & Abdou (2006)
was adapted to the spherical coordinate system, including electromagnetic forces. In the
experiment, the inner sphere is held by a glass shaft, which was not included in the
numerical model. The calculation of the time-dependent Lorentz force term in (3.4)
requires the full 3-D magnetic field distribution of the permanent magnet (3.5) and the
radially injected electric current at the equator (3.9) or (3.10). For this latter case, the
number of elements in the polar direction was adjusted to better fit the heights of the inner
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and outer electrodes. Namely, ring electrodes are modelled as surfaces, not as a line source
at the equator. The numerical model uses a uniform staggered mesh and, although there
exists a small difference between the inner and outer electrode heights, no significant
changes were observed in the obtained results. The applied electric current jr is calculated
from (3.9). Note that the electric current is only computed in cells that span radially from
the inner to the outer electrode, otherwise it vanishes. The numerical solution considers
no-slip conditions on the spheres. The initial boundary conditions refer to a quiescent
fluid (u = 0) with no electric potential gradient (or j = 0). In the calculations, a time step
of 2×10−7 Tω was used, where Tω = 2π which is the dimensionless the period of the
oscillation of the applied Lorentz force, along with a spatial resolution of 480 × 30 × 60
in the r, θ and φ directions, respectively.

The numerical code has been successfully compared to experimental results where the
flow is promoted due to the rotation of the inner sphere (Wimmer 1976) and due to a
Lorentz force that is constant in time (Figueroa et al. 2016). Moreover, considering (3.9)
for the applied current, the code is compared quantitatively to the analytical solutions, as
seen in figure 3. In the latter, azimuthal velocity uθ profiles as a function of the r coordinate
for different phases α are shown. We can observe that, in the creeping flow regime (Q = 1),
the numerical results (markers) agree quantitatively with the analytical solutions (lines) for
small and high Reω. An important feature in the results is the reduction in magnitude of
the velocity and the boundary layer width by increasing Reω. This point will be addressed
in the next section. The comparison shown in figure 3 validates the numerical code and
the assumptions made for the analytical solutions. In the next section, numerical results
are successfully compared to experimental measurements. For this case, the numerical
simulation was run in a volume that corresponds to the dimensions of the experimental
set-up and considered (3.10) for the applied electric current density.

4. Results

When the radially injected electric current interacts with the dipolar magnetic field, a
Lorentz force, which mainly points in the θ -direction, is generated. The electromagnetic
force drives a rotational flow in the gap between the spheres. Since the electric current
obeys a sinusoidal function, the electric signal will behave accordingly, making the
flow change its direction of rotation and oscillate in time. In order to visualize how
the azimuthal velocity diffused towards the poles for different forcing frequencies, the
numerical results for uθ in the meridional plane at a given oscillation phase α are shown
in figure 4. In all numerical simulations the magnitude of the electric current was kept
constant. The amplitude of the injected electric current was I = 50 mA, which corresponds
to a flow parameter of Q = 7.35 × 105. For the low forcing frequency Reω = 28, see
figure 4(a). The velocity is intense in the equatorial zone close to the inner sphere. The
flow interacts with the outer sphere and, due to its intensity, it reaches the polar zone
of the outer sphere. When the forcing frequency is increased (Reω = 282), as seen in
figure 4(b), the flow does not reach the polar zone and is reduced to the equatorial zone
and alternating positive and negative values are observed in the polar direction as the
flow oscillates. Further increasing the forcing frequency (Reω > 2820), the flow is visible
closer to the inner sphere’s equatorial zone and the intensity of the velocity is decreased,
see figures 4(c) and 4(d).

Figure 5 shows the experimental (a,c,e) and numerical (b,d, f ) profiles of the azimuthal
velocity uθ located at the equatorial line between the concentric spheres system. The radial
profiles are drawn for different time instants in order to visualize the dynamics of the flow.
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Figure 4. Contour map of azimuthal velocity uθ at the meridional plane from numerical simulations:
(a) α = 10/6π, f = 1 mHz (Reω = 28); (b) α = 11/6π, f = 10 mHz (Reω = 282; (c) α = 0, f = 100 (Reω =
2820); (d) α = 0, f = 1000 mHz (Reω = 28 205). Electric current I = 50 mA (Q = 7.35 × 105).

Experimental profiles are presented from raw data and thus, given the spatio-temporal
resolution of the PIV system, some fluctuations are observed but do not correspond to
turbulence in the flow. In fact, the flow is laminar within the explored experimental
conditions. For Reω = 282 and 140, an asymmetry can be noted in the experimental
profiles. Because the electrode is a physical impediment for the visualizations at the
equatorial plane, the PIV measurements were obtained at approximately 4 mm above the
symmetry plane, and thus an asymmetry can be expected. We can observe that, for high
forcing frequencies, the profiles resemble those observed in the Stokes second problem.
However, for this electromagnetically driven flow, due to the stationary boundaries, the
maximum velocity is located in the bulk of the flow. It can be observed that, as the
frequency increases, the amplitude and penetration depth decrease. The Reynolds number
based on the highest velocity for f = 10 mHz (uθ,max = 9.6 mm s−1) corresponds to
Re = uθ,max d/ν = 640. From these plots, it can be noted that numerical simulations are
in good qualitative and quantitative agreement with the experimental PIV measurements.
If we compare these results with the analytical profiles in figure 3, we can deduce that the
analytical results for low frequencies do not match the experimental observations since
convective effects are noticeable, while results for high frequencies agree well qualitatively
because diffusive effects are stronger.

As previously discussed, as the forcing frequency increases, the magnitude of the highest
velocity uθ,max diminishes, as seen in figure 6. It can be observed that the amplitude
of the azimuthal velocity decays as Re−1

ω asymptotically to zero, which is depicted as a
dashed black line. The curve is also plotted for the Reynolds number Re as a function of
the oscillatory Reynolds number Reω. Moreover, a maximum value for the amplitude is
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Figure 5. Radial profiles of azimuthal velocity uθ at the equatorial plane. (a,c,e) Experimental measurements.
(b,d, f ) Numerical simulations. Panels (a,b) f = 10 mHz (Reω = 282); (c,d) f = 50 mHz (Reω = 1410);
(e, f ) f = 100 mHz (Reω = 2820). Blue lines denote the phases α = 1/6π and α = 7/6π. Green lines
denote the phases α = 2/6π and α = 8/6π. Red lines denote the phases α = 6/6π and α = 9/6π.
Electric current I = 50 mA.

approximately f = 20 mHz (Reω = 564), that is, a resonant behaviour of the flow is found
due to the time-dependent forcing. This phenomenon is currently under investigation.

4.1. Boundary layer
This section describes the estimation of the thickness and shape of the boundary layer (BL)
at the inner sphere, which is based on the exact solution presented in § 3.1.2. Although
different analytical methods have been reported to estimate the BL, such as integrals
or derivative-based methods (Rivero et al. 2019), their implementation for the analytical
solution presented in this work (3.21) does not lead to simple expressions. Moreover, these
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Figure 6. Maximum amplitude of the velocity umax as a function of the forcing frequency f . The points
represent numerical measurements, the line is plotted to guide the eye.

formulations are valid only for semi-infinite problems, which is not the case here since the
maximum value of the velocity is non-monotonic at the gap centre, that is, it is impossible
to define an exact location at which the velocity profile reaches an asymptotic behaviour.
From the analytical and numerical solutions, a BL can be observed close to the inner
radius.

With the lack of an obvious method for defining the BL thickness, we defined an
analogous method for the 99 % BL thickness. The BL thickness is the distance from the
inner radius where

uθ (r, t)
uθ,max

= 10−1. (4.1)

The velocity is defined as

uθ (r, t) = yR (r) sin (t)+ yI (r) cos (t) , (4.2)

which can be expressed as

uθ (r, t) = A (r) sin (t + ψ (r)) , (4.3)

where A(r) corresponds to the amplitude and ψ(r) to the phase, given by

A (r) =
√

yR (r)2 + yI (r)2, sin (ψ (r)) = yI (r)
A (r)

. (4.4a,b)

Since a characteristic flow velocity is unknown a priori, the maximum velocity is used
as the reference velocity. In addition, noting that | sin(t + ψ(r))| ≤ 1, we estimate the BL
thickness based only on the amplitude A(r) of the BL.

Figure 7 shows the amplitude and phase shift of the velocity as functions of the
oscillatory Reynolds number (for Reω ≤ 300 ) and the radius for the experimental set-up.
This figure has been obtained from the exact solution. It can be observed that higher
amplitudes are obtained at smaller oscillatory Reynolds numbers, Reω < 1, having a
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Figure 7. Amplitude and phase of the velocity as functions of the oscillatory Reynolds number and the radius
of the experimental set-up. (a) Amplitude and (b) phase shift.

maximum at approximately r ≈ 0.85. As Reω increases, the magnitude of the velocity
decreases and it is shifted towards the inner sphere. In turn, the phase between the fluid
movement and the forcing (Lorentz force) is close to π (max numerical value is 3.1412)
for Reω → 0. For Reω < 1, there is no significant shift along the radius, which becomes
more pronounced for Reω > 10. Furthermore, for 30 < Reω < 200, there exists a shift of
approximately π/2 at the centre of the gap with respect to the inner sphere.

Based on this definition for the BL (4.1), it is possible to demonstrate that (4.1) has
two solutions, which can be interpreted as two complementary asymmetric BLs. This
asymmetry is produced by the Lorentz force that is more intense closer to the inner sphere,
and decays as r−5 (as shown in (3.11)) towards the outer sphere. As a result, the magnetic
torque produced by the Lorentz force couples the fluid more efficiently to the inner sphere
than the viscous effect does to the outer sphere. In this way, the radius furthest from the
interior sphere is selected for the definition.

The BL thickness depends only on the oscillatory Reynolds number Reω given the
linearity of the equation for f , (3.13). Figure 8 shows the inner BL thickness as a function
of the oscillatory Reynolds number in the range 0 < Reω < 30 000. In this plot, two
asymptotic behaviours can be clearly distinguished. One for Reω→ 0, where the BL tends
to a constant value of δ → 0.9203. This value has been obtained by a linear fitting to
the BL thickness below Reω ≤ 1. In contrast, for Reω � 1, the BL thickness can be
estimated from an order of magnitude analysis performed to the governing equation (3.11)
in dimensional form considering the following scales for uθ ∼ U and t ∼ ω−1. At this
limit, a proper length scale for the radial coordinate r is the BL thickness δ∗. This leads to

ρUω ∼ μ
U
δ∗2 + j0B0 sinω−1. (4.5)

For ω � 1 (or Reω � 1) we have that sinω−1→ 0, and thus δ∗2 ∼ ν/ω, or, in
dimensionless form,

δ ∼ Re−1/2
ω , (4.6)

where the gap between the spheres has been used as the characteristic length scale. In
accordance with the fitting presented in figure 8, this estimation is valid for Reω > 300,
which confirms the validity of this approximation. This BL corresponds to Region I in
the graph. Region II could correspond to the BL thickness of the outer sphere. It must
be mentioned that, as the oscillatory Reynolds number increases, the BL of the inner
sphere becomes shorter and the velocity out of this region tends to zero (see figure 5).

920 A5-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.397


A. Figueroa, M. Rivero, J. Núñez, J.A. Rojas and I. Rivera

1.0

0.9

0.8

0.7

0.6
Region I

Region II

0.5
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δ∼ Reω
–1/2

δ∼ 0.9203

δ

Figure 8. BL thickness δ as a function of Reω. Region I corresponds to the thickness of the BL produced at
the inner sphere. Region II, complementary to Region I, is the thickness of the BL of the outer sphere. The fit
for Reω > 300 is δ = 2.725Re−1/2

ω + 0.3454.

Thus, discussing the BL for the outer sphere makes sense for Reω < 100, where velocity
gradients are observed. Above this value, the thickness obtained for Region II represents
the sphere gap region where a quasi-static flow is observed. It is worth noting that, although
in this particular regime (Reω → ∞) it is possible to define a characteristic velocity
(uθ ∼ 0) as in semi-infinite flows, methodologies used for semi-infinite problems (such
as those treated in Rivero et al. 2019) cannot be applied.

5. Concluding remarks

In this work we studied theoretical, numerical and experimentally the time-dependent
laminar (Re ≤ 640) flow driven by electromagnetic forcing (the Lorentz force) on an
electrolytic fluid in the gap between two concentric spheres. The driving Lorentz force
is generated by the interaction of an alternating current radially injected at the equatorial
region and a dipolar magnetic field. The flow addressed in this manuscript is a modified
version of one of the fundamental problems in fluid dynamics: the SC flow. In contrast
to the flow around a torsionally oscillating sphere, where a secondary flow is induced
by the differential rotation of the fluid produced by drag of the rotating spheres, in
this work no secondary flows are observed. This can be explained by the no-slip static
boundary conditions, which, in addition to a Lorentz force that only has a contribution
in the azimuthal direction (namely, no radial or polar components appear), induces
circular motion in equator-parallel planes. This implies significant physical differences
compared with Couette-type flows, namely, although there exist some similarities between
both systems, they exhibit completely distinct phenomena. Even though the investigation
addressed in this study is of a fundamental nature, the results might be relevant for
different applications. In fact, this electromagnetic induced flow provides an alternative
means to induce flows that might be considered relevant in geophysical and astrophysical
phenomena as well as for technological or medical applications.

The experimental set-up is a relatively new proposal whereby the flow between the
concentric spheres is only driven electromagnetically and optical access is provided.
Thus, the experimental characterization was performed by the PIV technique. In addition,
a deep theoretical analysis of the flow was undertaken. Due to the symmetry of the
problem, an asymptotic solution for Reω → 0 and an approximate solution for Reω → ∞
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are presented. While the low Reω solution can be expressed in terms of real arguments, the
high Reω solution could not be separated. In order to solve the fundamental equation, the
method of separation of variables was used. By applying the methodology proposed in this
work, an exact solution for the full problem depending only on real functions is developed,
which to the best knowledge of the authors has not been previously reported. Moreover,
the experimental and analytical velocity profiles are successfully compared qualitatively
and quantitatively against an in-house developed 3-D numerical code based on the finite
differences method.

The analysis is performed based on the oscillatory Reynolds number and the
dimensionless forcing terms. The velocity of the flow tends to diminish for a high
oscillatory Reynolds number (Reω > 1000) due to the time-dependent forcing. Another
feature linked to the oscillatory nature of the forcing is the manifestation of a resonant
behaviour of the flow around Reω ≈ 560. The flow analysis is complemented by the
estimation of the BL at the inner sphere based on the analytical solution. The BL presents
two asymptotic behaviours: for Reω→ 0, the BL tends to a constant value of δ → 0.9203;
for Reω > 300 the BL at the inner sphere decays as Re−1/2

ω .
It should be noted that our study does not deny the existence of other feasible

phenomena, such as secondary flows, that might arise under different conditions. Even
though we obtained a good agreement between theoretical, experimental and numerical
results, there are still several issues that need to be understood, such as: the stability of
the solution as a function of the driving force, the radius ratio, the presence of other
forces (such as buoyancy or rotation), the validity of the presented solutions for other
electrically conductive fluid flows in which induced effects cannot be disregarded and,
considering the form of the Lorentz force, to extend the analysis to other planes parallel to
the equator in which temporal and spatial phase shifts must be considered. Understanding
these phenomena requires a separate investigation.
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Appendix A. Solutions of the particular equation

The real and imaginary solutions of the particular equation are

yP1R (r) = A
16r5/2 G4,1
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yP1I (r) = A
16r5/2 G4,1
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yP2R (r) = πA
4r5/2 G2,1

2,6

⎛
⎜⎜⎝r

√
Reω
4

,
1
4

∣∣∣∣∣∣∣∣
13
8
,

√
5

2√
5

8
,

4 + √
5

8
,

5
8
,−

√
5

8
,

√
5

2
,

4 − √
5

8

⎞
⎟⎟⎠ , (A3)

yP2I (r) = − πA
4r5/2 G2,1
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where G is the Meijer G-function (Beals & Szmigielski 2013).

Appendix B. Coefficients of the analytical solution

C1R = −{−y1I(a)y2I(b)y2I(a)yPI(b)+ y1I(b)y2I(a)2yPI(b)

+ y1R(a)y2I(a)y2R(b)yPI(b)− y1R(a)y2I(b)y2R(a)yPI(b)

− y1I(a)y2R(b)y2R(a)yPI(b)+ y1I(b)y2R(a)2yPI(b)

+ y1I(a)y2I(b)2yPI(a)− y1I(b)y2I(b)y2I(a)yPI(a)

− y1R(b)y2I(a)y2R(b)yPI(a)+ y1I(a)y2R(b)2yPI(a)

+ y1R(b)y2I(b)y2R(a)yPI(a)− y1I(b)y2R(b)y2R(a)yPI(a)

− y1R(a)y2I(b)y2I(a)yPR(b)+ y1R(b)y2I(a)2yPR(b)

− y1I(a)y2I(a)y2R(b)yPR(b)+ y1I(a)y2I(b)y2R(a)yPR(b)

− y1R(a)y2R(b)y2R(a)yPR(b)+ y1R(b)y2R(a)2yPR(b)

+ y1R(a)y2I(b)2yPR(a)− y1R(b)y2I(b)y2I(a)yPR(a)

+ y1I(b)y2I(a)y2R(b)yPR(a)+ y1R(a)y2R(b)2yPR(a)

− y1I(b)y2I(b)y2R(a)yPR(a)− y1R(b)y2R(b)y2R(a)yPR(a)}/
{[−y1R(a)y2I(b)+ y1R(b)y2I(a)− y1I(a)y2R(b)+ y1I(b)y2R(a)]2

+ [y1I(a)y2I(b)− y1I(b)y2I(a)− y1R(a)y2R(b)+ y1R(b)y2R(a)]2}, (B1)

C1I = −{−y1R(a)y2I(b)y2I(a)yPI(b)+ y1R(b)y2I(a)2yPI(b)

− y1I(a)y2I(a)y2R(b)yPI(b)+ y1I(a)y2I(b)y2R(a)yPI(b)

− y1R(a)y2R(b)y2R(a)yPI(b)+ y1R(b)y2R(a)2yPI(b)

+ y1R(a)y2I(b)2yPI(a)− y1R(b)y2I(b)y2I(a)yPI(a)

+ y1I(b)y2I(a)y2R(b)yPI(a)+ y1R(a)y2R(b)2yPI(a)
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− y1I(b)y2I(b)y2R(a)yPI(a)− y1R(b)y2R(b)y2R(a)yPI(a)

+ y1I(a)y2I(b)y2I(a)yPR(b)− y1I(b)y2I(a)2yPR(b)

− y1R(a)y2I(a)y2R(b)yPR(b)+ y1R(a)y2I(b)y2R(a)yPR(b)

+ y1I(a)y2R(b)y2R(a)yPR(b)− y1I(b)y2R(a)2yPR(b)

− y1I(a)y2I(b)2yPR(a)+ y1I(b)y2I(b)y2I(a)yPR(a)

+ y1R(b)y2I(a)y2R(b)yPR(a)− y1I(a)y2R(b)2yPR(a)

− y1R(b)y2I(b)y2R(a)yPR(a)+ y1I(b)y2R(b)y2R(a)yPR(a)}/
{[−y1R(a)y2I(b)+ y1R(b)y2I(a)− y1I(a)y2R(b)+ y1I(b)y2R(a)]2

+ [y1I(a)y2I(b)− y1I(b)y2I(a)− y1R(a)y2R(b)+ y1R(b)y2R(a)]2}, (B2)

C2R = −{y1I(a)2y2I(b)yPI(b)+ y1R(a)2y2I(b)yPI(b)

− y1I(b)y1I(a)y2I(a)yPI(b)− y1R(b)y1R(a)y2I(a)yPI(b)

+ y1I(a)y1R(b)y2R(a)yPI(b)− y1I(b)y1R(a)y2R(a)yPI(b)

− y1I(b)y1I(a)y2I(b)yPI(a)− y1R(b)y1R(a)y2I(b)yPI(a)

+ y1I(b)2y2I(a)yPI(a)+ y1R(b)2y2I(a)yPI(a)

− y1I(a)y1R(b)y2R(b)yPI(a)+ y1I(b)y1R(a)y2R(b)yPI(a)

− y1I(a)y1R(b)y2I(a)yPR(b)+ y1I(b)y1R(a)y2I(a)yPR(b)

+ y1I(a)2y2R(b)yPR(b)+ y1R(a)2y2R(b)yPR(b)

− y1I(b)y1I(a)y2R(a)yPR(b)− y1R(b)y1R(a)y2R(a)yPR(b)

+ y1I(a)y1R(b)y2I(b)yPR(a)− y1I(b)y1R(a)y2I(b)yPR(a)

− y1I(b)y1I(a)y2R(b)yPR(a)− y1R(b)y1R(a)y2R(b)yPR(a)

+ y1I(b)2y2R(a)yPR(a)+ y1R(b)2y2R(a)yPR(a)}/
{[−y1R(a)y2I(b)+ y1R(b)y2I(a)− y1I(a)y2R(b)+ y1I(b)y2R(a)]2

+ [y1I(a)y2I(b)− y1I(b)y2I(a)− y1R(a)y2R(b)+ y1R(b)y2R(a)]2}, (B3)

C2I = −{−y1I(a)y1R(b)y2I(a)yPI(b)+ y1I(b)y1R(a)y2I(a)yPI(b)

+ y1I(a)2y2R(b)yPI(b)+ y1R(a)2y2R(b)yPI(b)

− y1I(b)y1I(a)y2R(a)yPI(b)− y1R(b)y1R(a)y2R(a)yPI(b)

+ y1I(a)y1R(b)y2I(b)yPI(a)− y1I(b)y1R(a)y2I(b)yPI(a)

− y1I(b)y1I(a)y2R(b)yPI(a)− y1R(b)y1R(a)y2R(b)yPI(a)

+ y1I(b)2y2R(a)yPI(a)+ y1R(b)2y2R(a)yPI(a)

− y1I(a)2y2I(b)yPR(b)− y1R(a)2y2I(b)yPR(b)

+ y1I(b)y1I(a)y2I(a)yPR(b)+ y1R(b)y1R(a)y2I(a)yPR(b)

− y1I(a)y1R(b)y2R(a)yPR(b)+ y1I(b)y1R(a)y2R(a)yPR(b)

+ y1I(b)y1I(a)y2I(b)yPR(a)+ y1R(b)y1R(a)y2I(b)yPR(a)
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− y1I(b)2y2I(a)yPR(a)− y1R(b)2y2I(a)yPR(a)

+ y1I(a)y1R(b)y2R(b)yPR(a)− y1I(b)y1R(a)y2R(b)yPR(a)}/
{[−y1R(a)y2I(b)+ y1R(b)y2I(a)− y1I(a)y2R(b)+ y1I(b)y2R(a)]2

+ [y1I(a)y2I(b)− y1I(b)y2I(a)− y1R(a)y2R(b)+ y1R(b)y2R(a)]2}. (B4)
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