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The equations governing the evolution of quantum vortex defects subject to twist are
derived in standard hydrodynamic form. Vortex defects emerge as solutions of the
Gross–Pitaevskii equation, that by Madelung transformation admits a hydrodynamic
description. Here, we consider a vortex defect subject to superposed twist due to the
rotation of the phase of the wave function. We prove that, when twist is present,
the corresponding Hamiltonian is non-Hermitian and determine the effect of twist on
the energy expectation value of the system. We show how twist diffusion may trigger
linear instability, a property directly related to the non-Hermiticity of the Hamiltonian.
We derive the correct continuity equation and, by applying defect theory, we obtain the
correct momentum equation. Finally, by coupling twist kinematics and vortex dynamics
we determine the full set of hydrodynamic equations governing quantum vortex evolution
subject to twist.
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1. Vortex defects in quantum fluids

In recent years experimental realization of Bose–Einstein condensates (Andrews et al.
1997; Cornell & Wieman 1998) as new states of matter, and laboratory production of
vortex defects (Matthews et al. 1999), have stimulated a renovated interest in theoretical,
numerical and experimental work in condensed matter physics. The hydrodynamic
interpretation of the governing equations – rooted in the original work of Madelung
(1926) – coupled with the extraordinary recent progress in direct numerical simulation
of fluid flows, has given further impetus (Wyatt 2005). Here, considering a vortex defect
subject to superposed phase twist, we derive the Gross–Pitaevskii equation in the presence
of twist, determine the twist state energy, derive the correct continuity and momentum
equation and work out the complete set of hydrodynamic equations governing twist
evolution and vortex dynamics. With the help of this new set of equations we can
investigate details of the first stage of vortex evolution governed by twist energy relaxation
and possible production of new defects.

A condensate is a highly diluted gas of bosons that at ultra-cold temperatures can be
modelled by the Gross–Pitaevskii equation (GPE) (Pitaevskii 1961; Gross 1961). This is a

† Email address for correspondence: renzo.ricca@unimib.it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-7304-4042
mailto:renzo.ricca@unimib.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.695&domain=pdf
https://doi.org/10.1017/jfm.2020.695


904 A25-2 M. Foresti and R. L. Ricca

mean-field equation that in non-dimensional form is given by

∂ψ

∂t
= i

2
∇2ψ + i

2
(1 − |ψ |2)ψ (GPE) (1.1)

for the single, complex wave function ψ = ψ(x, t), where x is the 3-space variable
and t time. For simplicity, we assume an unbounded domain and background density
ρ = |ψ |2 → 1 as |x| → ∞. In this context, phase defects emerge as nodal lines of the
wave function ψ . By using the Madelung transformation ψ = √

ρ exp(iχ), where χ is
the phase of ψ , the real and imaginary parts of (1.1) give rise to the continuity and
momentum equation of a fluid-like medium of density ρ and velocity u = ∇χ . This
allows a macroscopic interpretation of the condensate in terms of standard hydrodynamics
(Barenghi & Parker 2016). In the presence of phase twist standard theory needs correction,
and this is what we intend to address here.

In the context of quantum fluids a defect L is a zero-density line of quantized circulation
given (per unit of mass) by Γ = 2πn (n = 1, 2, . . .). Quantization of circulation arises
naturally from line integration of u = ∇χ over a simple loop encircling L and from
the multi-valuedness of χ . The vortex is thus a true, topological defect embedded in
a three-dimensional, irrotational fluid medium (since ∇ × u = ∇ × ∇χ = 0), whose
charge is given by vortex circulation.

The novelty is to consider a vortex defect in the presence of twist. As mentioned above,
the emergence of a defect demands a correction of the standard momentum equation
that governs an irrotational fluid; moreover, the actual presence of phase twist also has
implications for stability and vortex dynamics. Recent numerical simulations (Zuccher &
Ricca 2018) and theoretical work (Foresti & Ricca 2019) demonstrate that new defects
can be produced by pure injection of phase twist on existing defects. As pointed out by
Foresti & Ricca (2019), this observation has interesting potential applications in science
and technology. In order to understand and exploit details associated with twist energy
and vortex dynamics we derive the correct set of governing equations for defects in the
presence of twist. Since the ambient domain is multiply connected we must consider
appropriate correction to the governing equations due to a multi-valued potential, and
this is done by applying the defect gauge theory developed by Kleinert (2008).

The material is presented as follows: in § 2 we derive the modified Gross–Pitaevskii
equation (mGPE) for a twist state, and in § 3 we show that this state corresponds
to an excitation of the fundamental energy level. We prove that the Hamiltonian is
non-Hermitian and show how twist may influence stability. In § 3.1 we consider as explicit
example, the case of a vortex ring subject to uniform axial twist. In § 4 we introduce
the standard hydrodynamic formulation of GPE, determine the continuity equation when
twist is present and derive the correct momentum equation of the system when a vortex
defect is present. Finally, in § 5 we consider twist kinematics and vortex dynamics and
determine the complete set of hydrodynamic equations governing the evolution of the
defect. Conclusions are drawn in § 6.

2. Modified Gross–Pitaevskii equation for twisted state

Let us consider the superposition of phase twist θtw on an existing defect, which is
identified by a smooth, closed space curve L of vector position X = X (s), s arc-length
and total length L. As anticipated, L is a nodal line of the wavefunction ψ , so it can be
interpreted as the locus of intersection of a fan of isosurfaces χ̄ (surfaces of constant
phase) that foliate the entire space. In this context, twist is given by the longitudinal
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Hydrodynamics of a quantum vortex in the presence of twist 904 A25-3

rotation of the phase of the isosurfaces hinged on L. To define twist adequately we refer to
the mathematical ribbon R = R(L,L∗) identified by the portion of χ̄ bounded by L (the
ribbon baseline edge) and the curve L∗ on χ̄ given by L∗ : X + εÛ , where ε = constant
denotes ribbon width (that can be taken of the order of the defect healing length) and
Û = Û(s) the ribbon spanwise unit vector normal to L. Incremental twist is defined by

θtw(s) =
∫ s

0

(
Û × dÛ

ds̄

)
· T̂ ds̄, (2.1)

where T̂ = T̂ (s) ≡ d X/ds is the standard unit tangent to L and s̄ a dummy variable. Total
twist is given by the cumulative rotation of the ribbon spanwise unit vector Û from some
origin s = 0 to L. Here, for simplicity, we assume L to be closed and inextensible, with
total twist number given by Tw = (2π)−1θtw(L). In the presence of stretching the definition
can be easily adapted to include a functional dependence of s on time.

In the following we shall consider the space–time evolution of L, so that X =
X (s, t) and θtw = θtw(s, t) on L, so that, in general, θtw = θtw(x, t). Several experimental
techniques to inject twist locally and to get it spread in the bulk of the condensate can
be used, including the method proposed by the present authors (see Foresti & Ricca
2019, § V, B) based on the exploitation of the Berry phase (Leanhardt et al. 2002). Twist
thus produced on the defect is then instantly distributed in the condensate because of the
contextual nature of the governing wave function that characterizes the system (Pitaevskii
& Stringari 2016).

If ψ0 denotes the fundamental state, the superposed twist state ψ1 is defined by the
following transformation:

ψ0 → ψ1 = eiθtw(x,t)ψ0. (2.2)
Since the GPE is not invariant under local phase transformation, in the twist superposition
transient ψ1 does not evolve under the same GPE. Let us determine the modified equation.
From (2.2) we have

∂tψ1 = (∂t eiθtw)ψ0 + (∂tψ0) eiθtw . (2.3)
Substituting the GPE (1.1) into the right-hand side term above and re-arranging terms, we
have

∂tψ1 = i(∂tθtw)ψ1 + i
2
(∇2ψ0) eiθtw + i

2
(1 − |ψ1|2)ψ1, (2.4)

where we have taken |ψ0| = |ψ1|.
Using the vector identity eiθtw∇2ψ0 = ∇ · (eiθtw∇ψ0)− (∇eiθtw) · ∇ψ0 and substituting

(2.2), after some straightforward algebra we have

∂tψ1 = i(∂tθtw)ψ1 + i
2
(∇ − i∇θtw)

2ψ1 + 1
2
∇θtw · ∇ψ1 + i

2
(1 − |ψ1|2)ψ1. (2.5)

The correct evolution equation is a modified form of the standard Gross–Pitaevskii
equation, given by

∂tψ1 = i
2
∇̃2
ψ1 + i

2
(1 − |ψ1|2)ψ1 + i(∂tθtw)ψ1 + 1

2
∇θtw · ∇ψ1 (mGPE), (2.6)

where ∇̃ = ∇ − i∇θtw; the mGPE is still a Gross–Pitaevskii type of equation, with an
extra interaction term given by phase twist and a flux term proportional to the gradient of
θtw along L (for explicit computation of this flux and its interpretation in terms of axial
fluid flow see again Foresti & Ricca (2019), and § 5 below).
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904 A25-4 M. Foresti and R. L. Ricca

3. Hamiltonian and energy

Before considering the actual vortex dynamics, few considerations about the
Hamiltonian and energy of the twisted state are in order. The Hamiltonian (see, for
instance, Barenghi & Parker (2016, p. 111)) associated with the mGPE above is given
by

Htw = 1
2 p̃2 − 1

2(1 − |ψ1|2)− Vtw, (3.1)

where p̃ = p − ∇θtw is the canonical momentum of the twisted state, p = −i∇ the
momentum operator and Vtw = ∂tθtw − (1/2)∇θtw · p the twist potential. We have

LEMMA 3.1. The Hamiltonian Htw associated with the mGPE (2.6) is non-Hermitian, that
is H†

tw /= Htw, where † denotes adjoint operator.

Proof. The quadratic terms of p̃2 are Hermitian since both p and ∇θtw (proportional to the
identity, and function of x) are individually Hermitian; the self-interaction terms are also
Hermitian (with pre-factor (1 − |ψ1|2), a real number); the remaining part, however, is not
Hermitian

(∇θtw · p)† = p† · ∇θ †
tw = p · ∇θtw; (3.2)

(∇θtw · p)†ψ1 = ( p · ∇θtw)ψ1 = −i∇2θtw ψ1; (3.3)

(∇θtw · p)ψ1 = −i∇θtw · ∇ψ1 /=(∇θtw · p)†ψ1. (3.4)

Hence H†
tw /= Htw. �

Properties of non-Hermitian Hamiltonians have been widely investigated in both
classical and quantum contexts (Bender 2007; El-Ganainy et al. 2018), mainly when
physical systems manifest loss and gain of energy. The implications for the twisted
state become clear when we compute the energy expectation value given by Etw =
〈ψ1|H|ψ1〉/〈ψ1|ψ1〉 (taking care of the total number of particles present). This is
given by

Etw =
∫ [(

−∂tθtw|ψ1|2 + i
2
ψ∗

1 ∇θtw · ∇ψ1

)
+ 1

2
|∇̃ψ1|2 − 1

2
|ψ1|2 + 1

4
|ψ1|4

]
dV,

(3.5)

where dV denotes the volume element of the condensate. We see that the expectation value
of Vtw (first term in brackets) has, in this case, an imaginary part. Upon application of the
Madelung transform ψ1 = √

ρ exp(iχ1), we have

Re〈ψ1|Vtw|ψ1〉 = −∂tθtw − 1
2ρ∇θtw · ∇χ1,

Im〈ψ1|Vtw|ψ1〉 = 1
4∇θtw · ∇ρ.

}
(3.6)

It is the imaginary term above that makes the Hamiltonian non-Hermitian; moreover, Etw
depends on time through ∂tθtw. The non-Hermiticity of Htw provides an alternative proof
that a twisted state in isolation is indeed unstable. Confirmation of this comes from linear
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Hydrodynamics of a quantum vortex in the presence of twist 904 A25-5

z z

y yx x

z

y x

(b)(a) (c)

FIGURE 1. (a) Initial condition given by a planar vortex ring visualized by the iso-density
tubular surface ρ = 0.1. The arrow indicates the vorticity direction. (b) Twist Tw = 1 is
superposed (say at t = 0) by prescribing a full rotation of the isophase χ̄ (as described in detail
in § 3.1), shown by the phase contour in the (y, z)-plane. (c) The presence of twist induces
the instantaneous production of a new, central defect, here shown at a later time (adapted from
Zuccher & Ricca 2018). Note the corrugation of the iso-density surface that reflects perturbation
of the density profile.

perturbation of the mGPE: the perturbed state is given by

ψ̃ = ψ1 + ψ1p = ψ1 + |ψ1p| ei(k·x−ν t), |ψ1p| 
 |ψ1|, (3.7)

where ψ1 is the unperturbed state and |ψ1p| = constant, k wave vector, ν perturbation
frequency. By substituting ψ̃ into (2.6) and retaining only first-order terms, we obtain the
dispersion relation

ν = 1
2 [(|k|2 − 2∇θtw · k + |∇θtw|2 − 1 − ∂tθtw)+ i∇2θtw]. (3.8)

Considering the imaginary part of the frequency, we can state the following:
(a) ∇2θtw < 0: we have damped oscillations with ψ̃ → ψ0 as t → ∞;
(b) ∇2θtw = 0: oscillatory terms survive and the system is stable;
(c) ∇2θtw > 0: we have instability with |ψ | → ∞ as t → ∞.

Non-Hermiticity of the Hamiltonian is given by ∇θtw · ∇ρ /= 0. In summary we have:

(i) if ∇θtw · ∇ρ = 0 and ∇2θtw ≤ 0, then Htw is Hermitian and the system is linearly
stable under small perturbations;

(ii) if ∇θtw · ∇ρ /= 0 and ∇2θtw ≤ 0, then Htw is not Hermitian with (probability) density
not conserved: there is phase twist diffusion due to the Laplacian and the system is
still linearly stable under small perturbations;

(iii) if ∇θtw · ∇ρ = 0 and ∇2θtw > 0, then Htw is Hermitian, and the system is linearly
unstable under small perturbations;

(iv) if ∇θtw · ∇ρ /= 0 and ∇2θtw > 0, then Htw is non-Hermitian and the system is linearly
unstable, with phase diffusion due to the flux of ρ∇θtw along L.

Note that the Hermiticity of the Hamiltonian can also be attained by allowing the
potential twist Vtw to move freely, as if it were caused by a second topological defect
interacting in the system. As mentioned by Gong et al. (2018), pointing out the possible
role of topology in relation to stability aspects, in the vortex ring case of figure 1 we have
an explicit demonstration that twist instability is indeed what triggers topological changes
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904 A25-6 M. Foresti and R. L. Ricca

and the corresponding production of a new defect. The process can be seen as an energy
relaxation mechanism in response to twist superposition.

3.1. Vortex ring case
The simple case of uniform phase twist superposed on a vortex ring L0 of radius R0
provides an explicit example. In the zero-twist case the vortex propagates steadily in the
medium without change of shape (see figure 1a), with conserved energy E0 = E(θtw = 0)
(Barenghi & Parker 2016). Suppose now that at some time (say t = 0) we superpose
instantly uniform twist θtw = wα, where w denotes the winding number of Û around L0
and α is the azimuth angle. In cylindrical coordinates (r, α, z) centred on the ring, we have

∇θtw = w
R0

êα, ∂tθtw = ∇θtw · ∇ψ1 = 0, (3.9a,b)

where êα is the azimuth unit vector. The new energy state is now given by

Etw =
∫ (

1
2

∣∣∣∣∇ψ1 − iw
w
R0

êαψ1

∣∣∣∣
2

− 1
2
|ψ1|2 + 1

4
|ψ1|4

)
dV. (3.10)

Evidently, we have

Etw = E0 + 1
2

(w
R

)2
|ψ1|2 ≥ E0, (3.11)

where Etw is quadratic in w, and Etw = E0 if and only if w = 0. As Foresti & Ricca
(2019) demonstrated, topological and dynamical arguments show that superposition of
twist generates in this case instantaneous production of a new, central defect, as shown in
figure 1(c).

4. Hydrodynamic equations in the presence of twist

It is well known (see again Barenghi & Parker 2016) that by applying the Madelung
transformation to (1.1) the real and imaginary parts of the GPE give rise to the momentum
and continuity equation of a fluid-like medium. By following the same procedure,
substitution of ψ1 = √

ρ exp(iχ1) into the mGPE gives rise to the set of equations

∂tρ + ∇ · (ρu) = ∇ · (ρ∇θtw), (4.1)

∂tχ1 = 1
2 [1 − ρ − (u − ∇θtw)

2] + Q + ∂tθtw, (4.2)

where Q = ∇2√ρ/(2√
ρ) is the so-called quantum potential. Equation (4.1) is the new

continuity equation, where change in (probability) density is now balanced by diffusion
of twist; the gradient of (4.2) generates the momentum equation in hydrodynamic form.
When a defect is present this equation must be modified to take into account the
multi-valued phase. To implement this correction we follow the defect gauge theory
developed by Kleinert (2008) and applied by dos Santos (2016) to multi-valued potentials.
Indeed, in analogy with Helmholtz’s decomposition of classical fluid mechanics, we have

u = uI + uR = ∇χ1 + A = ∇χ1 + Aδχ̄1(x), (4.3)

where uI is irrotational and uR ≡ A denotes the rotational contribution given by the
vector potential A = Aδχ̄1(x) due to the singular distribution of vorticity; A is directed
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Hydrodynamics of a quantum vortex in the presence of twist 904 A25-7

z

x x

z = 0z = 0

z = 0

z z(b) (c)(a)

ω

FIGURE 2. Straight defect along the z axis: (a) density profile around the nodal line ρ = 0;
(b) case of zero phase twist, with phase jump across the positive half-plane (x, z) (evidenced by
the blue half-plane online); (c) case of uniform phase twist with winding number w.

along the normal to the cut-isophase surface χ̄1 through which we have the phase jump
(see figure 2b,c); we take A = constant and δχ̄1(x) = ∫

χ̄1
δ(3)(x − x ′) dx ′, ∀x ′ ∈ χ̄1 (see

Kleinert 2008).
Following dos Santos (2016) it is convenient to write A in terms of the 4

components {Aμ}, with μ = 1, 2, 3 to denote space and μ = 0 time. In analogy with the
electric/magnetic decomposition associated with the Faraday tensor, we write

Eμ = ∂0Aμ − ∂μA0. (4.4)

Consider now the four-dimensional velocity field, that in components is given by

uμ = ψ1
∗∂μψ1 − ψ1∂μψ

∗
1

2iψ∗
1ψ1

, (4.5)

(ψ∗
1 complex conjugate), where now u0 ≡ ∂tχ1 + A0. In order to determine the new time

derivative of the velocity when the defect is present, we note that

∂μu0 = ∂μ(∂0χ1 + A0) = ∂0(∂μχ1 + Aμ)+ (∂μA0 − ∂0Aμ); (4.6)

substituting (4.4) into the last bracket of the equation above, we have ∇u0 = ∂tu − E, i.e.

∂tu = ∇u0 + E, (4.7)

that gives the correct momentum equation. Since u = ∇χ1 + A, to take account of the cut
effects on the time component of u we must replace the term ∂tχ1 on the left-hand side of
(4.2) with ∂tχ1 + A0, i.e. ∂tχ1 → ∂tχ1 + A0, so that (4.2) becomes

u0 = ∂tχ1 + A0 = 1
2

[1 − ρ − (u − ∇θtw)
2] + Q + ∂tθtw. (4.8)

The value of E can then be worked out considering the jump of the vector potential
A through the cut-isophase surface χ̄1. Since defect dynamics is independent of the cut
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904 A25-8 M. Foresti and R. L. Ricca

isosurface, we can always choose the cut (where A is defined) such that χ̄1 = 0; for

Im(ψ1)

Re(ψ1)
= tanχ1 = tan 0 = 0. (4.9)

Hence, Im(ψ1) = 0 for all Re(ψ1) > 0 (see again figure 2b,c). This means that ∂μχ̄1 must
have a discontinuity given by −2πΘ[Re(ψ1)] ∂μΘ[Im(ψ1)] (dos Santos 2016), so that the
jump in the potential A = Aδχ̄1(x) is given by

Aμ = 2πΘ[Re(ψ1)] ∂μΘ[Im(ψ1)], (4.10)

where Θ[·] is Heaviside’s function (for this derivation consider the jump of δχ̄1(x) across
the cut in cylindrical polar coordinates; see dos Santos (2016, p. 30)). Thus, from (4.4) we
have

Ei = 4δ(ρ)[∂0(Re(ψ1)) ∂i(Im(ψ1))− ∂i(Re(ψ1)) ∂0(Im(ψ1))], (4.11)

and after some algebra we have (dos Santos 2016, (33))

E = −2δ(ρ)[∇ · (ρu − ρ∇θtw)u + u0∇ρ]. (4.12)

By substituting (4.12) into (4.7) we have the correct momentum equation, given by

∂tu = ∇u0 − 2δ(ρ)[∇ · (ρu − ρ∇θtw)u + u0∇ρ]. (4.13)

Note the presence of the δ-function on the right-hand side of the equation above, that
justifies the correction to the standard momentum (4.2) due to the presence of the defect
at ρ = 0.

5. Twist kinematics and vortex dynamics

First let us consider twist kinematics when L evolves in time. For this we consider the
standard intrinsic reference frame on L given by the Frenet triad {T̂ , N̂, B̂}, where N̂ and B̂
denote principal unit normal and binormal vectors to L, respectively. The time evolution
of θtw is given by two contributions: one, referred to as the ‘dynamical phase’ (Hannay
1998), is due to the Lagrangian rotation of the ribbon unit vector Û around L; the other,
referred to as the ‘geometric phase’, is due to the evolution of X (hence T̂ ) in space. The
evolution of twist in moving filaments (or ribbons) is derived by Klapper & Tabor (1994)
by adding together these two contributions; this is given by

∂tθtw =
∫ s

0
[∇χ1 · T̂ + c (∂tT̂ )B] ds̄, (5.1)

where ∇χ1 · T̂ can be interpreted as a hydrodynamic axial flow that generates the rotation
of Û along L (for details see Foresti & Ricca (2019)) and represents the dynamical phase
contribution (cf. Klapper & Tabor 1994, (2)). Here, we assumed L to be inextensible, a
plausible assumption in the immediacy of the transient stage of twist superposition. The
other term c (∂tT̂ )B ≡ c ∂tT̂ · B̂ denotes the binormal component of the time derivative of
T̂ (where by definition ∂tT̂ ≡ ∂tsX = ∂stX is the arc-length derivative of the velocity of L),
and it is responsible for the geometric phase associated with the motion of L in space (for
its derivation consider the intrinsic kinematics of a curve in space; see Klapper & Tabor
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Hydrodynamics of a quantum vortex in the presence of twist 904 A25-9

(1994, (3))). For our purpose it is convenient to re-write everything in terms of T̂ ; from
the first Frenet–Serret equations we have c B̂ = c T̂ × N̂ = T̂ × ∂sT̂ , so that

∂tθtw =
∫ s

0
[∇χ1 · T̂ + ∂tT̂ · (T̂ × ∂sT̂ )] ds̄. (5.2)

Vorticity is defined by ω = ∇ × u; since for quantum fluids vorticity is assumed to be
a singular distribution of vorticity on nodal lines, we can simply take (after appropriate
re-scaling) ω = δ(x − X )T̂ so that ω ∝ T̂ is a function of s and t as well. Equation (5.2)
can thus be re-written in terms of ω by

∂tθtw =
∫ s

0
[∇χ1 · ω + ∂tω · (ω × ∂sω)] ds̄. (5.3)

Vortex dynamics is governed by the curl of the momentum (4.13), so we have

∂tω = −2∇δ(ρ)× [∇ · (ρu − ρ∇θtw)u] − 2δ(ρ)[∇ · (ρu − ρ∇θtw)ω

+ ∇(∇ · (ρu))× u − ∇(∇ · (ρ∇θtw))× u + ∇u0 × ∇ρ]. (5.4)

The set of governing equations is now complete: we have 3 fundamental variables, ρ,
u0 and θtw, whose evolution is governed by the following equations:

∂tρ = ∇ · (ρ∇θtw)− ∇ · (ρu),

u0 = 1
2

[1 − ρ − (u − ∇θtw)
2] + 1

2
√
ρ

∇2√ρ + ∂tθtw,

∂tθtw =
∫ s

0
[∇u0 · ω + ∂tω · (ω × ∂sω)] ds̄.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.5)

These equations are then supplemented by the dynamics of the defect itself, given by
(5.4). The numerical implementation of these equations will allow us to study in pure
hydrodynamic terms the detailed evolution of quantum defects and superposed twist.

6. Conclusions

As shown by numerical and theoretical arguments (Zuccher & Ricca 2018; Foresti &
Ricca 2019), injection of phase twist on existing defects governed by the Gross–Pitaevskii
equation may induce the production of new defects. In the case examined by the authors
above, the axial symmetry of the initial vortex ring and the uniform superposed twist
trigger the immediate production of a new, central defect with simultaneous formation of
weak oscillations of the density profile (visualized by the corrugation of the density level
in figure 1c). As pointed out by the authors, production of new defects can be seen as
a manifestation of the celebrated Aharonov–Bohm effect (1959). In general, new defect
production is not necessarily a consequence of twist relaxation. Configurational changes
that alter the geometry of defects in space can also occur. To test twist effects (or lack of
them) interesting cases may arise in the presence of stretching, induced for instance by
mutual interaction of defects (such as the classical leapfrogging vortex rings), or through
production of writhe. In this respect (5.5) allow exploration and identification of actual
scenarios by investigating the consequences of superposed twist through the analysis of
twist energy relaxation; application of these equations in the simple case of a vortex ring,
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for example, allows comparison between the propagation velocity of the perturbations
produced by the superposed twist with that associated with Kelvin’s waves and exploration
of the existence of critical thresholds for writhing instability. To this end we have derived
the Gross–Pitaevskii equation in presence of twist (2.6) and determined the complete set
of equations governing twist kinematics and vortex dynamics. By analysing the associated
Hamiltonian we demonstrate that this Hamiltonian is non-Hermitian (Lemma 3.1) and
by computing total energy we show that the system can be linearly stable or unstable
according to twist diffusion. The particular case of a vortex ring with uniform twist
has been considered, showing that indeed the twisted case has higher energy than the
zero-twist case. This result is in good agreement with the observed incipient instability
and the subsequent development of a new defect (Zuccher & Ricca 2018). An analytical
proof of this phenomenon was provided by Foresti & Ricca (2019), who relied on the fact
that for such systems total helicity is known to be conserved, remaining identically zero
during evolution and through topological changes (Salman 2017; Zuccher & Ricca 2017;
Kedia et al. 2018).

To provide a full, hydrodynamic interpretation of the evolution of defects when twist is
injected we have thus derived a new, complete set of equations governing the evolution of
density, phase and twist. This has been done by applying the defect gauge theory developed
by Kleinert (2008) and by implementing the results of dos Santos (2016) to determine
the correct vorticity transport equation. The full set of hydrodynamic equations (5.5)
in the fundamental variables ρ, u0 and θtw, supplemented by the definition ω = ∇ × u
and the vorticity (5.4) (9 equations in 9 variables) is complete and it is given in the
last section. These equations establish a correspondence between the mean-field theory
of quantum fluids and the standard treatment of classical fluid mechanics. The set of
governing equations thus derived can be readily implemented in numerical simulations,
providing a complementary approach to explore topological and dynamical features of
quantum fluids using classical hydrodynamics methods.
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