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Abstract
Automatic question generation is one of the most challenging tasks of Natural Language Processing. It
requires “bidirectional” language processing: first, the system has to understand the input text (Natural
Language Understanding), and it then has to generate questions also in the form of text (Natural Language
Generation). In this article, we introduce our framework for generating the factual questions from unstruc-
tured text in the English language. It uses a combination of traditional linguistic approaches based on
sentence patterns with several machine learning methods. We first obtain lexical, syntactic and semantic
information from an input text, and we then construct a hierarchical set of patterns for each sentence. The
set of features is extracted from the patterns, and it is then used for automated learning of new transforma-
tion rules. Our learning process is totally data-driven because the transformation rules are obtained from
a set of initial sentence–question pairs. The advantages of this approach lie in a simple expansion of new
transformation rules which allows us to generate various types of questions and also in the continuous
improvement of the system by reinforcement learning. The framework also includes a question evaluation
module which estimates the quality of generated questions. It serves as a filter for selecting the best ques-
tions and eliminating incorrect ones or duplicates. We have performed several experiments to evaluate the
correctness of generated questions, and we have also compared our system with several state-of-the-art
systems. Our results indicate that the quality of generated questions outperforms the state-of-the-art sys-
tems and our questions are also comparable to questions created by humans. We have also created and
published an interface with all created data sets and evaluated questions, so it is possible to follow up on
our work.

Keywords: Automatic question generation; Machine learning

1. Introduction
Education is moving into the online environment, and e-learning in combination with artificial
intelligence is a very acute topic today (Ashraf and Khan 2017; Colchester et al. 2017). From
the educational point of view, knowledge evaluation is still a problematic part of e-learning.
This is because human experts (e.g., teachers or lecturers) are currently irreplaceable during the
knowledge verification phase. There are many systems for supporting education, but the task of
question generation is weakly covered. Besides that, the utilization of generated questions goes far
beyond education and learning. Question generation systems can also be used for the improve-
ment of question answering systems (Reddy et al. 2017; Tang et al. 2017) creating virtual agents for
human–computer interaction andmany other applications. So, the purpose of automatic question
generation (AQG) systems is not limited to the area of education.

C© The Author(s), 2021. Published by Cambridge University Press.

https://doi.org/10.1017/S1351324921000139 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000139
https://orcid.org/0000-0002-8437-8769
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324921000139&domain=pdf
https://doi.org/10.1017/S1351324921000139


488 M Blšták and V Rozinajová

There are various approaches to the task of AQG. We are focusing on pattern-matching
because thanks to the continuous development of Natural Language Processing (NLP) tools,
this way offers a wide perspective (tools like part-of-speech taggers, named entity recogniz-
ers, semantic role labellers, etc.). Approaches based on pattern-matching leverage the patterns
extracted from the text and use them for sentence-to-question transformations. We primarily use
combinations of lexical patterns consisting of token sequences, syntactic patterns consisting of
part-of-speech (POS) tags and semantic patterns consisting of semantic information about words
(e.g., named entity tags or hypernyms). As manual creation of patterns for sentences is diffi-
cult and time-consuming, we included machine learning techniques which allow patterns to be
obtained automatically from an initial set of sentence–question pairs. This concept is also known
as the data-driven approach (learning from data). The main contributions can be summarized as
follows:

1. we propose a novel method for the task of question generation from text which uses a
combination of the traditional linguistic approach known as pattern-matching with actual
machine learning approaches;

2. we present a data-driven approach in which transformation patterns are automatically
extracted from samples of sentence–question pairs (this approach allows the system to
continuously learn to create new questions for new unseen sentences);

3. we suggest storing extracted patterns in a hierarchy of patterns which allows us to find
the most common type of question for a specific sentence (this approach should also be
beneficial in related NLP tasks).

The rest of this paper is structured as follows:

• In the second section, we introduce contemporary approaches used in question generation
systems, our proposed categorization of state-of-the-art systems based on several criteria and
an evaluation of generated questions in these systems with a focus on the domain of factual
questions which are generated from unstructured text.

• In the third section, we describe our proposed framework for generating questions from
unstructured text including a detailed description of all steps of the process from preparation
of a data set to question generation and its evaluation through comparisons.

• In the fourth section, we show and explain our experiments and discuss the evaluation of
results from various points of view.

• In the final section, we make our conclusion and propose suggestions for future work.

2. Related works
It is difficult to clearly categorize related works because there are several criteria and points of
views to consider. If we focus on education, one of the most important criteria for differentia-
tion is the presence of the correct answer. Many question generation systems generate questions
regardless of whether the answers are present in the input text or not. And, there are also systems
generating questions which can be answered without understanding the text (e.g., they utilize the
knowledge of the language grammar (e.g., they utilize the knowledge of the language grammar
(Chen, Liou, and Chang 2006; Lin, Sung, and Chen 2007; Kunichika et al. 2011; Mostow and Jang
2012)). We primarily focus on factual questions. Factual questions are based on the facts which
are mentioned in the text.

2.1 Factual question generation
Considering the extent of input text, we can classify question generation systems into those that
create questions from structured data (d’Aquin andMotta 2011; Olney, Graesser, and Person 2012;
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Serban et al. 2016), a combination of structured and unstructured data (Lin, Chen, and Sun 2009;
Yao, Bouma, and Zhang 2012) or from a specific part of the unstructured data. The specific part
can be:

• a sequence of a few words (Brown, Frishkoff, and Eskenazi 2005; Karamanis, Ha, and Mitkov
2006; Agarwal andMannem 2011; Becker, Basu, and Vanderwende 2012; Kumar, Banchs, and
D’Haro 2015),

• a sentence (Mitkov, Ha, and Karamanis 2006; Ali, Chali, and Hasan 2010; Heilman and Smith
2010; Agarwal, Shah, andMannem 2011; Curto, Mendes, and Coheur 2012; Afzal andMitkov
2014; Mazidi and Tarau 2010; Chali and Baghaee 2018),

• a paragraph (Lin et al. (2009); (Mannem, Prasad, and Joshi 2010)),
• a full article or topic (Chali and Hasan 2012; Chali and Hasan 2015; Jin and Le 2016; Du,
Shao, and Cardie 2017; Yuan et al. 2017).

One of the most typical approaches for generating questions based on a few words is known as
fill-in-the-blank (Lin et al. 2007; Afzal and Mitkov 2014; Kumar et al. 2015). These systems first
identify some part of the text (one word or a sequence of several words) which will be an answer
and remove it from the text. The words to be removed are usually chosen by part-of-speech (POS)
tags (e.g., adjectives, prepositions or nouns). Identification of the gap is the most challenging part
of this process, and generation of set of distractors is also very complicated.

Questions generated from one sentence or from a sequence of sentences require the engage-
ment of more sophisticated linguistic techniques. There are systems which generate questions as
interrogative sentences transformed from input declarative sentences. This process is also known
as sentence-to-question transformation, and it usually uses a set of transformation rules. There
are several approaches used in related research papers.

One of the first factual question generation systems based on sentence-to-question transforma-
tion was introduced in Mitkov (2006). They focus on a methodology to generate multiple-choice
test items about facts explicitly stated in single declarative sentences. In Heilman (2010), the
authors extended this idea and used syntactic patterns created from parse tree representation.
They first extract simplified statements from a text and then transform the declarative simplified
sentence into a question. Sometimes, they utilize semantic information about words to decide if
the noun reflects a person or a thing (if it is possible to use the interrogative pronounwho or what).
An approach based onmodifying the parse tree was also used in (Kalady, Elikkottil, and Das 2010)
with a combination of keywords extraction. In addition, one system in theQGSTEC challenge uses
the parse tree to generate questions (Yao and Zhang 2010) (tree-based pattern-matching rules).

There are several approaches which leverage basic syntactic and semantic sentence patterns.
In Ali (2010), their obtained sentences were matched to a predefined group of syntactic patterns
and a set of possible questions was assigned to each pattern. A combination of lexical and syn-
tactic patterns was used in Curto (2012). They created an interactive virtual agent for generating
questions about artefacts in a museum. It learned patterns from a set of sentence–question pairs,
and they were subsequently evaluated by Google search. A strong limitation of this work is that
questions are focused only on the domain of art and the coverage of sentences from the data set
was weak. Several systems based on rules which combine semantic role labelling and named enti-
ties were presented in other research papers (e.g., Pal et al. 2010 or (Lindberg et al. 2013)). In
our previous work (Blstak and Rozinajova 2017), we introduced an approach combining lexical,
syntactic and semantic patterns where we also showed the possibilities of using these patterns
together. According to our knowledge, except for our previous work, there is no system based
on transformation patterns which use the data-driven approach for extraction of rules during
the learning phase (this does not apply to systems using the neural approach as we will mention
later). Another question generation framework (QGaSP), which leverages different levels of lin-
guistic information, was introduced in (Rodrigues, Coheur, and Nyberg 2016). They not only used
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a similar approach to the virtual agent about artefacts but they also used semantic role labelling.
In (Das et al. 2016), the authors focus on the problem of increasing the number of acceptable
questions when sentences are too complex, or patterns are ambiguous. They created a set of rules
which split sentences into segments based on syntactic patterns, in order to assist the generation
of the correct type of questions. Another improvement to pattern-matching processes in AQG
was suggested by (Mazidi and Tarau 2010). Here, an approach was presented combining extracted
syntactic information from sentences with semantic role labelling and syntactic dependency pars-
ing. In Song and Zhao (2016), the authors tried to automate the process of template creation
with the intent of reducing human effort. They manually created a small number of hand-crafted
templates in the form of predicates with placeholders for the subject and object for question gen-
eration from knowledge base. These seed questions were then expanded through search engines
(e.g., Google or Bing) as a query. It is very difficult to determine the benefit of this approach due
to weak experiments and comparisons. Evaluation was done only on a question generation data
set consisting of triplets from Freebase even though this data set was generated by machine, so it is
obvious that the questions are unnatural as authors have mentioned. They also experimented with
a data set designed for the classification of short documents, but this is a different task to question
generation and they only checked if questions were natural by using results obtained from human
evaluators. The authors also did not consider if the generated questions were answerable. Even
though the seed set of patterns must be created by humans, it is an interesting way of introducing
automation into the process to reduce user fatigue.

2.2 From linguistic approaches to statistical approaches
When we look at NLP tasks globally, there is one important aspect regarding the way of approach-
ing the given problem. We distinguish between linguistic approaches and statistical approaches
(often assigned to machine learning methods). We consider today’s popular approaches based on
artificial neural networks as a subcategory of statistical approaches, whereas the neural network
model also takes into account statistical occurrences from the training data set. In several NLP
tasks, machine learning approaches beat linguistic ones (e.g., machine translation task), but this
requires large data sets for training and evaluating the system.

Obtaining data sets for AQG tasks is not particularly simple. There is one large question data
set called 30 m factoid question–answer corpus in Serban et al. (2016). It is used in the question
generation task, but it contains 30million questionsmapped to triplets, not to sentences. However,
the IBMWatson system uses this data set in the question answering task. According to their first
experiments, using this auto-generated data set was effective for training (Lee et al. 2016).

For the task of question generation from unstructured text, there is only one small data set
called QGSTEC2010 (Rus et al. 2012). It consists of 90 sentence–question pairs for training and
another 90 pairs for the testing phase. Evaluation on this data set will be described in the next
section. However, a data set which consists of just 90 questions is not suitable for use for training
models, and several researchers have leveraged self-made data sets fromWikipedia articles or data
sets from related tasks (e.g., question answering).

Approaches using neural networks began to become popular in question generation tasks with
the publication of the data set for the question answering task known as SQuAD—The Stanford
Question Answering Dataset (Rajpurkar et al. 2016). It consists of more than 100,000 questions
from more than 500 articles. Although it was not originally intended for the question generation
task, it was adopted for it in several recent works (Du, Shao, and Cardie 2017; Song et al. 2018;
Wang et al. 2018; Zhou et al. 2018). This transition to a robust data set brings new problems, espe-
cially in the area of evaluation. First, it is necessary to split the data set into train and test subsets
with similar characteristics in each (e.g., distribution of question types) and then to establish how
to simplify the process of evaluation because it is no small task for a human to evaluate so much
generated data. Another possible resource of data for this task is project LearningQ (Chen et al.
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2018)a. It is a data set which can be used for educational question generation, whereas it contains
about 7000 questions from TED-Ed and more than 200,000 questions from Khan Academy.

In Du et al. (2017), an approach for generating questions from text passages with the intent of
revealing reading comprehension was proposed. The authors used an attention-based sequence
learning model and compared two versions of encoder–decoder architecture: in the first, they
encoded only one sentence and in the second, they also added paragraph-level information. Both
versions used the bidirectional LSTM network. The authors conducted experiments on a modified
SQuAD data set as follows: they extracted sentences and paired them manually to the questions
and then preprocessed the text with the Stanford CoreNLP tool. The data set was randomly
divided into a training set, a development set and a test set (80/10/10). Human evaluation was
conducted on 100 randomly selected sentence–questions pairs. The model which only encodes
sentence-level information achieved the best performance across all metrics (BLEU-3, BLEU-4
and METEOR).

A similar approach was used in Zhou et al. (2018). Here, the authors also proposed a neural
encoder–decoder model for generating questions from natural language sentences and conducted
experiments with the SQuAD data set. They used bidirectional GRU to build an encoder and
an attention-based decoder. They did not only used sequences of words but also leveraged
handcrafted features like lexical features (word cases, POS tags and NER tags) and an answer
position indicator. They extracted sentence–question–answer triplets from the SQuAD data set
and compared several versions of neural networks. Their results showed that the model with a
configuration consisting of a pre-trained word embedding matrix provided the best results. In
human evaluation, the authors used BLEUmetrics and users were asked to evaluate the questions
generated from the best model. In addition, they evaluated the benefits of selected features and the
results showed that answer position indicator plays a crucial role in generating correct questions.
Other features (word case, POS and NER) also contribute to this process.

In Song et al. (2018), the authors tried to determine if context information can improve the
question generation task. Their encoder–decoder framework also uses bidirectional LSTM—the
encoder reads the passage and answer and the decoder generates a set of questions. They com-
pared three strategies to match the passage with the answer. In full-matching, the authors encoded
all words and the word order, in attentive-matching they considered the weighted sum of all
answers and all words without word order, and in the max-attentive-matching configuration,
they considered only the most relevant answer state. The authors compared their model with a
basic sequence-to-sequence model, and their experiments showed that a combination of all the
strategies performed best. This is because these strategies are complementary. The best strategy
is the full-matching strategy. In Sun et al. (2018), the authors tried to handle issues where the
answer type is not consistent with the question type. They introduced two models to deal with
this problem: an answer-focused model which takes an answer as additional information and a
position-aware model which uses distance between the context words and the answer. In Kumar,
Ramakrishnan, and Li (2018), a framework for automatic question generation from text using
deep reinforcement learning was presented. During the training phase, the authors have used eval-
uation metric as a reward (e.g., BLEU or ROUGE-L) and their approach outperforms previously
mentioned works (the comparison will be discussed in the next section). Based on the findings of
these works focused on neural networks, we can say that question generation approaches built on
seq2seq models work better with additional lexical features (POS, NER, answer position or pre-
processed word embedding matrices). In these works, these were used for generating questions
from passages of text instead of standalone sentences. However, there are some crucial disad-
vantages resulting from the use of neural networks. These models are hard to interpret, so it is
not easy to improve by adding new sentence–question pairs as in pattern-matching approaches

aavailable at https://github.com/AngusGLChen/LearningQ
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or machine learning being improved by instant feedback after deployment (e.g., rewards in rein-
forcement learning or new sentence–question pairs obtained later). And sometimes, models have
to be re-trained when adding new training data.

2.3 Evaluation of the questions
Evaluation of AQG systems is not an easy task—and sometimes it can be particularly tricky. As
it was found in the recent review of the evaluation methodologies used in AQG based on 37
papers (Amidei, Piwek, and Willis 2018), there is still no standard way of evaluating AQG sys-
tems. Generally, there are two possibilities for how to evaluate systems and generated questions.
The first approach is to obtain several articles, generate questions from these articles and quantify
the total number of correctly generated questions with metrics like precision, recall and F1 mea-
sure. This type of evaluation dominates (e.g., (Kunichika et al. 2011), (Heilman and Smith 2010)
and many others). The sources of text could be:

• school textbooks (Susanti, Iida, and Tokunaga 2015; Kumar, Banchs, and D’Haro 2015) or
(Kunichika et al. 2011),

• online encyclopedias such as Wikipedia or Britannica (Heilman and Smith 2010; Agarwal,
Shah, and Mannem 2011; Chali and Hasan 2015),

• community question–answering systems, for example, Stack Overflow or Yahoo Answers
(Rus et al. 2012),

• question–answering data sets TREC2007 or SQuAD.

The second option is to evaluate systems utilizing a data set created for this task which is
then used across various systems. As we know, there is only one data set which keeps tuples of
sentences and questions for this purpose. It was first used by participants in the First Question
Generation Shared Task Evaluation Challenge (QGSTEC) by participants of this event (Pal et al.
2010; Varga and Ha 2010; Yao and Zhang 2010) and Ali et al. (2010) and later in several research
papers (Agarwal, Shah, and Mannem 2011; Chali and Hasan 2015) or in Curto et al. (2012). The
evaluation results are summarized in Table 1. The first four systems were evaluated directly at
QGSTEC by human evaluators. We simply transformed points score into a percentage, and the
number of the correct questions was calculated as the number of generated questions multiplied
by correctness. In the case of (Curto et al. 2012), the focus was on questions which were related
only to a specific domain (history) and in (Agarwal, Shah, and Mannem 2011), a system which
generates questions using discourse connectives was presented. The maximum number of ques-
tions was 121 because these types of questions should be generated only from the subset of input
sentences (only sentences with discourse connectives for example, since, when, or although). So,
we calculate the ratio as 63 generated questions out of 121 possible questions.

There is one other optionwhen comparing generated questions with questions created by users.
We can use text similarity metrics as presented in (Du et al. 2017) or (Divate and Salgaonkar
2017). In several related Natural Language Generation tasks (such as machine translation), there
are widely used metrics for the evaluation of text generated by machines to text expected by users.
For example, BLEU (Papineni et al. 2002), METEOR (Denkowski and Lavie 2011) and ROUGE
(Lin 2004) are very popular but, for this comparison, we also need a referential set of questions
obtained from human evaluators. For this purpose, a created user interface or paid evaluation
services like Mechanical Turks are usually used (Buhrmester, Kwang, and Gosling 2011; Mazidi
and Tarau 2010).

As we mentioned in the previous section, question generation approaches based on neural
networks are usually evaluated on the basis of the SQuAD data set (Du et al., 2017; Zhou et al.,
2017; Song et al., 2018; Kumar et al. 2018). There are two possible types of evaluations: evaluation
by humans and automatic evaluation. When the data set is large, it is not possible for humans to
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Table 1. Comparison of AQG approaches on QGSTEC data set

System Correctness (%) Q/sentence Correct q. Generated q.

Participant 1a 0.64 4.37 227 354
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 2b 0.34 2.04 56 165
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 3c 0.30 2.58 63 209
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 4d 0.21 2.07 35 168
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curto et al.e 0.56 0.31 14 25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Agarwal et al.f 0.7 0.52 44 63

a(Yao and Zhang 2010).
b(Varga and Ha 2010).
c(Pal et al. 2010).
d(Ali et al. 2010).
e(Curto et al. 2012).
f(Agarwal, Shah, and Mannem 2011).

Table 2. Automatic evaluation of AQG approaches on SQuAD data set

System BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Du et al. (2017) 43.09 25.96 17.50 12.28 39.76
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Song et al. (2018) – – – 13.98 42.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zhou et al. (2018) – – – 13.29 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kumar et al. (2018)a 46.59 29.68 20.79 15.04 41.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kumar et al. (2018)b 48.13 31.15 22.01 16.48 44.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sun et al. (2018)c 43.02 28.14 20.51 15.64 –

aModel with reward function based on BLEU.
bModel with reward function based on ROUGE-L..
cHybrid model.

evaluate all the questions, so human evaluation is usually done only in a subset of instances. In
Kumar et al. (2018), the authors made a comparison from both sides. Summarization of the most
important results (from the best models) is shown in Table 2 (results obtained from the original
papers).

In Zhou et al. (2018), the authors used a three-level scale from 1 (bad questions) to 3 (good
questions). Three human raters labelled 200 questions sampled from the test set and obtained
an average score of 2.18 points in comparison to the baseline of 1.42. In Kumar et al. (2018),
the authors used a percentage scale (0–100) and evaluated three criteria: syntax, semantics and
question relevance. Three human raters labelled 100 randomly selected questions. The best scores
for chosen criteria were 84 (syntax), 81.3 (semantics) and 78.33 (relevance). In Du et al. (2017),
human evaluators used a scale of 1–5 and their criteria were naturalness (grammaticality and flu-
ency) with a score of 3.91 and difficulty (sentence–question syntactic divergence and the reasoning
needed to answer the question) with a score of 2.63. In (Hosking and Riedel 2019), three human
evaluators rated 300 generated questions on a scale of 1–5 and criteria were fluency of language
and relevance of questions.

There is another way to automatically evaluate generated questions—extrinsic evaluation. It is
used to detect how useful the generated questions in real application are. As the purpose of factual
questions is in education and validation of knowledge, it is appropriate to verify their contribution
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in this field. For example, in (Skalban 2013), the extrinsic evaluation (described in 5.2.) aims at
evaluating usefulness of generated questions in real-life applications and they evaluate generated
questions also with focus to these attributes:

• Whether the presence of text-based pre-questions helps test-takers to answer post-questions
more accurately (i.e., more questions are answered correctly).

• Whether the presence of pre-questions with screenshots extracted from the video helps the
test-takers to answer post-questions more accurately.

• Whether the presence of text-based pre-questions affects the time taken to answer post-
questions.

• Whether the presence of pre-questions with screenshots extracted from the video affects the
time taken to answer post-questions.

The most common model for question classification in terms of fulfilling some educational
goals is probably Bloom taxonomy, which was invented in 1959 and revised in 2001 (Bloom 1956;
Anderson et al. 2001). This taxonomy defines six levels of questions based on the complexity of
created questions. However, utilizing sentence-to-question transformation for generating these
questions is feasible only for the first and the second level (in most cases only for the first one).
Simply put, the questions of the first level (remembering) are questions based on repeating the
facts from the text. The questions of the second level (understanding) are questions based on
information that is explicitly present in the text, but they may be interpreted by different words
(e.g., synonyms, hypernyms etc.). In case of generating questions from the text by transform-
ing declarative sentences into questions, it seems better to use the three-level classification for
reading comprehension area proposed by (Pearson and Johnson 1978). The first level of ques-
tions is those, which are explicitly mentioned in the text, the second level of questions can be
answered by combining several facts from the text and the third level of questions involves some
background knowledge. There are some other useful taxonomies for question generation tasks.
In (Day and Park 2005), the authors focus on developing reading comprehension questions and
some attributes can also be used as a checklist for teachers. In (Graesser, Person, and Smith 1992),
several question generation mechanisms were proposed. They categorized questions (inquiries)
on the basis of semantic, conceptual and pragmatic criteria into 18 categories. The most common
questions generated by AQG systems belong to categories: verifications (Is the fact true?) and
concept completion (Who?, What?, etc.).

2.4 Summary of related works
We have shown that there are various approaches and various AQG systems in areas of computer-
aided learning and question generation. We have mentioned the most interesting among them
which are related to our work. As we are focusing on factual question generation from unstruc-
tured text, we first tried tomake an overall categorization of state-of-the-art approaches in the area
of AQG from several points of view and we then identified and determined the sub-areas of our
direction. There are several related systems we can compare with. We also mention several papers
focused on neural networks. These also perform better with additional lexical features such as a
list of POS labels, entities, answer position or preprocessed word embedding matrices. However,
these models are hard to interpret and difficult to improve by feedback information as they stand
as a black box. In pattern-matching approaches, we can improve a model simply by adding new
sentence–question pairs or marking some question as incorrect so it will not be used in the future.

We have also mentioned some existing data sets and sources of texts which are often used in
the question evaluation phase. There are three possible options for how to evaluate AQG systems.
First, we can calculate the correctness of generated questions from a specific type of text. Then, for
mutual comparisons of various systems, we can use question generation data sets and compare the
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Figure 1. Conceptual overview of our proposed AQG framework.

questions generated from them. And, finally, if we also want to compare the quality of questions
from a user perspective, we can evaluate the similarity of questions generated by systems with
questions expected by users.

In the next section, we will describe our framework for factual question generation and
compare it with state-of-the-art-systems based on these criteria.

3. Our proposed question generation approach
Our main contribution to AQG consists of the data-driven approach and a combination of tradi-
tional linguistic approaches used in NLP tasks with machine learning approaches used during
the system-training and system-improvement steps. When we look at similar areas, it is the
machine translation task which has lately gained the greatest attention. The quality of translated
text increased rapidly after traditional linguistic methods were supplemented (and/or replaced) by
machine learning approaches. Thanks to the availability of large corpora of multilingual parallel
texts, the learning process of translation is more efficient. In our task, we adopted this data-driven
approach for training the system to generate questions.

Our proposed framework for AQG (Figure 1) uses data sets consisting of sentence–question
pairs extracted from text. First, preprocessing extracts features from sentences. Then, we create
a special data structure which keeps these features and calculates the possible sentence trans-
formation rules for transformation of a sentence into a question. When questions are created,
the question estimator module estimates the quality of the generated questions. We adopted the
reinforcement learning approach to improve our system by reflecting explicit feedback about the
quality of the questions generated in the past. In the next sections, we describe these steps in
detail.

3.1 Sentence preprocessing
Initial preprocessing steps are required because we need to represent input of unstructured text
as the set of features in order to use it for machine learning. After sentence boundary identifi-
cation and token extraction, we obtain several pieces of information about each token from the
sentences. These data are stored in the data structure that we named “composite pattern” (CP).
This is the structure of a sentence represented as sequence of tokens and its labels (syntactic and
semantic). We can imagine the composite pattern for one sentence as a matrix where rows are
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Table 3. Example of Data Structure for Composite Pattern (CP), which consists of
several patterns (rows of table)

Sentence Peter Sagan comes from Slovakia

Lemma Peter Sagan come from Slovakia
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

POS NNP NNP VBZ IN NNP
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

POS Simple NN NN VB IN NN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NER person person – – location
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GKG person person – – country
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

individual patterns of sentences and each token should have labels assigned to this pattern based
on an annotation tool (the columns of thematrix). The structure of composite pattern is illustrated
in Table 3.

We experimented with various sentence patterns consisting of various information about
tokens. After a few experiments, we found the most important features for this task are:

• lemma: sequence of lemmas (significance of lemma is in cases of words from closed word
categories like prepositions, articles or pronouns),

• POS: sequence of part-of-speech tags,
• POS simple: simplified POS tags (tags grouped into general categories, which is more
effective for mapping in the case of various sentence structures),

• NER: information about named entities,
• GKG: semantic information obtained from Google Knowledge Graph service,
• Viaf: search for entity categories in Virtual International Authority File,
• SST: semantic tags fromWordnet lexicon.

We conducted several experiments to explore the importance of these features. First, the sequence
of POS labels keeps information about sentence structure and allows us to recognize the syntactic
structure of sentence. The positive influence is obvious, and it is also used in many approaches
leveraging transformation rules (e.g., Curto et al. (2012), Heilman et al. (2010), Ali et al. (2010)
andmany others). After a deeper analysis of sentence classification, we added a general version of a
POS pattern (marked as POS simple). We wanted to group several POS patterns into one because
some labels are mutually substitutable for the question generation task. For example, there is no
big difference in singular or plural noun forms, or between past and present verb tenses. Question
generation for both cases is similar. But the difference between verb and noun is crucial. We
simply replaced substitutable labels into one single label and called it POS simple pattern (e.g., all
verb forms are merged into the verb instead of verb in past tense, verb in present tense, etc. labels).
The first level of hierarchy of patterns was created in this way. There are one-to-many relations
between POS simple and POS patterns. This hierarchical grouping also helps us to search for
related patterns if the sentence pattern is not yet known.

We also analyzed NER, GKG, Viaf and SST labels separately and found NER and GKG to be
the most reliable. Their evaluation also depends on data set. Therefore, we used them together
and in cases where they do not match and stored both outputs, as we will describe later. While
SST labels bring minor improvement, Viaf labels bring benefits in cases where some concepts are
mentioned in different or original language (e.g., the name of a non-English person or the name of
a city in the original language). It is also applicable for deduplication, which is useful in question
generation from sentences. We tried to find research papers focused on comparing the accuracy
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Figure 2. Hierarchical relationships between patterns: one POS simple pattern covers several various sentence subpatterns
with higher level of granularity.

of individual tools, but found only papers focused to knowledge graphs (e.g., (Gawriljuk et al.
2016) where they compared several ontology sources). However, we mainly relied on our findings
obtained empirically by side experiments for our previous papers.

As working with multiple patterns is computationally expensive, we suggested a hierarchy of
patterns in our previous research (Blstak and Rozinajova 2016).We have shown that this approach
could be beneficial not only for efficient pattern-matching by traversing in the hierarchy, but it
also overcomes the problem of weak pattern coverage. This is due to the fact that we can more
easily find patterns with similar structure (more general pattern). We have also demonstrated it
on a combination of several basic sentence patterns: POS pattern (a sequence of POS labels), NER
pattern (a sequence of named entities), SST pattern (a sequence of super-sense tags obtained from
Wordnet) and Linked Data pattern (which consists of concepts found in Freebase). In this work,
we made several changes. First, we added a new top-level pattern and removed/merged patterns
with low impact. We extended the pattern hierarchy with the top-level pattern called POS simple.
This allowed us to increase coverage of sentences as we have mentioned before. We added a GKG
pattern (concepts obtained from Google Knowledge Graph) instead of a Linked Data pattern (the
Freebase project was cancelled, and its data are now used in GKG). Although GKG and NER are
similar, we used them in combination with one another: if the label is different, we decreased the
estimated value of correctness for a question which relies on this information (for example: when
we generate a question for a person and not all of the patterns identify the entity of the person
type in sentence).

Some patterns may have hierarchical relationships among each other (Figure 2). For example,
the POS simple pattern should be the parent node for a group of POS patterns. This means that it
covers various POS patterns, so there is a set of sentences which may have the same POS simple’
pattern and several different POS patterns. This principle also works for the relationship between
POS and NER patterns where entities are almost exclusively nouns. For example, these sentences
are different only in NER patterns, and the remaining patterns are exactly the same (labels of
sentence tokens from the left are: determiner, adjective, preposition, noun, verb, noun:

• The largest city in Austria is Vienna.
• The main currency in Europe is the Euro.
• The current president of Slovakia is Andrej Kiska.

The last token of all sentences has a different NER label: “Andrej Kiska” is a person, “Euro” is
a currency (which is not detected as a named entity) and “Vienna” is a location. Figure 2 shows
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Procedure 1 Creation of complex pattern (createCP)

Input: sentence (string)
Output: complex pattern of sentence (data structure)
1: CP ⇐Ø
2: forall pattern in {POS, NER, SST . . .} do
3: labels⇐Ø
4: forall token in sentence do
5: labels⇐ labels+ (token, pattern.obtainLabelForToken(token))
6: end for
7: CP ⇐ CP + labels
8: end for
9: return CP

Procedure 2 Training phase

Input: data set (list of sentence–question pairs)
Output: transformation rules
1: TR⇐Ø
2: for all sentence,question in data set do
3: cp_sentence= createCP(sentence)
4: cp_question= createCP(question)
5: if (cp_sentence, cp_question) not in TR then
6: TR= TR+ {(cp_sentence, cp_question)}
7: end if
8: end for
9: return TR

the difference in a hierarchy diagram. The POS simple pattern is the most generic pattern, and it
covers various types of sentences. We created this pattern for one special purpose: quick filtering
of patterns from an indexed list. If the sentence does not match this pattern, we can consider the
complex pattern as not applicable for the sentence. On the other hand, sequence of lemmas is the
most specific pattern. These traits allow us to search for related patterns. If the system could not
find rules for a specific sentence, it could use a more generic pattern allowing it to create at least
some more general question. The construction of a complex pattern for a sentence is shown in
procedure 1, and the process of text preprocessing and the assigning of complex patterns to the
sentences is shown in Figure 3.

3.2 Learning phase
The proposed question generation model is based on two machine learning approaches: super-
vised learning and reinforcement learning. First, we trained the model on pairs of sentences
and questions associated with these sentences. These pairs are used to learn how to transform
declarative sentences into questions. Each learned transformation consists of a pair of compos-
ite patterns: a composite pattern for input sentence and a composite pattern for an associated
question. Transformation rules (TR) keep information on how to modify sentences to achieve

https://doi.org/10.1017/S1351324921000139 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000139


Natural Language Engineering 499

text (input)
sentence
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for each sentence
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sentence
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sentences
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(output)

input
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Figure 3. Conceptual view of preprocessing module which extract the sentence from input text and create composite pat-
terns for each sentence. In case of complex sentences, there is also sentence simplification process which splits the sentence
and adds new simplified sentences into global list of sentences.

the form of a question. These use a basic modification operation with sentence tokens: removing
token, adding token, moving token or changing the form of token. Changing the token form is
a special operation used in some cases where the word form must be transformed (e.g., trans-
forming the plural form into singular or changing past tense to the present). Training the model
is simple (procedure 2), we simply obtained composite patterns for sentences and questions and
stored this tuple in a list of unique transformation rules.

The output of the initial step of the training phase is a list of tuples of composite patterns
(a composite pattern for the sentence and a related composite pattern for the question). Their
initial score value is set to 1 if the pattern is obtained from training data (because we consider the
sentence–question pairs from training data as correct). Then, the score is updated periodically.
This score is a product of four components (number between 0 and 1):

• similarity between CP of input sentence and CP of sentence in stored transformation rule,
• similarity between CP of generated question and CP of question in stored transformation
rule,

• pattern application rate (how many times was the pattern used),
• pattern application percentage success (average correctness of generated patterns).

Only two components of score are permanently stored in the list (pattern application rate and
pattern application percentage success). If the transformation rule is obtained from training data,
these values are set to 1. If the transformation rule is derived, so we do not know the correctness
of a generated question, it is based on similarity between sentences and questions. If there is
other feedback (from the user), the reward is recalculated based on this feedback. Another two
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Table 4. Example of Data Structure for Composite Pattern (CP)

Sent. 1: The president of Slovakia is A. Kiska. match

Sent. 2: The capital of Czechia is Prague.

Lemma The – of – is – 3/6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

POS DT NNP IN NNP VBZ NNP 6/6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

POS sim. DT NN IN NN VB NN 6/6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NER – – – location/ – person/ 0/2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

? location
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SST – role/place – country – –/city 1/3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GKG – – – country – person/city 1/2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

match 3/3 2/3 3/3 4/5 3/3 2/5 34/47

components (similarity between sentences and questions) are calculated in real time, and they
are not stored in the list of patterns as they are different for each input entry. The similarity
calculation is shown in Table 4.

After the model stores the initial transformation rules learned by sentence–question pairs, it is
continuously re-trained by feedback information obtained from the user. We created an online
web interface where users could evaluate generated questions. These ratings help choose more
reliable transformation rules for sentences. This process is also performed during the question
generation phase, so it ensures the continuous improvement of the model.

Of course, there are some limitations in using transformation rules/patterns, but we adopted
techniques which overcome these shortcomings. In the case of complex sentences coverage, we
used a sentence simplification module which extracts simplified statements from original com-
plex sentences as can be seen in Figure 3. Here, a situation may occur where some extracted
sentences will not be grammatically correct. However, the question generation module usually
cannot generate a question from an invalid sentence as it is unlikely that there will be a pattern
for it. And, if it does create such a sentence, the generated question usually receives a low score
from that obtained by question estimation module. The problem of low coverage in traditional
pattern-matching approaches is also eliminated by the distance metric, which is responsible for
selecting the pattern. We do not perform exact matches in this part as usual, but instead adopt a
matching process based on similarity between patterns. As we show in Table 3, we can calculate
the distance between two sentences (and distance between the composite pattern of a new sen-
tence and composite patterns of all stored rules). If there is no similar transformation rule, we will
obtain several rules from the hierarchy. The patterns are stored in hierarchical structure, so we
can search for more abstract patterns and try to use its child patterns in this pattern hierarchy.

3.3 Question generation
Once the model is created, we can use its stored set of transformation rules to generate new ques-
tions for new input sentences. First, we find the set of transformation patterns applicable for new
declarative sentences. They are chosen by similarity calculation between the composite pattern
of a new sentence and the composite pattern of the stored transformation rule in the database.
Similarity calculation reflects the difference between individual features: labels of tokens and their
collocations. It can be imagined as a distance measure between two strings or a feature match
in classification (calculation is shown in Table 4). Score represents the similarity between two
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Procedure 3 generateQuestions (sentences)

Input: sentences
Output: questions
1: questions⇐Ø
2: for all sentence in sentences do
3: cp_sentence= createCP(sentence)
4: TP = getTransformationPatterns(cp_sentence)
5: if TP then
6: for all (tp, score) in TP do
7: questions= questions+ {(tp, score)}
8: end for
9: end if
10: end for
11: return questions

sentences based on all patterns. There are many possibilities as to how to extend this similarity
matching algorithm; we propose the basic one.

Match score helps estimate the probability of correct usage of the transformation rule. In gen-
eral, it helps us to predict the correctness of the generated questions. The algorithm of question
generation procedure is shown below. There is one procedure which is not mentioned here: get-
TransformationPatterns. This calculates the similarity score as we described and returns a list of
transformation patterns with predicted score.

Questions generated by transformation rules also keep information about transformation pat-
tern (tp) and matching score (procedure 3). It is used to sort and filter the best question from a
group of similar questions. Questions with higher scores are considered the best ones.

3.4 Machine learning approaches used in our question generation framework
From the perspective of machine learning, we do not use any well-known algorithm. We instead
adopted an approach known as Multi-label classification and created our own distance metric for
assigning new sentences into classes based on the similarity between their composite patterns. In
our approach, each transformation rule can be understood as a class. Then, we can create ques-
tions for all the instances of individual classes (sentences). Sentences from the input text should
be assigned to several classes, and each class can create several questions. If the sentence belongs
to two classes and each class generates three types of questions, then six questions will be gener-
ated and the question estimating module will sort these created questions based on its estimated
quality.

Our contribution also includes a proposed metric for distance calculation between a pair of
patterns which helps us to identify possible transformation rules for input sentence. This calcu-
lation is based on the similarity between composite pattern of the new sentence and composite
patterns of sentences which were assigned to this class in the training phase.

For example, if there is a sentence with a specific structure of tokens satisfying some trans-
formation rule (e.g., it has some entity or a specific sequence of required word types), it will be
assigned to this class and the questions based on this class will then be constructed. Distance cal-
culation for sentence classification is shown in Table 3. This approach also solves the problem of
low coverage in traditional pattern-matching approaches, as transformation patterns are selected
on the basis of general similarity. If we do not find any similar patterns, we can still find some
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more abstract patterns that are in the hierarchy (e.g., POS simple is just an abstracted version of
the POS pattern).

In order to achieve continuous improvement of our system, we have also used some ideas from
reinforcement learning approach along with user evaluation. There are two useful concepts: solv-
ing the problem bymaximizing reward function and revealing the sequence of actions which leads
to final result. In our situation, we use similarity calculation as a reward function and transforma-
tion rules as a sequence of actions. The initial set of training data consists of sentence–question
pairs which are considered to be correct, so transformation rules obtained from training data have
an initial score value of 1 (maximum reward). This value is updated during the question gener-
ation phase: if an incorrect question is generated by the pattern, the total score will decrease. It
is not necessary to obtain user evaluation for this. We can also use similarity calculation between
new questions and already evaluated questions. In this case, the reward score for a derived trans-
formation pattern is calculated as similarity between composite patterns of question and the score
of the pattern from which the question was created. For example, if there is a pattern with a score
of 0.9 and similarity between the new question and the question generated by pattern is 0.8, the
final score for the new question is 0.72 (a multiplication of these values, as it shown in the equation
below).

reward =
{
1, if question is in training dataset
sim(q1, q2) ∗ score(pattern), for new question

(1)

When we do not have user confirmation of acceptance of the question, the reward calculation
in determining the suitability of applying a particular pattern is useful. Otherwise, we prefer
user feedback. User interaction was conducted via simple web interface for question evaluation.
Users determined if a question was acceptable (+1), unacceptable (+0) or almost acceptable (+0.5
point). Each rating was saved to the pattern. So, we keep all information about an already created
question (i.e., whether it was acceptable by specific pattern). In the question generation phase,
all generated questions are sorted by the question estimation module which takes this value into
account. If any transformation rule obtains several zero rewards, its average score will significantly
decrease in comparison with others, it will be used less times in the future and other transforma-
tion rules will be preferred. Rules with a small reward will be used only in cases when no better
rule is available. However, we do not remove them completely because information that they were
not applicable to in the past may still be useful in later cases. There is also an option to utilize
feedback information after real deployment of our system, so the question estimation module is
constantly improved by new feedback.

3.5 A step-by-step example of question generation
Here, we will demonstrate our approach on several sentences in detail. Let us suppose that we
have some sentences in our training data set:

• The president of Slovakia is Andrej Kiska.
• The capital of Czechia is Prague.
• Peter Sagan comes from Slovakia.

In the first step, users are asked to create questions which are related to these sentences. These
questions should be like that:

• Who is the president of Slovakia? Answer: Andrej Kiska
• What is the capital of Czechia? Answer: Prague
• Where is Prague? Answer: in Czechia
• Where does Peter Sagan come from? Answer: from Slovakia
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After our system obtained training pairs of sentences and questions, it created composite pat-
terns for each tuple and stored transformation patterns which keep information about the steps
of transforming a sentence into question. These transformation steps are related to specific tokens
of sentence, for example, which tokens are in a position of answer, which tokens must be moved
to another position, which tokens must be removed/inserted, or which tokens must occur in an
alternative form (e.g., transformation from past tense to present). We consider all information
about sentence tokens (information from all patterns). As we can see in the example below, trans-
formation from the sentence “The president of Slovakia is Andrej Kiska.” to the question “Who is
the president of Slovakia?” consists of several (automatically obtained) steps:

• a sequence of tokens marked as nouns (at POS pattern) which are also marked as a Person
(at NER pattern) and which occurs at the end of the sentence after the verb “is” will be an
answer, so it will be not present in the generated question

• the type of a target question will be “who”, as it refers to a question about a person, so the
token will be inserted token Who will be inserted at the beginning of the question

• the rest of the question string (after the token Who) will consist of tokens which are before
the verb is

• etc.

All these transformation steps are obtained automatically from a sentence–question pair. This
is a significant improvement over traditional pattern-matching approaches. The problemwith low
coverage is significantly reduced as we will now explain. After finishing the training phase, our
system keeps a set of transformation patterns obtained by users. When the new unseen sentence
appears, it first tries to find several similar patterns. Of course, it is unlikely that the structure of the
new sentence will be the same. The system calculates the difference between the new sentence and
sentence patterns stored in the training phase and then chooses several transformation patterns
which are the most similar. For example, the new sentence looks like this:

• Bhumibol Adulyadej was the king of Thailand.

We first need to compare the new sentence with sentences learned in the training phase. Let’s
look at the comparisons:

Comparison with the composite pattern of sentence 1: The president of Slovakia is Andrej Kiska.

• there is also a token sequence which represents person, but in a different position
• there is also a token which represents location, but in a different position
• the same verb is used, but in a different tense
• there is the same preposition before the token of location
• there is a noun with a similar meaning before the location (both tokens represent “role” at
semantic level: king and president)

Comparison with the composite pattern of sentence 2: The capital of Czechia is Prague.

• there are two tokens which represent location, one of which is in the same position
• there is also a preposition “of” before a token of location
• there is also a noun before the sequence of “of location”
• there is no token of person (so it will be impossible to generate a question of type “Who”)

Comparison with the composite pattern of sentence 3: Peter Sagan comes from Slovakia.

• there is also a token sequence which represents person in the same position
• there is also a token which represents location in the same position
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• there is also a preposition between token of location, and it is similar (from vs. of)
• there is a verb before preposition and location

As we can see from the comparisons, the new sentence (Bhumibol Adulyadej was the king of
Thailand) is most closely to the first sentence (The president of Slovakia is Andrej Kiska). Despite
the positions of location tokens and person tokens being at opposite ends of the sentences and the
verbs being in different tenses, both sentences can be covered by the same transformation rule as
we show on example below:

• sentence from training data set: The president of Slovakia is Andrej Kiska.
• question: Who is the president of Slovakia? Andrej Kiska.
• sentence from testing data set: Bhumibol Adulyadej was the king of Thailand.
• question: Who was the king of Thailand? Bhumibol Adulyadej.

In this way, our AQG system first finds the most similar patterns and then generates all possible
questions, then evaluates them by an estimation module and finally chooses several of them based
on the highest estimated quality.

4. Experiments and evaluations
In order to provide evaluation of our approach, we needed data sets for training and testing. As
stated previously, the widely used data set QGSTEC is too small to be manually divided into train-
ing and testing parts and it is also of insufficient size for training. We therefore decided to use
it only for the evaluation of generated questions and for the mutual comparison of AQG sys-
tems. For the training phase, we created our own data set consisting of sentence–question pairs
extracted from Wikipedia articles. Questions were obtained from users: we created a user inter-
face and users could assign questions to randomly selected articles shown therein. We obtained
about 1200 pairs of sentences and questions as an initial set for training. We then used our trained
model on the QGSTEC data set and compared generated questions with questions generated by
state-of-the-art systems. We also imported questions generated from published systems, made a
deeper comparison of questions and tried to calculate the difference between questions generated
by AQG systems with questions expected by evaluators.

4.1 Our first experiments
We will briefly describe our first experiments. Whereas it was our first attempt to compare
questions across the systems based on our previous research (Blstak and Rozinajova 2017). We
consider the later experiments (described in the next section) as more valuable. In these first
experiments, we took evaluation data from participants of the question generation task challenge.
Questions generated by participants were evaluated from various points of view (correctness,
ambiguity, variety) by human evaluators on a four-step scale. We converted correctness values
to a percentage scale, and the number of correct questions was calculated by average correctness
of questions and all generated questions. This was done because it is difficult to assign correct-
ness value on a large scale while keeping the same evaluation criteria (questions from our system
were divided into two categories: correct and incorrect). If there were some groups of similar
questions, only one question was included in the results. This is also the reason why we generate
less questions in comparison with participants of QGSTEC, but as shown in Table 5, the average
correctness of our questions was much better.

As we can see, participants of the question generation task challenge generated more ques-
tions, but average correctness was significantly lower. The larger number of questions generated
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Table 5. Comparison of AQG approaches on QGSTEC data set

System Correctness (%) Quest./sentence Correct q. Generated q.

Participant 1a 0.64 4.37 227 354
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 2b 0.34 2.04 56 165
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 3c 0.30 2.58 63 209
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 4d 0.21 2.07 35 168
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curto et ale · 0.56 0.31 14 25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our approachf 0.80 1.50 98 121

a(Yao and Zhang 2010).
b(Varga and Ha 2010).
c(Pal et al. 2010).
d(Ali et al. 2010).
e(Curto et al. 2012).
f(Blstak and Rozinajova 2017).

by QGSTEC participants can also be justified by the fact that one of the evaluation criteria was
the total number of generated questions and participants had information about the maximum
number of possible generated questions. In case of participant 1, many duplicates or very simi-
lar questions were generated. Only 320 questions (approximately 90%) were left after removing
the duplicates. The drawback of Curto’s system is that it was trained on data about artefacts in a
museum only, so the coverage of other topics was weak.

4.2 Comparison of generated questions
We realized other experiments for better comparison of AQG systems. Fortunately, generated
questions from QGSTEC systems are available for download, so we created our own interface for
question evaluation, imported all questions to it and our users evaluated all questions. So, the
comparison conditions were the same for all obtained results. We also published our reporting
interface where we can see all results and data obtained from evaluators (from all experiments
mentioned in this work). It can be seen on our site in the section Evaluationsb.

Our users evaluated questions generated by our system and questions generated by the two
best AQG systems of QGSTEC event. Questions (with source sentences) were randomly shown
on a simple interface, and users could evaluate two properties: grammatical correctness (syntax)
and semantical correctness (interpretability, clarity) on a three-step scale (correct, partially correct
and incorrect). There was also an option not to respond (skipping the question) as some questions
required a good knowledge of English. If the question was notmarked as correct, a user could write
correction (if she/he wants). From our point of view, this type of evaluation is significantly easier
for users.

There were a total of 706 questions in our interface for evaluation. We carefully analyzed ques-
tions generated from the testing part of data set (585 questions). The remaining 121 questions
were generated by our system on training data set, and they were there for two purposes: (1) to
increase the variety of questions and to suppress user fatigue from evaluating a large amount of
similar questions and (2) to compare training and testing data sets. We could not use the training
data set for the training phase due to its small volume (from the nature of event it is obvious, that
the training data set served only as sample data for participants). In total, we obtained 2739 ratings
and the results are shown in Table 6 and obtained score in Figure 4.

bAvailable at http://www2.fiit.stuba.sk/∼blstak/aqg/index.html
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Table 6. Comparison of AQG approaches on QGSTEC data set by user evaluators in our interface

Avga Syn.b Sem.c Correct Correctness

System Questions Evaluations score score score quest. (%)

A 320 1216 0.19 0.21 0.17 453 37
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 165 641 0.47 0.49 0.45 335 52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M 100 403 0.71 0.74 0.68 277 69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M train 121 479 0.73 0.75 0.70 322 67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum 706 2739 1387

aAverage score.
bAverage syntactic score.
cAverage semantic score.

Figure 4. Histogram of votes (syntactic+ semantic) obtained by user evaluators for each AQG system: our system (marked
as M) obtainedmore positive points and less negative points in comparison to other state-of-the-art systems.

Our system (marked as M) generates more correct questions and less incorrect questions in
comparison to the other systems (marked as A and B which correspond to the first two systems
from our previous experiment). On the other hand, our system generates a smaller amount of
questions. The larger amount of generated questions by participant A is caused by the fact that for
each sentence, it generates four questions regardless of whether or not it was possible. The total
correctness of questions generated by systems of other participants would be even lower in real
text because if we randomly choose any sentence from the article, it is not common to create four
questions from this sentence. On the contrary, there are many sentences for which no question
can be created.

We also evaluated the ability to cover various types of sentences in these systems. Compared
systems were often forced to generate a specific number of questions regardless of quality. Our
coverage metrics show the number of sentences assigned to at least one question with a certain
value of correctness.

As we can see in Table 7, coverage of our system (M) is better when we focus on question quality
(maximum value for correctness was two points: one point for syntactic correctness and one point
for semantic correctness).

Whereas there were more user evaluators, and everybody has their own opinion about cor-
rectness, it is also interesting to compare their evaluations against each other. We calculated
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Table 7. Coverage of sentences with generated questions based on question correctness

System coverage 2 1.5+ 1.0+ 0.0+ All

A 1.11 17.78 27.78 67.78 98.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 1.44 33.33 44.44 67.78 84.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M 1.78 37.78 47.78 50.00 93.33

Table 8. Inter-rater reliability of evaluators

System IRRb IRRb IRRb IRRn IRRn IRRn

syn sem average syn sem average

A 62.60 61.55 62.08 76.79 77.14 76.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 62.95 62.98 62.96 78.03 77.57 77.80
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M 62.24 71.30 69.27 82.67 85.93 84.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average 63.49 63.62 63.56 78.15 78.76 78.46

Inter-rater reliability (IRR), which is the metric used for qualitative data analysis to obtain the
degree of agreement among raters. Each question obtained several ratings by various users. There
were ten evaluators, and the minimum number of votes for question was three, with the maxi-
mum number of votes being five. Although it was on a numeric scale, we did not used a standard
version (which uses Cohen‘s Kappa), but rather two modified versions:

• IRRb (binary IRR)—reflects the number of consistent evaluations (same vs. different)
• IRRn (numeric IRR)—reflects the numeric difference between all evaluations

We know that percentage IRR overestimates the level of agreement and it does not take chance
agreement into account, but we used the results only for comparisons, not for qualitative data
analysis of the data set. The results are shown in Table 8: independently for syntactic votes,
semantic votes and then their average obtained score.

From this experiment, we can see that evaluators have agreed in about 63% (IRRb) and 78%
(IRRn). In both cases, the total agreement was better during evaluation of questions using our
system.

4.3 Acceptance of generated questions
Finally, we made a comparison between questions generated by AQG systems and questions
expected by users (marked as reference questions). During the previous evaluations, users had
the option to write a question appropriate for them.We then compared these tuples using metrics
used for sentence comparisons in related NLP tasks: BLEU—BilinguaL Evaluation Understudy
and ROUGE—Recall-Oriented Understudy for Gisting Evaluation. There are several metrics
in the area of Natural Language Generation which are used for the evaluation of generated
text (Gatt and Krahmer 2017) and we chose BLEU and ROUGE as they are metrics based on
phrase-matching and also very popular in similar tasks such as machine translation and text
summarization.

The purpose of this experiment was to reveal how different the questions generated by AQG
systems were in comparison to questions created by users. We first filtered all questions generated
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by the systems with a score greater than 75% and calculated the difference between these and
questions created by users. If there were more questions assigned to one sentence, we chose the
most similar one to decrease the total difference. Example of similarity metrics between two
sentences, where the difference lies in two words, is shown below:

Similarity calculation for sentence
generated question: Is Egypt situated in the north?
reference question: Is Egypt situated in the north of Africa?
BLEU - average: 0.72
ROUGE-L: 0.84

There are no significant differences among the evaluated systems, but there are some significant
aspects resulting from these evaluations. Our system generates slightly better questions based on
BLEU and ROUGE-L metrics, which means that questions generated by our system are more
expected (they look more like questions created by a teacher). The last rows show question length
(in characters). On average, the length of questions generated by our system was shorter than
the length of expected questions. Other systems usually generated questions with some (possibly)
redundant words.

4.4 Evaluations on SQuAD data set
The most recent papers use SQuAD data set for question evaluation. As we mentioned before,
this data set is originally created for the opposite task (Question Answering Dataset) and this pre-
sented several limitations for us. We evaluated our system on this data set as it was prepared for
the question generation task in Du et al. (2017)c. We imported articles from the test set to our
system and made preprocessing steps as described in Section 3.1. Our system generated about 830
questions and our question estimating module selected 100 questions based on highest estimated
quality. We then evaluated the quality of the generated questions with human assessors (Table 10).
It is difficult to compare human scores from different papers due to different evaluation criteria.
We therefore kept criteria from our previous evaluation on QGSTEC, which are also totally con-
sistent with Kumar et al. (2018). In other works, the criteria are marked differently. The average
score (the last column in the table) is calculated based on all metrics (penultimate column).

We then made evaluation leveraging BLEU and ROUGE metrics as previously. However, it is
not possible to make a direct comparison of our approach with neural network models. This is
because our system uses a question estimator module which removes questions with low score
of acceptance. It gives priority to questions which are estimated as better even if they are dif-
ferent to the target question in the data set. Our system does not generate questions which are
expected but unreachable. Neural network models are based on the idea of generating questions
which are as similar as possible to the target questions regardless of correctness. They just try to
fit question structure as close as possible to that in the data set even if the question is not correct.
As we can see from the evaluation table in the state-of-the-art Section 2, these questions are far
from correct. Unfortunately, there are many questions in this data set which cannot be generated
without external knowledge because interconnection to the fact is missing. As an example, the
question–sentence pair in the data set looks like this:

• Question: What is in front of the Notre Dame Main Building?
• Sentence: Immediately in front of the main building and facing it, is a copper statue of Christ.

chttps://github.com/xinyadu/nqg
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Table 9. Comparison of reference questions (expected by users) and
generated questions by AQG systems

System A B M

number of questions 122 89 66
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 1 gram 0.76 0.81 0.79
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 2 gram 0.71 0.76 0.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 3 gram 0.66 0.72 0.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 4 gram 0.61 0.69 0.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - average 0.69 0.75 0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ROUGE-L 0.77 0.81 0.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length - reference questions 5993 5456 2694
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length - generated questions 6278 5903 2382
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length ratio 1.06 1.08 0.87

Table 10. User evaluation on SQuAD data set

System Questions Scale Score values Average

Du et al. (2017) 100 1–5 78.2% (naturalness: 3.91/5) 65.4%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52.6% (difficulty: 2.63/5)

Zhou et al. (2018) 200 1–3 72.6% (score: 2.18/3) 72.6%

Kumar et al. (2018) 100 0–100 84.0% (syntax) 81.2%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

81.3% (semantics)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78.3% (relevance)

Hosking and Riedel (2019) 300 1–5 66.8% (fluency: 3.34/5) 64.6%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62.4% (relevance: 3.12/5)

Our system 100 0–100 86.5% (syntax) 81.6%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76.8% (semantics)

There is also a full paragraph linked to this question–sentence pair in the data set as con-
text information; however, the token Notre Dame is not mentioned anywhere. Without external
knowledge that this question is about Notre Dame, it is not possible to construct this question. In
our system, this type of question is filtered out, whereas a question estimator module can deter-
mine that they are not correct when some information is missing. On the other hand, our system
generates questions which are correct but not present in the data set. So, our evaluation is done
with the intent of evaluating questions from the view of correctness, not whether they are present
in the data set as target questions.

As we can see in Table 11, BLEU and ROUGE values on the SQuAD data set are similar to
the QGSTEC data set (Table 9) in the previous section. Our system is able to generate correct
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Table 11. Comparison of reference questions
(expected by users) and generated questions
by our AQG system on SQuAD data set

BLEU - 1 gram 0.83

BLEU - 2 gram 0.78
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 3 gram 0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLEU - 4 gram 0.71
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ROUGE-L 0.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length - reference questions 3553
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length - generated questions 3274
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Length ratio 1.08

questions without any modification (we have used the same settings as we described earlier).
However, a direct comparison of the results with other systems in this case would not be correct
as the generated questions are not the same.

4.5 Comparison of questions based on usefulness
The questions generated by the patterns differ from the questions generated by the neural net-
works (NN) in several aspects. Although it is difficult to say which questions are globally better,
we will try to highlight the differences revealed by our analysis and experiments. We have com-
pared the questions generated from the Squad data set, and since the comparison also required
manually obtained user ratings, we selected questions from the first few sections of the test parti-
tion of Squad data set. In case of questions generated by neural networks, we used exports from
Du et al. (2017) available online on Github as in evaluation in the previous section.

We have adopted modified evaluation scale used in (2013) and let the evaluators classify the
generated questions based on their usefulness into following categories:

• 3: question may be used without change
• 2: question may be used with small correction
• 1: question is useful for inspiration
• 0: not sure
• –1: question is not useful

Based on this comparison, we can summarize the differences between questions generated by
different approaches, but it is difficult to calculate their suitability on one scale. The traits of our
approach in comparison to NN approaches are:

1. our system generates lower number of questions, but significantly less duplicates and
similar questions,

2. our system generates more simple questions (without useless information),
3. our system generates more questions which can be used without change (after ordering the

question based on the estimated value)

The first statement was calculated as a number of questionsmarked as duplicated by evaluators.
There were about 15% of questions marked as unusable due to its similarity with some previous
questions. The second statement was calculated by the number of tokens in sentences. The average
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difference was about 2.5 tokens. Results are obtained from the experiment in Table 11: the last
three rows show the difference in sentence length in comparison to an optimal question. And
the third statement: our system generated about 50% of questions usable without modification
on Squad data set (48 questions from 100). This is also obtained from the experiment shown in
Table 11. As we havementioned before, no questions generated byNNwere usable without change
(without post-processing modification).

However, numeric evaluation has failed due to several reasons, and therefore we do not report
the results in details. From our point of view, it is difficult to ensure fair rules for the comparison
of the questions generated by different approaches. We will describe the main reasons in the fol-
lowing paragraphs. First, there were no absolutely correct questions generated by NN (with score
3). It is because there are little grammar issues in each question generated by NN (e.g., incorrect
capital letter, lowercase letters used in acronyms, spaces before the question marks and commas
etc.). It is caused by common preprocessing steps. Of course, these little grammar issues can be
fixed by post-processing steps. However, this would affect evaluation, and it is difficult to deter-
mine which grammatical inaccuracy should still be tolerable. On the other hand, many of our
questions (generated by transformation rules) are absolutely correct due to patterns which also do
post-processing correction automatically. In NN approaches dealing with text, it is typical to train
the word embeddings and character level embeddings models on the alphabet without uppercase
letters. Evaluation by standardmetrics (e.g., BLEU) has minimal impact on this type of evaluation.
Another problem is associated with duplicates and very similar questions. As NNmodels generate
more questions, they also generate more similar questions. It is not easy to create instructions for
the evaluators, which would guide them how to take into account duplication and if it should be
skipped or not. Our system has a separate module which eliminates duplicates and similar ques-
tions, so the total number of generated questions is lower. There are also differences in structure of
generated questions. Questions generated by neural networks are usually longer with more words.
This type of question is usable; however, sometimes it keeps irrelevant information. Here are some
examples from article about Notre Dame (output from NNmodel without modification):

• in 1919 a new president of notre dame was named, who was it?
• on what date was the rebuilding of the main building begun at notre dame after the fire that
claimed the previous?

• over how many years did the change to national standards undertaken at notre dame in the
early twentieth century take place?

• around the time that rev. cavanaugh became president of notre dame by how much did the
undergrad student body of notre dame increase?

From the point of view of evaluation, users had trouble deciding whether to mark these questions
as unusable or as suitable for inspiration, as they contain several facts to create some questions.
Our system penalized questions that did not match the grammatical structure of the standard
question (as we described in the question estimation module of our system in Section 3.2). Several
advantages of our system could probably be applied also to the questions generated by NN, but it
would require the additional post-processing steps (e.g., correction of letters at the beginning of
the question, remove useless spaces, checking the presence of the interrogation pronoun, checking
the length of the sentence, similarity calculation of the syntactic structure of the question with the
structure of a typical question etc.).

4.6 Generated questions in real-world scenarios
In this section, we focused on evaluating the applicability of the questions in real-world scenarios:
how useful the automatically generated questions are. Since the main goal of the questions in the
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Table 12. Evaluation in real scenarios

Average points Students Students Lecturers Lecturers Both Both
(rounded) total percent total percent total percent

3 45 45.9% 47 47.8% 44 44.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 44 44.9% 46 46.9% 46 46.9%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 8 8.2% 4 4.1% 6 6.1%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 1.0% 1 1.0% 2 2.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average 2.33 77.7% 2.38 79.3% 2.35 78.2%

educational process is to verify the students’ knowledge, we have decided to evaluate the suitability
of the questions considering two points of view:

• How useful are generated questions for the lecturers? (How the generated questions help
lecturers to create a test.)

• How useful are generated questions for the students? (How the generated questions help
students to verify their knowledge.)

For these experiments, we used the same sets of questions as in experiments before. Students
had to determine if they thought that the questions were appropriate for verifying their knowl-
edge. On the other hand, lecturers had to determine if the proposed questions are suitable for
using in testing. In both cases, we chose a four-level scale:

• The question is not usable for this purpose (0 points).
• The question can serve as a guide for creating new suitable questions (1 point).
• The question is suitable for this purpose with little correction (2 points).
• The question is suitable for this purpose without change (3 points).

The results of this experiment are shown in Table 12. In the first column (marked as average
points), there is a rounded value of average score. In the last row, there is an average score for
the full data set. Experiment was done on the data set of 98 questions (there were originally 100
questions, but two of them turned out to be too similar, so we decided to remove them from
numerical evidence). The results show that about 45 questions were usable in real application.
There were no significant differences across groups, students and lecturers indicated the usability
of questions relatively similarly. The average points (shown in the last row) are calculated as a
relative score across all groups.

4.7 Evaluating the usefulness of the generated questions for self-education
Automatically generated questions might be useful in several ways. Our main goal was to create
questions for educational purposes—that is, students could use these questions to improve their
text comprehension skills or ability to memorize facts.

To verify the benefits of generated questions, we performed an experiment aiming to prove the
following statement: the questions automatically generated from the text can help to keep in mind
more information from educational materials in comparison to educational materials without
questions or educational materials with just some generic questions. We prepared several articles
for reading from the encyclopedia Wikipedia. Then, we tried to find out if the students remem-
bered more facts and assertions introduced in this text in case that the particular questions were
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Table 13. Extrinsic evaluation: measuring the suitability of questions in
the process of self-education

Score (%) Average (%)

Question group S1 S2 S3 S4 S5 S6

Group 1a 55.0 55.0 66.0 67.5 50.0 72.5 61.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 2b 67.5 41.5 65.0 67.5 72.5 70.0 64.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group 3c 73.5 65.0 70.0 75.0 77.5 70.5 72.0

aArticles without any question.
bArticles with generic questions.
cArticles with factual questions generated by our system.

available below the text (these particular questions were directly related to the facts in text). We
have chosen six short articles (from 85 to 210 words) about countries from our previous experi-
ments (Blstak and Rozinajova 2017). We have selected countries that are mostly unknown to the
students (e.g., Algeria or Brunei) to prevent them from already knowing the facts before read-
ing the article. Students had to confirm that they did not know much about these countries. We
also slightly changed some trivial statements to ensure that students have responded according
to information in the article and not according to their general knowledge. Articles were ordered
randomly, and there were three groups of them for each student:

• In the first group of articles, there was just a heading and a text (abstract) without any
questions in the user interface.

• In the second group of articles, there were several generic questions followed by an article
(e.g., Was this article interesting to you?).

• In the third group, the articles were enriched by several questions generated by our AQG
system without modification.

After the reading session, students were asked to write the facts which they have remembered.
We also asked for confirmation that students have read available questions below articles (if there
were any). The average number of remembered facts is shown in the table below (Table 13). Each
row is corresponding to one of the groups of articles. It would not make sense to show the score
for individual articles because each student had a different set of articles in each group.

As we expected, the participants rememberedmore facts from articles in which also some ques-
tions were included.We have also examined the reading strategy of our participants. Almost every
participant has read all articles more than once (usually twice). However, after they have read
questions below the text, they usually paid more attention to the statements related to these ques-
tions. Before the second reading, students usually checked whether they knew the answers to the
questions below the text. In the case of general questions (Group 2), they did not need to read any-
thing again as the question did not cover any specific part of the text—so they could answer these
questions almost arbitrarily (that was the intention). Only the questions in Group 3 were content-
specific, and so it exhorted participants to subconsciously verify the answer from the given text
(and sometimes to read it again). As a part of the evaluation, we also analyzed the differences
across the articles’ score. The longest article had the weakest success in terms of percentage cov-
erage of facts; however, this did not apply to the whole data set. It often happened that longer
articles obtained better scores. Based on discussions with the students, this may have been due
to the fact that with more statements available in the article, it was also easier to remember more
information in total. In the case of extremely short articles, every unmentioned fact caused high
point reduction in total average score.

Based on our experiment, we can confirm that the questions shown below the text are beneficial
and should be used in self-educational process. Also, automatically generated questions by our
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system support this process. Factual questions are more suitable for knowledge memorization
in comparison to just general types of questions (e.g., What was this article about?). They also
encourage students to think about the content of the text, to search patiently for the correct answer
and thus to verify obtained knowledge more thoroughly.

5. Conclusions and future work
In this paper, we presented our novel approach to the task of automatic question generation from
unstructured text. It combines a linguistic approach based on various types of sentence patterns
(lexical, syntactic and semantic patterns) withmachine learning approaches. Transformation rules
which transform declarative sentences into questions are automatically obtained by an initial set of
sentence–question pairs. The advantage of this approach lies in the simple expansion of transfor-
mation rules and continuously improving the model. Therefore, intervention by human experts
is less necessary than with other approaches.

The main contributions of our method can be summed up into following points: First, a
data-driven approach allows the model to train and retrain question generation processes by
sentence–question pairs, so the framework does not need human experts on linguistics to create
transformation rules manually or human experts on software engineering to modify the source
code. Improvement of the system is based on explicit feedback from users, which is used in
reinforcement learning and by adding new sentence–question pairs to the model (supervised
learning). Finally, a hierarchy of patterns allows the framework to create various types of questions
according to the similarity match between sentences on various levels of processing (linguistic,
syntactic and semantic level).

We conducted several experiments to evaluate our method and to compare the quality of gen-
erated questions. At first, we compared the correctness of the generated questions and the total
number of correct questions generated by our system with several state-of-the-art systems. We
used a question generation data set for this purpose, and the results have demonstrated that our
approach generates a greater number of acceptable questions. We also imported our generated
questions and questions generated from the two best systems (based on evaluation of a QGSTEC
event) into an online interface and let users evaluate all questions in random order. Users could
evaluate the quality of questions and they could also write their own questions related to the sen-
tences. Then, we compared questions suggested by users with questions generated by question
generation systems using BLEU and ROUGE metrics. Finally, we also evaluated our system on
the data set SQuAD and confirmed that the system is able to create questions for texts from this
data set, with similar correctness as before. Comparing the generated questions with other sys-
tems was not straightforward in this case, as our system generated different types of questions.
Generated questions reached the required correctness, but the questions were not the same, so
direct comparison is difficult. Finally, we have also analyzed differences between questions gener-
ated by neural networks and questions generated by our system in terms of usability in real-world
scenarios. The results show that our contribution to the task of question generation is meaningful.

We have several ideas how to improve and functionally expand our framework in the future.
We are using semantic information about tokens obtained mainly from named entity databases
(e.g., Viaf or Google Knowledge Graph), but it would be interesting to leverage global word taxon-
omy and classify nouns, adjectives or verbs into several categories. These word categories should
be used as features for machine learning and pattern filtering. We also plan to leverage a related
NLP task called coreference resolution and identify all occurrences of the same entity. This would
be beneficial in increasing sentence coverage as many sentences contain references to subjects (by
pronoun or acronym). Of course, it will be interesting to verify if our approach is applicable to
languages other than English. One of the possible approaches which could bring benefit in the
future is to explore the utilization of transfer learning (Pikuliak, Simko, and Bielikova 2021).
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