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Noise radiation from a ducted rotor
in a swirling-translating flow
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This paper investigates the noise radiation produced by a rotor inside a duct, which
is convected by a swirling-translating mean flow. The study is based on an extension
of Gennaretti’s and Morino’s boundary element method to the frequency domain for
scattering problems in conjunction with a spinning rotor source model in the presence
of a swirl flow. The proposed formulation is validated against exact solutions and
is further used to investigate the effects of the translating flow Mach number and
swirling flow angular velocity on noise radiation to the far field. The scattered sound
is highly affected by the convecting mean flow. The modal content of the scattered
field increases when increasing the translating flow Mach number, while a swirling
flow leads to a reduction of the mode propagation, if co-rotating with respect to
the azimuthal order of the spinning source, or an increase of the modal content,
if counter-rotating with respect to the source. In general, the mean translating flow
moves the main lobes of the directivity patterns downstream, while in some cases the
mean swirling flow neglects this effect and the downstream lobe is completely shifted.
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1. Introduction
One of the main sources of aircraft noise is the engine. There are several

fluid dynamics phenomena involved in the sound generation. Turbulence is mainly
responsible for the jet flow noise and the broadband component of turbomachinery
noise. Unsteady aerodynamic loads on the compressor, fan and turbine rotor blades,
interacting with stator blade rows, produce tonal noise, which propagates to the far
field after being strongly modified by the intake and exhaust ducts.

This paper investigates the effects of the mean swirling-translating flow on the tonal
noise generated by a single rotor in a duct. In contrast to the case of purely convected
waves in a duct, in swirling flows the waves do not form a complete basis system for
all wave types and they must, therefore, be constructed numerically (Tam & Auriault
1998; Gobulev & Atassi 2000; Heaton & Peake 2006). Generally, the presence of swirl
can cut on or cut off modes depending on the sense of rotation with respect to the
mean swirl. Modes cut on in the absence of mean swirl, but co-rotating with the swirl,
are cut off by the swirl effect, whereas modes cut off in the absence of mean swirl, but
counter-rotating with the swirl, are cut on by the swirl effect (Cooper & Peake 2005).

Several numerical methods has been employed to tackle the turbomachinery noise
problem. More recently, computational aeroacoustics (CAA) methods have been most
widely applied. CAA is a computational approach for solving the unsteady fluid flow
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equations using computational fluid dynamics (CFD) methods, with special emphasis
on resolving acoustic perturbations (Tam 2006). The CAA analysis accounts for the
complexity of turbomachinery flow, however, because of the very fine scale necessary
for the acoustic analysis, it is computationally very expensive to apply it to noise
propagation to the far field. Hybrid methods can be used instead to tackle this
problem according to which the CAA method is used in the near field and the far
field is computed by surface integral methods, for example, Kirchhoff (Lyrintzis 2003)
and Ffowcs Williams–Hawkings (Crighton et al. 1992), which do not require the
discretization of the volume field.

Finite element method (FEM) and boundary element method (BEM) have also
been applied to duct acoustic problems. Modelling convention of sound by uniform
mean flow in a duct is less expensive using BEMs (e.g. Dunn, Tweed & Farassat 1996),
as they only require meshing of the body boundary surface. For non-uniform mean
flows, FEMs (Eversman & Roy 1993) and the Green’s function discretization (GFD)
method (Casalino, di Francescantonio & Druon 2004) are also suitable; however,
GFD method and FEM require meshing of the entire fluid volume.

In the present work, a BEM formulation is presented, which is an extension of
the formulation proposed by Morino (1993) and Gennaretti & Morino (1992) to
the frequency domain for scattering problems in conjunction with a spinning rotor
source model. Specifically, the method is based on the boundary integral equation
(BIE) initially introduced for incompressible aerodynamic problems (Morino, Chen &
Suciu 1975) and later on extended to compressible aerodynamic flows (Gennaretti &
Morino 1992; Morino 1993) and aeroacoustics (Gennaretti, Luceri & Morino 1997).
It has the advantage to be applicable to complex three-dimensional geometries and
have the integral coefficient matrices, arising when replacing the BIE with a linear
system of algebraic equations, independent of the incident frequency field. Therefore,
it is very appealing for multiple frequency computations. Furthermore, Gennaretti
& Morino (1992) have developed an extension of the formulation for a frame of
reference in rigid motion with respect to the undisturbed air. This formulation can
form the basis for predicting the sound convected by a mean swirling flow in a duct,
by adding the swirl to the translation of the mean flow. This possibility is explored
here with respect to duct aeroacoustics.

The paper is organized as follows. In § 2 the BEM formulation for a helicoidal flow
written in the frequency domain is summarized. Investigation of the swirling flow
effects on noise radiation to the far field are investigated in § 3 for a generic duct
geometry. Finally, § 4 summarizes the conclusions from the present study.

2. Theoretical and computational model
The BEM formulation (Gennaretti & Morino 1992) has been employed for the

case of a stationary duct with mean flow convecting an incident acoustic field due
to a rotor tonal source of frequency ω. The flow moves in a helicoidal motion with
uniform translating velocity v∞ directed along the duct axis x, and uniform angular
velocity Ω∞, swirling around x. The transformation between the frame of reference
(x, t), rigidly connected with the duct, and the frame of reference (ξ , τ ), taken with

reference to the undisturbed air, is ξ̌ (x, t) =U∞(t)x−v∞t, where U∞(t) is the rigid-body
rotation matrix

U∞(t) =

⎡
⎢⎣

1 0 0

0 cos Ω∞t sin Ω∞t

0 −sin Ω∞t cos Ω∞t

⎤
⎥⎦. (2.1)
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The standard linear wave equation for inviscid flow (without heat conduction) is
employed in an integral form in the time domain. The Green’s function is written as
G(x, x�, t, t�) = −1/(4π�̌)δ(t − t� + θ), where δ is the Dirac’s function, θ is the time
required for a signal to propagate from the source point x to the emission point
x� and �̌ is the distance between the two points increased by the convecting factor
(1 + Mr ) with Mr being the flow Mach number vector projected along the distance
vector. For acoustic scattering, the acoustic velocity potential φ is represented by
φ = φ̂ eiωt and the formulation is written in a frequency domain as

E(x�)φ̂(x�) =

∫
SB

e−iωθ

(
−1

4π�̌

∂φ̂

∂ñ
− ∂

∂ñ

(
−1

4π�̌

)
φ̂ + iωφ̂

−1

4π�̌

(
∂θ

∂ñ
+ 2

M · n
c

))
dS,

(2.2)

where ∂/∂ñ = (n − M · n M) · ∇, with n being the (outwards) vector normal to the
body surface SB; M = −M∞ + (Ω∞x)/c is the Mach vector, for M∞ = v∞/c, and Ω∞
is the antisymmetric rotation matrix around the axis x. Following Morino & Tseng
(1990), the variables of (2.2) are given by

�̌ = |g(θ)| for g(θ) =
(
1 − M2

∞
)
c θ +

1

c
x · (Ω∞U∞(θ)x�) − M∞ · R, (2.3)

where θ is the unique positive root of the equation for a subsonic flow

(
1 − M2

∞
)
θ2 +

2

c2
x · ((U∞(θ) − I)x�) − 2

c
R · M∞θ − R2

c2
= 0, (2.4)

and R is defined as R = x − x�. The quantity E depends on the position of x�. If
x� is in the external field, E = 1, or inside the surface SB , E = 0. Equation (2.2) is a
boundary integral representation (BIR) for φ. If x� tends to SB , then E = 1/2 and
(2.2) yields a BIE with respect to φ.

By expanding the terms of (2.2); decomposing ∇φ̂ = ∂φ̂/∂n n + ∇SB
φ̂, where ∇SB

φ̂

is the gradient over the body surface SB; and defining Mn = M · n, (2.2) becomes

E(x�)φ̂(x�) =

∫
SB

−1

4π�̌

(
1 − M2

n

)∂φ̂

∂n
e−iωθ dS −

∫
SB

−1

4π�̌
Mn M · ∇SB

φ̂ e−iωθ dS

+

∫
SB

∇
(

−1

4π�̌

)
· (Mn M − n)φ̂ e−iωθ dS

+ iω

[∫
SB

−1

4π�̌
∇θ · (n − Mn M)φ̂ e−iωθ dS + 2

∫
SB

−1

4π�̌

Mn

c
φ̂ e−iωθ dS

]
. (2.5)

In order to evaluate the integral terms, the gradients of the source term −1/(4π�̌),
i.e. the doublet term and the delay θ have to be defined. The gradients of �̌ and θ are
obtained by (2.3) and (2.4), respectively,

∇�̌ =

{((
1 − M2

∞
)
c + x · (Ω∞U′

∞(θ)x�)/c
)
∇θ + Ω∞U∞(θ)x�/c − M∞ g(θ) � 0,

−
((

1 − M2
∞
)
c + x · (Ω∞U′

∞(θ)x�)/c
)
∇θ − Ω∞U∞(θ)x�/c + M∞ g(θ) < 0,

and ∇θ = (cM∞θ + R − (U∞(θ) − I)x�)/(c�̌), with U′
∞ being the derivative of U∞ with

respect to θ .
In linear acoustics, the solution is given by adding to the incident field φI the

scattered field, φS: φ̂ = φI +φS. Because the incident field identically satisfies the BIE,
(2.5) translates in the frequency domain in terms of the scattered velocity potential
and the boundary condition at the body surface is written as ∂φS/∂n= −∂φI/∂n.
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This formulation consists a suitable model for a wide range of scattering problems
in the presence of flow. In fact, for a complex geometry equation (2.5) is written
for each part of the body in the appropriate frame of reference, where the flow is
modelled as a translation plus a rotation, and the solution is then obtained by a linear
superposition.

The numerical implementation of the BIE (2.5) is based on a collocation method.
The surface SB is discretized in N quadrilateral panels and the variables φS , ∂φI/∂n,
Mn and e−iωθ are assumed to be constant on each element surface (zeroth-order
method). The integral equation is replaced with a N × N linear system of algebraic
equations with frequency independent integral coefficient matrices.

As an incident field a spinning dipole ring source model has been employed.
Following Garrick & Watkins (1953), the rotor load, distributed along a ring of fixed
radius rs and spinning along the azimuth ψs , was modelled as a dipole directed along
the duct axis x (thrust component) and evaluated by the derivative of the Green’s
function in (2.2). At the point x (x, r, ψ) for each azimuthal component m of the
spinning source, the incident velocity potential is written as

φI =

∫ 2π

0

1

4π�̌

(
1

�̌

∂�̌

∂xs

+ iω
∂θ

∂xs

)
e−i(ωθ+mψs ) dψs, (2.6)

where �̌ is defined by

�̌ =

∣∣∣∣(1 − M2
∞
)
c θ +

1

c
xs · (Ω∞U∞(θ)x) − M∞ · R

∣∣∣∣ , (2.7)

with θ being the unique positive root of the equation

(
1 − M2

∞
)
θ2 +

2

c2
xs · ((U∞(θ) − I)x) − 2

c
R · M∞θ − R2

c2
= 0, (2.8)

for R = xs − x. Therefore, the derivatives are evaluated using (2.7) and (2.8), as

∂θ

∂xs

=
cM∞x

θ + (xs − x)

�̌c
, (2.9a)

∂�̌

∂xs

=

{((
1 − M2

∞
)
c + 1/c xs · (Ω∞U′

∞(θ)x)
)
∂θ/∂xs − M∞x

if g(θ) � 0,

−
((

1 − M2
∞
)
c + 1/c xs · (Ω∞U′

∞(θ)x)
)
∂θ/∂xs + M∞x

if g(θ) < 0,
(2.9b)

where M∞x
is the component of M∞ in the axial direction.

Introducing the variable ψ1 = ψs − ψ and the azimuthal mode decomposition
φI (x, r, ψ) =

∑
m φI

m(x, r)e−imψ, the spinning modes φI
m are written as

φI
m =

∫ 2π

0

1

4π�̌

(
1

�̌

∂�̌

∂xs

+ iω
∂θ

∂xs

)
e−i(ωθ+mψ1) dψ1. (2.10)

3. Results
3.1. Comparison with the exact solution

The computational model was validated against the exact solution of a dipole point
source: φ = ∂(e−iωθ/(4π�̌))/∂xs (quantities defined as in (2.6)). The velocity potential
due to the dipole was compared with the BEM velocity potential scattered from a
cylinder when the same dipole providing the boundary condition for the incident field.
The cylinder’s axis was placed in the x direction and its centre at the coordinate centre.
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Figure 1. Comparison of the directivity patterns of the velocity potential generated by a
dipole (ka = 4) and the BEM solution scattered from a cylinder.
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Figure 2. Duct geometry.

The cylinder radius a was used as the reference length; the length of the cylinder is
2a. The dipole, directed along the x-axis, was placed on the z-axis at a distance 0.5
from the origin of the coordinates. The directivity patterns were evaluated on a circle
of radius 2 on the x–y plane. Figure 1 shows the results for a dipole source oscillating
at the non-dimensional frequency ka = 4. The case concerns the superposition of a
flow translating along the x-axis and a rotational flow swirling around the same axis.
The swirling mean flow angular velocity Ω∞ was made non-dimensional using a/c as
the time scale. The exact and computed velocity potentials agree very well, especially
for M∞ = 0.4, while for M∞ = 0.6 some distortion in the directivity pattern is noted.
The latter is probably due to the effect of the approximation of the surface gradient
integral coefficient, which is more effective for high Mach numbers.

3.2. Spinning rotor source results

The computational model was used to investigate the characteristics of the radiation
patterns generated by the rotor ring incident field and convected by a swirling-
translating mean flow. Figure 2 shows a discretized version of the duct geometry,
which was generated by a complete rotation of a Joukowsky profile. The rotor ring of
radius 0.9 is placed at one quarter of the duct length, where the duct radius is equal
to the reference length scale a. The duct maximum radius at the exhaust is equal to
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1.125 and the duct length is 2. The frame of reference is centred at the duct inlet disk
as shown in figure 2. The pressure values of the scattered fields were evaluated over a
circle of radius D. In order to compare the directivity patterns, the absolute pressure
values were normalized with respect to their maximum value. As a measure of the
total power radiated from the duct, the power level Π (dB) was also examined:

Π = 10 log

[
πD2/(ρ∞c)

∫ 2π

0
|p|2 sinα dα

Pref

]
. (3.1)

Here |p| is the absolute pressure value calculated using the Bernoulli theorem, ρ∞ is
the reference density and α is a dummy variable. The integral was taken over a circle
of radius D and Pref is the reference pressure (10−12 W).

In order to simulate a stationary nacelle embedded in still air with a mean flow
passing through, the directivity pattern in the far field for a stationary observer
was obtained as follows: (i) for the duct in a swirling-translating mean flow the
BIE (2.5) was used to calculate the scattered velocity potential on a fictitious
cylinder surrounding the duct; (ii) then, for the propagation outside the duct the
BIR formulation in the absence of flow was used to calculate the scattered pressure
propagating from the fictitious cylinder to the far field. The cylinder radius and length
were chosen as 1.4 and 3, respectively, so that the fictitious surface was very close to
the duct surface. Numerical investigations using different cylinder lengths and radii
showed that these parameters have negligible effects on the results.

The investigation was carried out for different spinning source blade tip Mach
numbers Mt from 0.8 to 1.4, and azimuthal orders m from 4 to 12. Furthermore, a
negative value of m was also considered in order to investigate the effect of opposite
rotation of the spinning source. The resulting non-dimensional frequencies ka were
evaluated as ka = Mtm. The Mach numbers and rotation velocities of the mean flow
(in the x direction) were chosen as M∞ = 0.2, 0.4, 0.6 and Ω∞ =0, 0.2, 0.4, 0.6.

The present method has been implemented into parallel computers using the
Message Passing Interface (MPI) and the Scalable Linear Algebra PACKage
(ScaLAPACK). The computational cost depends directly on the frequency with more
panels being required for shorter wavelengths. Grid convergence tests showed that
8000 panels were sufficient at the highest frequency. Using eight nodes of a computer
cluster (IBM eServer326 m, dual-core, 2.2GHz, 1 Gb RAM per core), the computation
of a 8000 × 8000 integral coefficient matrix requires approximately 2 h, while the solver
requires 3 min. The allocated memory per node is 64 Mb. Numerical tests showed
that increasing the inversion matrix by a factor of 3.5 results in a fivefold increase of
the computing time. A lower frequency requires a smaller inversion matrix, thereby
reducing the overall computational cost by the above factors.

3.2.1. Translating flow effect: varying mean flow Mach number

In order to show the translating flow effect, the directivity pattern of the normalized
scattered pressure and the scattered power levels, calculated at a distance D = 8, were
plotted by varying M∞ and keeping constant Ω∞. Figure 3 shows the directivity
patterns for the azimuthal order m =12 and angular velocities Ω∞ =0, 0.4. The upper
and lower sides of the directivity patterns are referred to the different Mach numbers,
M∞ = 0, 0.2, 0.4, 0.6. Figure 4 shows the variation of the scattered power level versus
the translating flow M∞ for constant Mt and m.

The effect of the mean flow is clearly remarkable. As predicted by the modal analysis
(Goldstein 1976), the modal content increases when the flow Mach number increases.
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Figure 3. Directivity pattern of the normalized scattered pressure for varying M∞; m= 12.
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Figure 4. Variation of the scattered power level versus M∞, for constant m: lines −�− m= 4,
− ∗ − m= 8, −�− m= 12. The difference is calculated with respect to the case where there is
no mean flow.
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Figure 5. Directivity pattern of the normalized scattered pressure with varying Ω∞; m= 8.

In fact, the directivity pattern gets richer in peaks, i.e. more lobes correspond to more
cut-on modes (Chapman 1994), and the scattered power level increases. Furthermore,
the main lobes of the directivity patterns tend to move downstream.

3.2.2. Swirling flow effect: varying mean flow angular velocity

The swirling flow effect was investigated using the directivity pattern of the
normalized scattered pressure and the scattered power levels; Ω∞ was varied for
constant M∞. Figures 5 and 6 show the directivity patterns for the azimuthal orders
m =8, −8 and translating flow Mach numbers M∞ =0.4, 0.6. The upper and lower
sides of the directivity patterns are referred to different Ω∞ = 0, 0.2, 0.4, 0.6. Figure 7
shows the variation of the scattered power level versus the swirling flow angular
velocity for constant Mt and m.

The swirling flow does have an effect on the directivity pattern, which is different
depending on the case. Both the number and position of the lobes vary. In some cases
the downstream lobe is completely shifted. This can be noted for the cases of M∞ = 0.6,
m =8, and M∞ =0.4, m = −8 (Ω∞ =0.6). In general, as predicted analytically
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Figure 6. Directivity pattern of the normalized scattered pressure with varying Ω∞; m= −8.
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(Cooper & Peake 2005), the swirling flow decreases the modal content when co-
rotating with the spinning azimuthal order of the incident source, i.e. fewer lobes
correspond to fewer cut-on modes (Chapman 1994). For positive m, the trend of the
scattered power level is overall decreasing with Ω∞, while for negative m the effect
is the opposite and less evident. On the other hand, the scattered pressure directivity
pattern becomes wider with increasing Ω∞.

4. Conclusions
The focus of the present investigation was the modelling of the effects of the

translating-swirling flow on the noise radiation to the far field using a BEM in
the frequency domain. It is well known that the convection of sound is strongly
modified by the mean fluid flow. In particular, modes cut on in the absence of mean
flow can be cut off in the presence of a swirling flow co-rotating with the spinning
azimuthal order, and vice versa. Both the translating flow Mach number and the
swirling flow angular velocity affect the directivity pattern of the scattered pressure
and the scattered power level. The modal analysis showed that the modal content of
the scattered field increases when increasing the translating flow Mach number. This
is clearly shown in the variations of the scattered pressure directivity patterns and
scattered power levels.

A swirling flow, co-rotating with the azimuthal order of the spinning source, leads to
a reduction of the mode propagation. This is confirmed by the trends of the scattered
power level, which are decreasing with the mean flow angular velocity. For negative
azimuthal order (counter-rotating with respect to the swirl), the scattered pressure
directivity patterns show that the lobes increase and the patterns become more
complex. However, the effect on the scattered power level is less evident. The mean
translating flow seems to move the main lobes of the directivity patterns downstream,
whereas in some cases the mean swirling flow appears to neglect this effect and the
downstream lobe is completely shifted. This phenomenon will be investigated in a
future work with reference to the near field results.
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