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This paper is concerned with the dynamics of nonlinear one-dimensional beam
equations. We consider nonlinear beam equations with viscosity or with a lower-order
damping term instead of the viscosity, and we establish the existence of global
attractors for both systems.

1. Introduction

In this paper we investigate the existence of global attractors for the nonlinear
one-dimensional beam equations arising from the study of mechanical movements
of shape memory alloys of constant mass density ρ (assumed to be normalized to
unity, i.e. ρ = 1). We consider equations either with viscosity or without viscosity
but with a lower-order damping term. For both cases, our general aim, roughly
stated, is to show that the equations possess global attractors in the corresponding
complete metric spaces.

Let Ω = (0, 1) and, for any t > 0, Ωt = Ω × (0, t). For the system with viscosity,
the nonlinear partial differential equation we are studying is

utt − νuxxt − f(ux)x + Ruxxxx = 0 (1.1)

with u, f and g being the displacement, stress and density of distributed loads,
respectively, and subject to the boundary conditions

u|x=0,1 = uxx|x=0,1 = 0 (1.2)

and the initial conditions

u|t=0 = u0, ut|t=0 = u1. (1.3)

For the system without viscosity, the equation we are studying is

utt + µut − f(ux)x + Ruxxxx = 0 (1.4)

subject to the same boundary conditions (1.2) and initial conditions (1.3).
To study the thermomechanics of shape memory alloys in one space dimension,

Falk [5, 6] proposed a Ginzburg–Landau theory, using the strain ε = ux as order
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parameter and assuming that the Helmholtz free energy density F is a potential of
Ginzburg–Landau form, i.e.

F = F (ux, uxx, θ) (1.5)

where θ is the absolute temperature. Here the beam equations studied in our paper
with positive constant temperature can be taken as the special case of [5, 6]. The
simplest form for the free energy density F that accounts quite well for the experi-
mental behaviour and takes couple stresses into account is

F (ux, uxx) = F1(ux) + 1
2Ru2

xx, (1.6)

where

F1(ux) = 1
6α1u

6
x − 1

4α2u
4
x − 1

2α3u
2
x (1.7)

with positive constants αi and R.
The stress f = f(ux) in (1.1) or (1.4) is given by

f(ux) = F ′
1(ux) = α1u

5
x − α2u

3
x − α3ux, (1.8)

where ν and µ are positive constants.
The physical meaning of the boundary conditions is that both ends of the rod

are hinged, respectively.
Before stating and proving our results, let us first recall some related results in

the literature.
Ball [1] proved the existence of weak solutions to the nonlinear beam equation

∂2u

∂t2
+ α

∂4u

∂x4 −
[
β + κ

∫ l

0
uξ(ξ, t)2 dξ

]
∂2u

∂x2 = 0

subject to clamped or hinged boundary conditions. Later, Ball [2] proved the sta-
bility of an extensile beam equation as time tends to infinity. Eden and Milani [4]
proved the existence of a compact attractor, and also an exponential attractor to
the equations of the type

εutt + ut + α∆2u =
(

κ

∫
Ω

|∇u|2 − β

)
∆u + f. (1.9)

They also proved, in the special case where damping is large (i.e. ε is small), that
the exponential attractor contains the global attractor.

For the non-isothermal case, i.e. the coupled partial differential equations, which
consist of a nonlinear beam equation with respect to the displacement u and a
second-order parabolic equation with respect to the temperature. Shang [10] proved
the existence of a global attractor to the one-dimensional thermoviscoelastic system
arising from the study of phase transitions in shape memory alloys with hinged
boundary conditions in closed subspaces. Motivated by [10], equation (1.1) can
be taken as the special case of [10] with constant temperature, but we can prove
the existence of a global attractor in the whole Sobolev space H. For the same
model as in [10], but with stress-free boundary conditions at one or both ends
of the rod, Sprekels and Zheng [12] obtained the existence of a global attractor
for the Ginzburg–Landau form for shape memory alloys. Shang [10] and Sprekels
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and Zheng [12] studied the systems whose free energy density F was a potential
of Ginzburg–Landau form, i.e. R > 0. For the case R = 0, ν > 0, Racke and
Zheng [9] obtained the global existence and asymptotic behaviour of the solution
to the nonlinear thermoviscoelastic system with stress-free conditions at least at
one end of the rod. For the system with clamped boundary conditions, Chen and
Hoffmann [3] proved the global existence and uniqueness of the smooth solution.
Shen et al [13] obtained the global existence and asymptotic behaviour of the weak
solution, and they established a new approach to derive a priori estimates on the
L∞-norm of the strain u independent of the length of time. Recently, Qin et al [8]
obtained the existence of a global attractor for the same system as in [13].

In this paper, we consider problems (1.1)–(1.3) and (1.2)–(1.4). By deriving del-
icate uniform a priori estimates independent of T and the initial data for both
cases, we obtain the results on the existence of global attractors.

First, we study the problem (1.1)–(1.3). Let

H := {(u, ut) ∈ H4 × H2 : u|x=0,1 = uxx|x=0,1 = 0}.

Our main result in this case reads as follows.

Theorem 1.1. Suppose u0 ∈ H4, u1 ∈ H2 are given functions that satisfy the
compatibility conditions u0|x=0,1 = u0xx|x=0,1 = 0. Then, for problem (1.1)–(1.3),
the following results hold.

(i) The problem admits a unique global solution (u, ut) satisfying

u ∈ C([0, +∞); H4) ∩ C1([0, +∞); H2) ∩ L2([0, +∞); H5); (1.10)

ut ∈ C([0, +∞); H2) ∩ L2([0, +∞); H3). (1.11)

(ii) An orbit starting from H will reenter itself after finite time, and stay there
forever. Moreover, it possesses in H a global attractor A which is compact.

Remark 1.2. Note that, in the proof of theorem 1.1 (proof of lemma 2.6), we
require that the coefficients αi, R and ν satisfy

α2
2

2α1
+ α3 � min{ 1

4ν2, 1
2R}. (1.12)

This is actually no restriction, since we may assume (1.12) without loss of generality
using the following scaling argument.

For ε > 0, let ω be defined by

u(t, x) = εω

(
t

ε1/4 ,
x

ε1/8

)
≡ εω(s, y).

Then ω satisfies the ‘same’ differential equation as u, with αi replaced by αi,ε:

ωss − νωyys − (α1,εω
5
y − α2,εω

3
y − α3,εωy)y + Rωyyyy = 0, (1.13)

where
α1,ε := ε15/4α1, α2,ε := ε2α2, α3,ε := ε1/4α3.
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The condition (1.12) for the equation (1.1) for u then turns into the following
condition for the equation (1.13) for ω:

α2
2,ε

2α1,ε
+ α3,ε � min{ 1

4ν2, 1
2R},

or, equivalently,

ε1/4
(

α2
2

2α1
+ α3

)
� min{ 1

4ν2, 1
2R},

which can be fulfilled for sufficiently small ε.

Second, for the problem (1.2)–(1.4), our result is the following.

Theorem 1.3. Suppose u0 ∈ H4, u1 ∈ H2 are given functions that satisfy the
compatibility conditions u0|x=0,1 = u0xx|x=0,1 = 0. Then, for the problem (1.2)–
(1.4), the following results hold.

(i) The problem admits a unique global solution (u, ut) satisfying

u ∈ C([0, +∞); H4) ∩ C1([0, +∞); H2) ∩ L2([0, +∞); H5);

ut ∈ C([0, +∞); H2) ∩ L2([0, +∞); H3).

(ii) For β > 0, we define the space

Hβ :=
{

(u, ut) ∈ H,

∫ 1

0
( 1
2u2

t + 1
2Ru2

xx + F2(ux)) dx � β

}
.

Then an orbit starting from Hβ will reenter itself after finite time, and stay
there forever. Moreover, it possesses in Hβ a global attractor Aβ which is
compact.

In what follows, we explain some mathematical difficulties that appear in this
paper.

First, in the course of deriving the existence of an absorbing set in H or Hβ , the
estimates obtained in the proof of global existence are not sufficient, and we should
derive uniform estimates of ‖u‖H4 , ‖ut‖H2 independent of the initial data and t.
It turns out that more delicate estimates are needed due to the higher degree of
nonlinearity inherent in the system and to the higher-order derivative arising for
R > 0.

Second, we recall the results obtained in Eden and Milani [4], which followed a
procedure similar to that of Hale [7], but replaced the role of the Lyapunov functions
with different types of energy norms. Using the method of α-contractions, [4] proved
the existence of a compact, finite fractal dimensional invariant set towards which
all solutions converged exponentially in time. However, the existence of a global
attractor, i.e. the boundedness of the attractor in the corresponding norm, could
only be obtained when the damping is large, i.e. ε is small in (1.9). In contrast
with [4], in order to establish the existence of a global attractor, we shall apply
theorem 6.4.1 of Zheng [15]. The crucial step is to show the existence of an absorbing
set and the uniform compactness of the orbits starting from any bounded set. In a
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similar manner to [15], we can obtain the existence of bounded, invariant absorbing
set B0 or Bβ for both cases. However, in the proof of uniform compactness, we can
see that problem (1.2)–(1.4), i.e. the system without viscosity, seems to be totally
different from the problem (1.1)–(1.3). The uniform compactness of the solution
to problem (1.2)–(1.4) cannot be derived directly like problem (1.1)–(1.3), since
the term µut in (1.4) is not as good as −νuxxt in (1.1). In order to overcome this
difficulty, we should instead consider the dynamics in closed subspaces defined by
the parameter β, i.e. Hβ in our paper. We shall show that the constraint in the
definition of Hβ is invariant under S(t). We shall prove that the orbit starting from
Hβ will reenter itself after a finite time and stay there forever.

This paper is organized as follows. In § 2 we prove the existence of a global
attractor for the problem (1.1)–(1.3) in the Sobolev space H. In § 3 we prove the
existence of a global attractor for the problem (1.2)–(1.4) in the closed subspace Hβ .

The notation used in this paper will be as follows. Lp, Wm,p, 1 � p � ∞, m ∈ N ,
H1 ≡ W 1,2 and H1

0 ≡ W 1,2
0 , respectively, denote the usual Lebesgue and Sobolev

space on (0, 1). We use the abbreviation ‖ · ‖ := ‖ · ‖L2 , and Ck(I, B), k ∈ N0, to
denote the space of k-times continuously differentiable functions from I ∈ R into a
Banach space B. The spaces Lp(I, B), 1 � p � ∞, are defined analogously. Finally,
∂t or a subscript t, and, likewise, ∂x or a subscript x, denote the partial derivations
with respect to t and x, respectively.

2. The existence of a global attractor for the system with viscosity

We consider the initial boundary-value problem (1.1)–(1.3). In this section, we
shall prove the existence of a global attractor for this system in the whole Sobolev
space H.

We first establish a local existence and uniqueness result for this problem.

Lemma 2.1. Suppose that u0 ∈ H4 and u1 ∈ H2 are given functions that satisfy
the compatibility conditions u0|x=0,1 = u0xx|x=0,1 = 0. Then there exists t∗ > 0
depending only on ‖u0‖H4(Ω), ‖u1‖H2(Ω) such that problem (1.1)–(1.3) admits a
unique solution (u, ut) in Ω̄ × [0, t∗] such that

u ∈ C([0, t∗];H4) ∩ C1([0, t∗];H2) ∩ L2([0, t∗];H5),

ut ∈ C([0, t∗];H2) ∩ L2([0, t∗];H3).

Proof. We use the contraction mapping theorem to prove the local existence and
uniqueness. Since the proof is essentially the same as in Shang [10], we can omit
the details here.

In the following, we prove theorem 1.1.

2.1. Proof of theorem 1.1(i)

In order to prove the global existence, we have to establish a priori estimates for
‖u‖H4 , ‖ut‖H2 . In fact, we can derive uniform a priori estimates independent of t,
which is crucial for the proof of uniform compactness of the orbits. In this proof,
C denotes a universal positive constant that may depend on the norm of the initial
data, but not on t.
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Lemma 2.2. For any t > 0, the following estimates hold:

‖ut‖ � C, ‖uxx‖ � C, ‖ux‖L∞ � C, (2.1)∫ t

0

∫ 1

0
u2

xt dxdτ � C,

∫ t

0
‖ut‖2 dτ � C,

∫ t

0
‖ut‖2

L∞ dτ � C. (2.2)

Proof. Multiplying (1.1) with ut and integrating with respect to x and t yields

1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx +
∫ 1

0
F1(ux) dx + ν

∫ t

0

∫ 1

0
u2

xt dxdτ � C. (2.3)

Here F ′
1(x) = f(x), and applying Young’s inequality, we have

F1(ux) � Cu6
x − C. (2.4)

Combining (2.3) with (2.4), we obtain the estimates (2.1). The estimates (2.2) can
be derived form (2.1) and the boundary conditions (1.2) immediately. The proof is
complete.

Lemma 2.3. For any t > 0, the following estimates hold:

‖utt‖ � C, ‖uxxt‖ � C,

∫ t

0
‖uxtt‖2 dτ � C,

∫ t

0
‖uxxxt‖2 dτ � C.

(2.5)

Proof. We differentiate (1.1) with respect to t, multiply the result by utt and inte-
grate with respect to x over Ω to obtain

1
2

d
dt

∫ 1

0
u2

tt dx + ν

∫ 1

0
u2

xtt dx +
∫ 1

0
f(ux)tuxtt dx + 1

2R
d
dt

∫ 1

0
u2

xxt dx = 0. (2.6)

Since
∫ 1

0
f(ux)tuxtt dx � 1

2ν

∫ 1

0
u2

xtt dx + C

∫ 1

0
|f ′(ux)uxt|2 dx

� 1
2ν‖uxtt‖2 + C‖uxt‖2, (2.7)

using (2.2) and integrating (2.6) with respect to t yields

‖utt‖ � C, ‖uxxt‖ � C,

∫ t

0
‖uxtt‖2 dτ � C. (2.8)

Then, we differentiate (1.1) with respect to t, multiply the result by −uxxt and
integrate with respect to x over Ω to obtain

1
2ν

d
dt

∫ 1

0
u2

xxt dx − d
dt

∫ 1

0
uttuxxt dx −

∫ 1

0
u2

xtt dx

+ R

∫ 1

0
u2

xxxt dx −
∫ 1

0
f(ux)tuxxxt dx = 0. (2.9)
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Using the estimates we obtain in (2.8), we have
∫ 1

0
f(ux)tuxxxt dx � 1

2R

∫ 1

0
u2

xxxt dx + C

∫ 1

0
|f(ux)t|2 dt

� 1
2R‖uxxxt‖2 dx + C. (2.10)

Combining (2.9) with (2.10), we finally have
∫ t

0
‖uxxxt‖2 dτ � C. (2.11)

The proof is complete.

Having established uniform a priori estimates, the global existence and unique-
ness follows from the continuation argument. In what follows, we will prove the
compactness of the orbit for t > 0 in H4 × H2. For the time being, we assume that
the initial data are so smooth that the solution will have enough smoothness to
carry out the following argument. If the initial data just belong to H4 × H2, we
can approximate them by smooth functions and then pass to the limit.

Lemma 2.4. For any µ > 0, the triple (u, ut) is bounded in C([µ,+∞); H5 × H3).

Proof. First, we differentiate (1.1) with respect to t, multiply the result by −uxxtt

and integrate with respect to x over Ω to obtain

d
dt

∫ 1

0
( 1
2Ru2

xxxt + 1
2u2

xtt) dx + 1
2ν

∫ 1

0
u2

xxtt dx � C

∫ 1

0
|f(ux)xt|2 dx. (2.12)

Multiplying (2.12) by t, we obtain

d
dt

(tR‖uxxxt‖2 + t‖uxtt‖2) + νt‖uxxtt‖2 � (R‖uxxxt‖2 + ‖uxtt‖2) + Ct‖f(ux)xt‖2.

(2.13)
Then, since∫ t

0
‖f(ux)xt‖2 dτ =

∫ t

0
(‖f ′(ux)uxxt‖2 + ‖f ′′(ux)uxxuxt‖2) dτ,

using Nirenberg’s inequality, we have

‖uxxt‖ � C‖uxxxt‖1/2‖uxt‖1/2

and Young’s inequality gives

‖uxxt‖2 � C‖uxxxt‖‖uxt‖ � 1
2C‖uxxxt‖2 + 1

2C‖uxt‖2.

Combining with the estimates in lemma 2.3 yields∫ t

0
‖uxxt‖2 dτ � C.

Similarly,∫ t

0
‖uxxuxt‖2 dτ �

∫ t

0
‖uxt‖2

L∞‖uxx‖2 dτ � C

∫ t

0
‖uxt‖2

L∞ dτ
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and

‖uxt‖2
L∞ � C‖uxxxt‖1/2‖uxt‖3/2 � 1

2C‖uxxxt‖2 + 1
2C‖uxt‖2.

Thus, ∫ t

0
‖uxt‖2

L∞ dτ � C.

Finally, we obtain ∫ t

0
‖f(ux)xt‖2 dτ � C.

Thus, we can obtain from (2.13) that

R‖uxxxt‖2 + ‖uxtt‖2 � C̃t−1 + C (2.14)

with C̃ = C̃(‖u0‖H4 , ‖u1‖H2). The proof is complete.

The compactness of the orbit in H4×H2 follows from this lemma. In what follows,
we shall prove part (ii) of theorem 1.1, i.e. the existence of a global attractor in H.

2.2. Proof of theorem 1.1(ii)

In order to prove the existence of a global attractor, we shall apply [14, theo-
rem I.1.1], which was rephrased in [11] as follows.

Theorem 2.5. Suppose that

(a) the mapping S(t), t � 0, defined by the solution to problem (1.1)–(1.3) is a
nonlinear continuous semigroup from H into itself and is uniformly compact
for t large;

(b) there exists a bounded set B in H such that B is absorbing in H.

Then the ω-limit set of B is a global attractor which is compact and attracts the
bounded sets of H.

Concerning (a), we proved the global existence of the solution in theorem 1.1(i).
It is clear from the proof that the family of operators S(t), t � 0, defined by the
solution, are continuous operators from H to H and they enjoy the usual semigroup
properties. The uniform compactness of the orbit was proven in lemma 2.4. Hence,
it remains to verify condition (b). In the following, the letters C, Ci denote positive
constants independent of the initial data and the time t.

Let B0 = {(u, ut) ∈ H, ‖u‖H4 � C̄1, ‖ut‖H2 � C̄2}, where C̄1, C̄2 are also pos-
itive constants independent of the initial data and t, which will be specified later.
Then we have the following.

Lemma 2.6. B0 is an absorbing set in H, i.e. for any bounded set B in H, there
exists some time t2 = t2(B) > 0, such that, when t � t2(B), S(t)B ⊂ B0.
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Proof. Multiplying (1.1) with u and integrating with respect to x yields

d
dt

∫ 1

0
uut dx −

∫ 1

0
u2

t dx + 1
2ν

d
dt

∫ 1

0
u2

x dx

+
∫ 1

0
(α1u

6
x − α2u

4
x − α3u

2
x) dx + R

∫ 1

0
u2

xx dx = 0. (2.15)

By Young’s inequality, we obtain

∫ 1

0
α2u

4
x dx � α1

2

∫ 1

0
u6

x dx +
α2

2

2α1

∫ 1

0
u2

x dx. (2.16)

Using Poincaré’s inequality and the boundary conditions (1.2), we have

‖ux‖L2 � ‖ux‖L∞ � ‖uxx‖L2 .

Due to (1.12) (see remark 1.2), we know that α2
2/2α1 + α3 � 1

2R holds. Thus, we
obtain

d
dt

∫ 1

0
uut dx −

∫ 1

0
u2

t dx + 1
2ν

d
dt

∫ 1

0
u2

x dx + 1
2α1

∫ 1

0
u6

x dx + 1
2R

∫ 1

0
u2

xx dx � 0.

(2.17)
Next, multiplying (1.1) with ut and integrating with respect to x yields

1
2

d
dt

∫ 1

0
u2

t dx + 1
2R

d
dt

∫ 1

0
u2

xx dx

+
d
dt

∫ 1

0
( 1
6α1u

6
x − 1

4α2u
4
x − 1

2α3u
2
x) dx + ν

∫ 1

0
u2

xt dx = 0. (2.18)

Now, we multiply (2.17) by 1
2ν and add the result to (2.18) to obtain

d
dt

(
1
2ν

∫ 1

0
uut dx + 1

4ν2
∫ 1

0
u2

x dx + 1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx

+ 1
6α1

∫ 1

0
u6

x dx − 1
4α2

∫ 1

0
u4

x dx − 1
2α3

∫ 1

0
u2

x dx

)

+ 1
4να1

∫ 1

0
u6

x dx + 1
4νR

∫ 1

0
u2

xx dx + 1
2ν

∫ 1

0
u2

xt dx = 0.

(2.19)

In a similar way to the above estimates, if we define

E1(t) := 1
2ν

∫ 1

0
uut dx + 1

4ν2
∫ 1

0
u2

x dx + 1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx

+ 1
6α1

∫ 1

0
u6

x dx − 1
4α2

∫ 1

0
u4

x dx − 1
2α3

∫ 1

0
u2

x dx, (2.20)
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we have

E1(t) � 1
2ν

∫ 1

0
uut dx + 1

2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx

+ 1
24α1

∫ 1

0
u6

x dx + 1
8ν2

∫ 1

0
u2

x dx (2.21)

provided α2
2/4α1 + α3 � 1

4ν2, which can be derived from (1.12) easily. Let

E2(t) := 1
4να1

∫ 1

0
u6

x dx + 1
4νR

∫ 1

0
u2

xx dx + 1
2ν

∫ 1

0
u2

xt dx.

We can see that
E1(t) � CE2(t).

Thus, we have
dE1(t)

dt
+ C1E1(t) � C2,

which leads to

E1(t) � E1(0)e−C1t +
C2

C1
. (2.22)

We can see from (2.22) that, for any initial data, starting from any bounded set B
of H, there exists t1(B) such that, when t � t1(B),

E1(t) � 2C2

C1
. (2.23)

In what follows, we consider the solution in [t1(B), +∞). From (2.23), we have

‖ut‖2 � 2C2

C1
, ‖uxx‖2 � 2C2

C1
for any t � t1(B) (2.24)

and

‖ux‖n+2
L∞ � ‖uxx‖n+2

L2 �
(

2C2

C1

)(n+2)/2

. (2.25)

Differentiating (1.1) with respect to t, multiplying the result by utt, and integrating
with respect to x over Ω, we obtain

1
2

d
dt

∫ 1

0
u2

tt dx + ν

∫ 1

0
u2

xtt dx +
R

2
d
dt

∫ 1

0
u2

xxt dx = −
∫ 1

0
f(ux)tuxtt dx. (2.26)

Differentiating (1.1) with respect to t, multiplying the result by −uxxt and inte-
grating with respect to x over Ω yields

ν

2
d
dt

∫ 1

0
u2

xxt dx − d
dt

∫ 1

0
uttuxxt dx

−
∫ 1

0
u2

xtt dx + R

∫ 1

0
u2

xxxt dx =
∫ 1

0
f(ux)tuxxxt dx. (2.27)
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In the following, we estimate the right-hand side of (2.26), (2.27):
∫ 1

0
f(ux)tuxtt dx � 1

4ν

∫ 1

0
u2

xtt dx + C

∫ 1

0
f(ux)2t dx. (2.28)

Observe that∫ 1

0
f(ux)2t dx =

∫ 1

0
|f ′(ux)uxt|2 dx � C

∫ 1

0
u8

xu2
xt dx + C

∫ 1

0
u2

xt dx. (2.29)

By virtue of the previous estimates,
∫ 1

0
u8

xu2
xt dx � ‖ux‖8

L∞‖uxt‖2
L2 �

(
2C2

C1

)4

‖uxt‖2
L2

and

‖uxt‖2
L2 � C‖uxxxt‖2/3

L2 ‖ut‖4/3
L2 � δ‖uxxxt‖2

L2 + Cδ‖ut‖2
L2 , (2.30)

with δ being a positive constant. Thus,
∫ 1

0
u8

xu2
xt dx � δ‖uxxxt‖2

L2 + Cδ‖ut‖2
L2 . (2.31)

Similarly, we have
∫ 1

0
f(ux)tuxxxt dx � δ‖uxxxt‖2

L2 + Cδ‖ut‖2
L2 . (2.32)

Multiplying (2.27) by η and adding the result to (2.26) yields

d
dt

(
1
2

∫ 1

0
u2

tt dx + ( 1
2R + 1

2νη)
∫ 1

0
u2

xxt dx − η

∫ 1

0
uttuxxt dx

)

+ (ν − η)
∫ 1

0
u2

xtt dx + Rη

∫ 1

0
u2

xxxt dx � δ‖uxxxt‖2 + Cδ‖ut‖2. (2.33)

We can choose sufficiently small η, δ to ensure the positivity of the coefficients on
the left-hand side of (2.33). Then we obtain

d
dt

( ∫ 1

0
u2

tt dx +
∫ 1

0
u2

xxt dx

)
+ C3

( ∫ 1

0
u2

xtt dx +
∫ 1

0
u2

xxxt dx

)
� C4.

Combining with (2.19), we finally have

d
dt

( ∫ 1

0
uut dx +

∫ 1

0
u2

x dx +
∫ 1

0
u2

t dx +
∫ 1

0
u2

xx dx

+
∫ 1

0
u6

x dx +
∫ 1

0
u2

tt dx +
∫ 1

0
u2

xxt dx

)

+ C5

( ∫ 1

0
u6

x dx +
∫ 1

0
u2

xx dx +
∫ 1

0
u2

xt dx +
∫ 1

0
u2

xtt dx +
∫ 1

0
u2

xxxt dx

)
� C6.

(2.34)
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If we define

E3(t) :=
∫ 1

0
uut dx +

∫ 1

0
u2

x dx +
∫ 1

0
u2

t dx

+
∫ 1

0
u2

xx dx +
∫ 1

0
u6

x dx +
∫ 1

0
u2

tt dx +
∫ 1

0
u2

xxt dx

and

E4(t) :=
∫ 1

0
u6

x dx +
∫ 1

0
u2

xx dx +
∫ 1

0
u2

xt dx +
∫ 1

0
u2

xtt dx +
∫ 1

0
u2

xxxt dx,

then, using Poincaré’s inequality and the boundary condition (1.2), we have

E3(t) � CE4(t).

In a similar way to the estimates of E1(t), we have

dE3(t)
dt

+ C7E3(t) � C8 for any t � t1(B), (2.35)

which immediately leads to

E3(t) � E3(0)e−C7t +
C8

C7
for any t � t1(B). (2.36)

For the initial data, starting from the bounded set B mentioned above, there exists
t2(B) � t1(B) such that, when t � t2(B), we have

E3(t) � 2C8

C7
. (2.37)

From (2.37), we can see that if we choose C̄1 = C̄2 = 2C8/C7 in the definition of
B0, the existence of absorbing set B0 follows. The proof is complete.

3. The existence of a global attractor for the system without viscosity

We consider the initial boundary-value problem (1.2)–(1.4). In this section, we shall
prove the existence of a global attractor for this system in the closed subspace Hβ .

Here we define Hβ as

Hβ :=
{

(u, ut) ∈ H,

∫ 1

0
( 1
2u2

t + 1
2Ru2

xx + F1(ux)) dx � β

}
.

We establish the local existence and uniqueness results in a similar way to § 2.

Lemma 3.1. Under the same assumption as in theorem 1.3, there exists t∗ > 0
depending only on ‖u0‖H4(Ω), ‖u1‖H2(Ω), such that problem (1.2)–(1.4) admits a
unique solution (u, ut) in Ω̄ × [0, t∗] such that

u ∈ C([0, t∗];H4) ∩ C1([0, t∗];H2) ∩ L2([0, t∗];H5),

ut ∈ C([0, t∗];H2) ∩ L2([0, t∗];H3).
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3.1. Proof of theorem 1.3(i)

We can only obtain a priori estimates depending on T . In what follows, the
letter CT denotes a positive constant which may depend on the initial data and the
time T .

Lemma 3.2. For any t ∈ [0, T ], the following estimates hold.

‖ut‖ � CT , ‖uxx‖ � CT , ‖ux‖L∞ � CT ,

∫ t

0
‖ut‖2 dτ � CT . (3.1)

Proof. Multiplying (1.4) by ut and integrating with respect to x yields

d
dt

(
1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx +
∫ 1

0
F (ux) dx

)
+ µ

∫ 1

0
u2

t dx = 0. (3.2)

From (3.2), the estimates of (3.1) follow immediately.

Lemma 3.3. For any t ∈ [0, T ], the following estimates hold.

‖utt‖ � CT , ‖uxxt‖ � CT . (3.3)

Proof. We differentiate (1.4) with respect to t, multiply the result by utt and inte-
grate with respect to x over Ω to obtain

1
2

d
dt

∫ 1

0
u2

tt dx + µ

∫ 1

0
u2

tt dx +
∫ 1

0
f(ux)tuxtt dx + 1

2R
d
dt

∫ 1

0
u2

xxt dx = 0. (3.4)

Since
∫ 1

0
f(ux)xtutt dx � 1

2µ

∫ 1

0
u2

tt dx + Cµ

∫ 1

0
|f(ux)xt|2 dx (3.5)

and ∫ 1

0
|f(ux)xt|2 dx =

∫ 1

0
|f ′′(ux)uxxuxt|2 dx +

∫ 1

0
|f ′(ux)uxxt|2 dx

� C‖uxt‖2 + C‖uxxt‖2

� C‖uxxt‖2 + C, (3.6)

here,
‖uxt‖2 � C‖uxxt‖2 + C‖ut‖2.

Applying Gronwall’s inequality, we can obtain

‖utt‖ � CT , ‖uxxt‖ � CT .

The proof is complete.

Combining lemma 3.2 with equation (1.4), we can obtain the boundedness of
‖u‖H4 , ‖ut‖H2 , then the global existence and uniqueness follows.
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3.2. Proof of theorem 1.3(ii)

First, we prove the existence of an absorbing set in Hβ . In the following, C and
Ci denote positive constants depending only on β.

Let
Bβ = {(u, ut) ∈ Hβ , ‖u‖H4 � C̄1, ‖ut‖H2 � C̄2},

where C̄1, C̄2 are positive constants that may depend on β, but not on the initial
data and t, and they will be specified later. Then we have the following.

Lemma 3.4. Bβ is an absorbing set in Hβ, i.e. for any bounded set B in Hβ, there
exists some time t = t0(B) > 0 such that, when t � t0(B), S(t)B ⊂ Bβ.

Proof. From now on, we assume that the initial data (u0, u1) ∈ B ⊂ Hβ .
First, we multiply (1.4) by ut and integrate with respect to x to obtain

d
dt

(
1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx +
∫ 1

0
F (ux) dx

)
+ µ

∫ 1

0
u2

t dx = 0. (3.7)

Then we have

1
2

∫ 1

0
u2

t dx + 1
2R

∫ 1

0
u2

xx dx +
∫ 1

0
F (ux) dx

� 1
2

∫ 1

0
u2

1 dx + 1
2R

∫ 1

0
D2u2

0 +
∫ 1

0
F (Du0) dx

� β. (3.8)

From (3.8) we can see that S(t) maps (u, ut) from Hβ into itself and stays there
forever. Moreover, we obtain

‖ut‖ � C, ‖uxx‖ � C, ‖ux‖L∞ � C (3.9)

and ∫ t

0
‖ut‖2 dτ � C,

∫ t

0
‖ut‖n+2 dτ � C, ∀n > 0. (3.10)

Second, we differentiate (1.4) with respect to t, multiply the result by utt and
integrate with respect to x over Ω to obtain

1
2

d
dt

∫ 1

0
u2

tt dx + µ

∫ 1

0
u2

tt dx +
∫ 1

0
f(ux)tuxtt dx +

R

2
d
dt

∫ 1

0
u2

xxt dx = 0. (3.11)

Here,

∫ 1

0
f(ux)tuxtt dx =

∫ 1

0
5α1u

4
xuxtuxtt dx

−
∫ 1

0
3α2u

2
xuxtuxtt dx −

∫ 1

0
α3uxtuxtt dx. (3.12)

In what follows, we estimate the right-hand side of (3.12).
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Since
∫ 1

0
5α1u

4
xuxtuxtt dx =

1
2

(
d
dt

∫ 1

0
5α1u

4
xu2

xt dx −
∫ 1

0
20α1u

3
xu3

xt dx

)
, (3.13)

and from the estimates in (3.9), we have
∣∣∣∣
∫ 1

0
u3

xu3
xt dx

∣∣∣∣ � C

∫ 1

0
|uxt|3 dx.

Using Nirenberg’s inequality yields

‖uxt‖3
L3 � C‖uxxt‖7/4

L2 ‖ut‖5/4
L2 � δ‖uxxt‖2

L2 + Cδ‖ut‖10
L2

with δ being a positive constant again.
In a similar manner, we have

∫ 1

0
3α2u

2
xuxtuxtt dx =

1
2

(
d
dt

∫ 1

0
3α2u

2
xu2

xt dx −
∫ 1

0
6α2uxu3

xt dx

)

and ∣∣∣∣
∫ 1

0
uxu3

xt dx

∣∣∣∣ � C

∫ 1

0
|uxt|3 dx � δ‖uxxt‖2

L2 + Cδ‖ut‖10
L2 .

Therefore, we infer from (3.11) and the above estimates that

d
dt

(
1
2

∫ 1

0
u2

tt dx + 1
2R

∫ 1

0
u2

xxt dx + 5
2α1

∫ 1

0
u4

xu2
xt dx

− 3
2α2

∫ 1

0
u2

xu2
xt dx − 1

2α3

∫ 1

0
u2

xt dx

)

+ µ

∫ 1

0
u2

tt dx � δ‖uxxt‖2
L2 + Cδ‖ut‖10

L2 . (3.14)

Finally, we differentiate (1.4) with respect to t, multiply the result by ut and inte-
grate with respect to x over Ω to obtain

d
dt

∫ 1

0
ututt dx +

µ

2
d
dt

∫ 1

0
u2

t dx + R

∫ 1

0
u2

xxt dx

−
∫ 1

0
u2

tt dx +
∫ 1

0
f(ux)tuxt dx = 0. (3.15)

Here,
∣∣∣∣
∫ 1

0
f(ux)tuxt dx

∣∣∣∣ =
∣∣∣∣
∫ 1

0
f ′(ux)u2

xt dx

∣∣∣∣
� C‖uxt‖2

L2

� δ‖uxxt‖2
L2 + Cδ‖ut‖2

L2 .
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Now we multiply (3.15) by 1
2µ and add the result to (3.14) to obtain

d
dt

(
1
2

∫ 1

0
u2

tt dx + 1
2R

∫ 1

0
u2

xxt dx + 5
2α1

∫ 1

0
u4

xu2
xt dx

− 3
2α2

∫ 1

0
u2

xu2
xt dx − 1

2α3

∫ 1

0
u2

xt dx + 1
2µ

∫ 1

0
ututt dx + 1

2µ

∫ 1

0
u2

t dx

)

+ 1
4µ2

∫ 1

0
u2

tt dx + 1
2µR

∫ 1

0
u2

xxt dx � δ‖uxxt‖2 + Cδ‖ut‖2.

(3.16)

Choosing sufficiently small δ, we finally have

d
dt

(
1
2

∫ 1

0
u2

tt dx + 1
2R

∫ 1

0
u2

xxt dx + 5
2α1

∫ 1

0
u4

xu2
xt dx

− 3
2α2

∫ 1

0
u2

xu2
xt dx − 1

2α3

∫ 1

0
u2

xt dx + 1
2µ

∫ 1

0
ututt dx + 1

2µ

∫ 1

0
u2

t dx

)

+ 1
4µ2

∫ 1

0
u2

tt dx + 1
4µR

∫ 1

0
u2

xxt dx � C.

(3.17)

If we define

E1(t) := 1
2

∫ 1

0
u2

tt dx + 1
2R

∫ 1

0
u2

xxt dx + 5
2α1

∫ 1

0
u4

xu2
xt dx − 3

2α2

∫ 1

0
u2

xu2
xt dx

− 1
2α3

∫ 1

0
u2

xt dx + 1
2µ

∫ 1

0
ututt dx + 1

4µ2
∫ 1

0
u2

t dx

and

E2(t) := 1
2µ

∫ 1

0
u2

tt dx + 1
4µR

∫ 1

0
u2

xxt dx.

Combining the estimates obtained in (3.9), (3.10) with equation (1.4), we get

E1(t) ∼ ‖u‖2
H4 + ‖ut‖2

H2 and E1(t) � CE2(t).

Therefore,
dE1(t)

dt
+ C1E1(t) � C2,

then it immediately leads to

E1(t) � E1(0)e−C1t +
C2

C1
. (3.18)

It is clear that, here, C1 and C2 are positive constants depending only on β. Then
we have, for any initial data starting from any bounded set B of Hβ , that there
exists some time t0(B) such that, when t � t0(B),

E1(t) � 2C2

C1
. (3.19)

The existence of an absorbing set follows. The proof is complete.
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Next, we focus on proving the uniform compactness of the orbits. For this we have
to estimate higher-order derivatives. From now on, we assume that the initial data
belong to a bounded set B contained in Hβ , and we use C, C̃ to denote positive
constants depending on B and β, i.e. ‖u0‖H4 , ‖u1‖H2 and β.

Lemma 3.5. There exists some time t1 = t1(B) > 0, such that (u, ut) is bounded
in C([t1, +∞); H5 × H3).

Proof. First, we differentiate (1.4) with respect to t, multiply the result by −uxxtt

and integrate with respect to x over Ω to obtain

d
dt

∫ 1

0
( 1
2Ru2

xxxt + 1
2u2

xtt) dx + 1
2µ

∫ 1

0
u2

xtt dx +
∫ 1

0
f(ux)xtuxxtt dx = 0. (3.20)

Multiplying (3.20) by t yields

d
dt

( 1
2 t‖uxtt‖2 + 1

2Rt‖uxxxt‖2) + 1
2µt

∫ 1

0
u2

xtt dx

= 1
2‖uxtt‖2 + 1

2R‖uxxxt‖2 + t

∫ 1

0
f(ux)xxtuxtt dx. (3.21)

Next, we differentiate (1.4) with respect to t, multiply the result by −uxxt and
integrate with respect to x over Ω to obtain

1
2µ

d
dt

∫ 1

0
u2

xt dx − d
dt

∫ 1

0
uttuxxt dx

+ R

∫ 1

0
u2

xxxt dx −
∫ 1

0
u2

xtt dx +
∫ 1

0
f(ux)xtuxxt dx = 0. (3.22)

Observe that if we integrate (3.17) with respect to t, we arrive at

‖utt‖ � C, ‖uxxt‖ � C,

∫ t

0
‖utt‖2 dτ � C,

∫ t

0
‖uxxt‖2 dτ � C (3.23)

with C = C(‖u0‖H4 , ‖u1‖H2). From (3.10), we also have∫ t

0
‖ut‖2 dτ � C.

Using Nirenberg’s inequality and equation (1.4), we have∫ t

0
‖uxt‖2 dτ � C, ‖uxxxx‖ � C, ‖uxxx‖ � C. (3.24)

Then we integrate (3.22) with respect to t to arrive at

R

∫ t

0
‖uxxxt‖2 dτ +

∫ t

0

∫ 1

0
f(ux)xtuxxt dxdτ

+ 1
2µ

∫ 1

0
u2

xt dx − 1
2µ

∫ 1

0
u2

xt|t=0 dx

=
∫ 1

0
uttuxxt dx −

∫ 1

0
uttuxxt|t=0 dx +

∫ t

0
‖uxtt‖2 dτ. (3.25)
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Combining the estimates obtained in lemma 3.4 and (3.23), we have
∫ t

0

∫ 1

0
f(ux)xtuxxt dxdτ =

∫ t

0

∫ 1

0
(5α1u

4
x − 30α2u

2
x − α3)u2

xxt dxdτ

+
∫ t

0

∫ 1

0
(20α1u

3
xuxtuxx − 6α2uxuxtuxx)uxxt dxdτ

� C

∫ t

0
‖uxxt‖2 dτ + C

� C. (3.26)

Thus, it follows from (3.25) that
∫ t

0
‖uxxxt‖2 dτ � C

∫ t

0
‖uxtt‖2 dτ + C. (3.27)

Similarly, we also have
∫ t

0
‖uxtt‖2 dτ � C

∫ t

0
‖uxxxt‖2 dτ + C. (3.28)

In what follows, we estimate the last term on the right-hand side of (3.21).
Since

f(ux)xt = 20α1u
3
xuxtuxx +5α1u

4
xuxxt −3α2u

2
xuxxt −6α2uxuxtuxx −α3uxxt, (3.29)

here,

∣∣∣∣
∫ t

0

∫ 1

0
(20α1u

3
xuxtuxx)xuxtt dxdτ

∣∣∣∣
� δ

∫ t

0
‖uxtt‖2 dτ + Cδ

∫ t

0

∫ 1

0
(u3

xuxtuxx)2x dxdτ

and
∫ t

0

∫ 1

0
(u3

xuxtuxx)2x dxdτ =
∫ t

0

∫ 1

0
(3u2

xu2
xxuxt + u3

xuxtuxxx + u3
xuxxuxxt)2 dxdτ

� C

∫ t

0

∫ 1

0
(u2

xt + u2
xxt) dxdτ � C. (3.30)

Thus, we have
∣∣∣∣
∫ t

0

∫ 1

0
(20α1u

3
xuxtuxx)xuxtt dxdτ

∣∣∣∣ � δ

∫ t

0
‖uxtt‖2 dτ + Cδ.

In a similar manner to (3.30), we have
∣∣∣∣
∫ t

0

∫ 1

0
(6α2uxuxtuxx)xuxtt dxdτ

∣∣∣∣ � δ

∫ t

0
‖uxtt‖2 dτ + Cδ (3.31)
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and∫ 1

0
(5α1u

4
xuxxt)xuxtt dx = −

∫ 1

0
(5α1u

4
xuxxt)uxxtt dx

= −1
2

(
d
dt

∫ 1

0
5α1u

4
xu2

xxt dx −
∫ 1

0
20α1u

3
xu3

xxt dx

)
.

(3.32)

By Nirenberg’s inequality and Young’s inequality, we find that
∣∣∣∣
∫ t

0

∫ 1

0
20α1u

3
xu3

xxt dxdτ

∣∣∣∣ � C

∫ t

0

∫ 1

0
|uxxt|3 dxdτ (3.33)

and

‖uxxt‖L3 � C‖uxxxt‖1/6
L2 ‖uxxt‖5/6

L2 , (3.34)

‖uxxt‖3
L3 � C‖uxxxt‖1/2

L2 ‖uxxt‖5/2
L2

� δ‖uxxxt‖2
L2 + Cδ‖uxxt‖10/3

L2 . (3.35)

Thus, ∫ t

0

∫ 1

0
|uxxt|3 dxdτ � δ

∫ t

0
‖uxxxt‖2 dτ + Cδ. (3.36)

Similarly, we have

−
∫ 1

0
(3α2u

2
xuxxt)xuxtt dx =

∫ 1

0
(3α2u

2
xuxxt)uxxtt dx

=
1
2

(
d
dt

∫ 1

0
3α2u

2
xu2

xxt dx −
∫ 1

0
6α2uxu3

xxt dx

)
(3.37)

and ∣∣∣∣
∫ t

0

∫ 1

0
6α2uxu3

xxt dxdτ

∣∣∣∣ � δ

∫ t

0
‖uxxxt‖2 dτ + Cδ. (3.38)

Finally, we deduce
∫ t

0

∫ 1

0
f(ux)xxtuxtt dxdτ � δ

∫ t

0
‖uxtt‖2 dτ + δ

∫ t

0
‖uxxxt‖2 dτ + C̃δ (3.39)

with C̃δ = C̃(‖u0‖H4 , ‖u1‖H2 , δ).
Now we integrate (3.21) with respect to t to obtain

1
2 t‖uxtt‖2 + 1

2Rt‖uxxxt‖2 + 1
2µ

∫ t

0
τ‖uxtt‖2 dτ

� 1
2

∫ t

0
‖uxtt‖2 dτ + 1

2R

∫ t

0
‖uxxxt‖2 dτ

+ δt

∫ t

0
‖uxtt‖2 + ‖uxxxt‖2 dτ + C̃δt. (3.40)
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Combining (3.40) with (3.27), (3.28) for any t � 1 and choosing sufficiently small
δ 
 µ yields

1
2‖uxtt‖2 + 1

2R‖uxxxt‖2 � 1
2

∫ t

0
‖uxtt‖2 dτ + 1

2R

∫ t

0
‖uxxxt‖2 dτ + Ct. (3.41)

Using Gronwall’s inequality yields

1
2‖uxtt‖2 + 1

2R‖uxxxt‖2 � Ctet. (3.42)

Let t = 1 in (3.42) to obtain

1
2‖uxtt|t=1‖2 + 1

2R‖uxxxt|t=1‖2 � Ce (3.43)

with C = C(‖u0‖H4 , ‖u1‖H2).
Integrating (3.21) again with respect to t in [1, +∞) and combining the result

with (3.27), (3.28) and (3.39), we derive that there exists sufficiently large t1 > 1
in (3.21) such that, when t > t1, the terms on the right-hand side of (3.21), i.e.

1
2

∫ t

1
‖uxtt‖2 dτ + 1

2R

∫ t

1
‖uxxxt‖2 dτ + δt

∫ t

1
‖uxxxt‖2 + ‖uxtt‖2 dτ

can be absorbed by

1
4µ

∫ t

1
τ‖uxtt‖2 dτ + C.

Then we obtain

1
2 t‖uxtt‖2+ 1

2Rt‖uxxxt‖2+ 1
4µ

∫ t

1
τ‖uxtt‖2 dτ � C+Ce+Ct for any t � t1 (3.44)

with C = C(‖u0‖H4 , ‖u1‖H2).
Finally, we have

1
2‖uxtt‖2 + 1

2R‖uxxxt‖2 � C

t
+ C for any t � t1. (3.45)

Combining (3.45) with equation (1.4), we conclude our argument. The proof is
complete.

The compactness of the orbit in H4 × H2 follows from the last lemma.
In a similar manner to § 2, applying the Temam theorem again, which can be

rephrased as follows, we deduce the results of Theorem 1.3(ii).

Theorem 3.6. Suppose that the following hold.

(a) The mapping S(t), t � 0, defined by the solution to problems (1.2)–(1.4) is a
nonlinear continuous semigroup from H into itself.

(b) The operators S(t) are uniformly compact for t large, i.e. for every bounded
set B contained in Hβ, there exists t1 which may depend on B such that⋃

t�t1
S(t)B is relatively compact in H.

https://doi.org/10.1017/S030821051000168X Published online by Cambridge University Press

https://doi.org/10.1017/S030821051000168X


Global attractors for nonlinear beam equations 1107

(c) The orbit starting from any bounded set of Hβ will reenter in Hβ after a finite
time, which depends only on this bounded set, and stay there forever. There
exists a bounded set Bβ in Hβ such that Bβ is absorbing in Hβ.

Then the ω-limit set of Bβ, Aβ is a global attractor which is compact and attracts
the bounded sets of Hβ.

Therefore, the proof of theorem 1.3(ii) is complete.
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