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The three classical process algebras CCS, CSP and ACP present several differences in their

respective technical machinery. This is due, not only to the difference in their operators, but

also to the terminology and ‘way of thinking’ of the community that has been (and still is)

working with them. In this paper we will first discuss these differences and try to clarify the

different usage of terminology and concepts. Then, as a result of this discussion, we define a

generic process algebra where each of the basic mechanisms of the three process algebras

(including minimal fixpoint based unguarded recursion) is expressed by an operator, and

which can be used as an underlying common language. We show an example of the

advantages of adopting such a language instead of one of the three more specialised

algebras: producing a complete axiomatisation for Milner‘s observational congruence in the

presence of (unguarded) recursion and static operators. More precisely, we provide a

syntactical characterisation (allowing as many terms as possible) for the equations involved

in recursion operators, which guarantees that transition systems generated by the

operational semantics are finite state. Conversely, we show that every process admits a

specification in terms of such a restricted form of recursion. We then present an

axiomatisation that is ground complete over such a restricted signature. Notably, we also

show that the two standard axioms of Milner for weakly unguarded recursion can be

expressed using a single axiom only.

1. Introduction

The large amount of research work on process algebra carried out in the last 25 years

started with the introduction of the theory of the process algebras CCS (Milner 1989a),

CSP (Hoare 1985) and ACP (Bergstra and Klop 1984). Despite the conceptual similarities,

these process algebras were developed from quite different starting viewpoints and gave

rise to different approaches: CCS is heavily based on an observational bisimulation-based

theory for communication over processes starting from an operational viewpoint; CSP

was born as a theoretical version of a practical language for concurrency and originally

had a denotational semantics (Brookes et al. 1984) that, when interpreted operationally,

is not based on bisimilarity but on decorated traces; finally, ACP originated from a
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completely different viewpoint, where concurrent systems are seen, according to a purely

mathematical algebraic view, as the solutions of systems of equations (axioms) over the

signature of the algebra considered, and operational semantics and bisimilarity (in this

case a different notion of branching bisimilarity is considered) are seen as just one of the

possible models over which the algebra can be defined and the axioms can be applied.

Such differences reflect the different ‘ways of thinking’ of the different communities that

started working (and in many cases have continued working) with them.

In this paper we initially aim to clarify the differences between these approaches, which

are often reflected in the usage of different terminology within the different communities,

and to create the means for developing a unified view of process algebras. At first glance, it

is easy to underestimate the impact of such differences. However, when it comes to dealing

with related machinery concerning recursion and the treatment of process variables in

the three different contexts, the need for clarification and comparison becomes clear. As

a first contribution of this paper, our study gives concrete form to the development of

a common theory of process algebra: we introduce a process algebra called TCP+REC,

which is defined in such a way that each basic mechanism involved in the operators of

the three process algebras is directly expressed by a different operator. More precisely,

this algebra extends the algebra TCP (Baeten 2003; Baeten et al. 2008) (which extends

ACP by including successful termination 1 and prefixing à la CCS) by the inclusion of a

recursion operator 〈X|E〉 that computes the least transition relation satisfying a system of

recursive equations (denoted E = {X = tX, Y = tY , . . . }) over processes, and considers an

initial variable X among variables V defined by the system of equations E. This operator

(which extends the similar operator introduced in Bergstra and Klop (1988) with the

possibility of nesting recursion operators inside recursion operators) encompasses both

the CCS recX.t operator (which is obtained by taking E = {X = t}) and the standard

way of expressing recursion in ACP (where usually only guarded recursion is considered

using systems of equations E). Note that, as in CCS, the 〈X|E〉 operator evaluates the

fixpoint solution for X that is minimal with respect to inclusion of the transition relation,

which may not be the minimal transition system in its equivalence class, in the case

where some notion of equivalence is considered. As we will see, the algebra TCP+REC

is endowed with sequencing ‘t′ · t′′’, hiding ‘τI (t)’, restriction ‘∂H (t)’, relabelling ‘ρf(t)’ and

parallel composition ‘t′ ‖ t′′’ à la ACP (where a communication function γ is assumed to

compute the type of communicating actions). The idea is that TCP+REC:

(i) is an underlying common language that can be used to express processes of any of

the three process algebras;

(ii) can be used as a means for formal comparison of the three respective approaches;

and

(iii) can be used to produce new results in the context of process algebra theory due to

its generality.

As an example of (iii), we show how, by using TCP+REC, we can solve the problem of

producing an axiomatisation that is complete over finite-state behaviours in the presence

of unguarded recursion and static operators like parallel, hiding and restriction. Such an
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axiomatisation and the related theorems are the second, and main, contribution of the

paper.

The problem of developing a sound and complete axiomatisation for a weak form

of bisimilarity (abstracting from internal τ activities) over a process algebra expressing

finite-state processes with both guarded and (weakly and fully) unguarded recursion has

been solved by Robin Milner (Milner 1989b). His solution was developed in the context

of a basic process algebra (basic CCS) made up of visible prefix l.t, where l can be a

typed input a or a typed output a, silent prefix τ.t, summation t′ + t′′ and recursion recX.t

(based on the least transition relation solution), whose model is assumed to be finite-state

transition systems modulo observational congruence (rooted weak bisimilarity). Such a

solution is based on three axioms: one for fully unguarded recursion

recX.(X + t) = recX.t , (FUng)

and two for weakly unguarded recursion

recX.(τ.X + t) = recX.τ.t (WUng1)

recX.(τ.(X + t) + s) = recX.(τ.X + t + s) . (WUng2)

The idea is that by means of the three axioms above we are able to turn each (weakly or

fully) unguarded process algebraic term into an equivalent guarded one. Then the proof

of completeness just works on normal forms where recursion is assumed to be guarded,

that is, it is shown that if two guarded terms are equivalent, they can be equated by the

axiomatisation. This is done by exploiting the two axioms

recX.t = t{recX.t/X} (Unfold)

t′ = t{t′/X} ⇒ t′ = recX.t if X is guarded in t (Fold)

that express the existence and uniqueness of solutions in guarded recursion specifications.

To be more precise, the axiomatisation obtained is shown to be complete for open terms,

that is, also for terms including free occurrences of variables X.

However, Milner’s result is crucially based on the fact that the signature of the process

algebra under consideration is very simple. For example, if we extend the signature to

full CCS (by, for example, considering parallel composition and restriction), the above

axioms are no longer sufficient to get rid of unguarded recursion. In other words,

even if two CCS terms are both finite state, it may be that they are not equated by

an axiomatisation including the standard CCS axioms (the axioms for CCS without the

recX.t recursion operator) plus the above axioms for unguarded and guarded recursion. An

example is

((recX.a.X) | (recX.a.X)) \{a}
where ‘|’ and ‘\’ denote CCS parallel composition and restriction, respectively. The model

of such a term has just one state with a τ self-loop, but it cannot be equated by the

axiomatisation to the equivalent term recX.τ.X or to τ.0. The problem is that this process

produces unguarded recursion (a loop with only τ transitions in the transition system), so

we cannot apply the folding axiom Fold. We should first remove the unguarded recursion,

but the three axioms FUng, WUng1 and WUng2 only work with the restricted signature
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(which does not include the parallel and restriction operators). As the main contribution

of this paper, we show that by using TCP+REC and introducing an additional axiom,

we are able to extend Milner’s result to encompass its full signature (for terms such that

finite stateness is guaranteed).

First we consider as model for processes, transition systems modulo Milner’s observa-

tional congruence and define an operational semantics for such a process algebra. In order

to guarantee that transition systems generated by the operational semantics are finite state

we provide a syntactical constraint for the systems of equations E =E(V ) involved in

recursion operators 〈X|E〉. Such a constraint is similar to the one considered in Bravetti

and Gorrieri (2002): in essence we require variables in V occurring in the right-hand side

of equations in E (that are bound by the 〈X|E〉 operator) to be ‘serial’, that is, not in

the scope of static operators like hiding, restriction, relabelling and parallel composition,

or in the left-hand side of a sequencing operator. For example, 〈X|{X = τI (a.X)}〉 for

any hiding set I , which produces an infinite-state transition system, is a term rejected by

our constraint (even if it becomes finite when observational congruence is divided out).

Note, however, that recursion can be included in the scope of static operators (or in the

left-hand side of sequencing) as in the case of the CCS term ((recX.a.X) | (recX.a.X)) \{a}
considered earlier (it is simple to express such a term in terms of our generic process

algebra by using ACP parallel, hiding and restriction). We also show that the proposed

syntactical constraint is in some sense the weakest: if a (reachable) variable that is

bound by an outer recursion operator occurs in the scope of static operators or in

the left-hand side of a sequencing operator (and reachability is preserved by the static

operators), then it produces an infinite-state transition system. We use TCP+RECf

to denote the process algebra that extends TCP with the recursion operator 〈X|E〉,
where E satisfies the above constraint. Conversely, we show that in the context of the

finite-state models under consideration, every process admits a specification in terms of

TCP+RECf .

We, then produce, as a main result of the paper, an axiomatisation for TCP+REC that

is ground complete over the signature of TCP+RECf: an equation can be derived from

the axioms between closed terms exactly when the corresponding finite-state transition

systems are observationally congruent. This axiomatisation is based on the introduction

of the new axiom

τI (〈X|X = t〉) = 〈X|X = τI (t)〉 if X is serial in t,

which allows us to exchange the hiding operator (the only static operator that may

generate unguarded recursion) with the recursion operator. This axiom is also considered

in van Glabbeek (1997) without the seriality condition, which, however, is necessary to

make it sound. We will show that with the inclusion of this crucial axiom it is possible

to achieve completeness in the finite-state case when static operators are considered, thus

extending Milner’s result. The main idea is that, by means of this axiom, we can first

move the hiding operator inside recursion and, more generally, from outside to inside by

traversing the whole syntactical structure of the term considered (so to get the effect of

hiding on the actions syntactically occurring in the term), and then (by applying it in the

reverse direction) from inside to outside again. Assuming we are turning the term into
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normal form (essentially basic CCS where recursion is guarded) by means of syntactical

induction, once we have carried out the above procedure, we can apply Milner’s rule for

unguarded recursion in the term inside the hiding operator, thus getting a term in normal

form on which the hiding operator no longer has any effect. As a consequence, we can get

rid of it using the Fold axiom in the same way as we do with any other static operator.

It is notable that in the axiomatisation we present we also make use of the following

result, which we introduce here. Milner’s two axioms for getting rid of weakly unguarded

recursion (WUng1 and WUng2) can be expressed equivalently by means of the following

single axiom:

〈X|X = τ.(X + t) + s〉 = 〈X|X = τ.(t + s)〉 .
Finally, we would like to note explicitly that the procedure that we use to turn

TCP+RECf terms into normal forms, which is based on the finiteness of the underlying

semantic model, can also be used as a technique to prove completeness when a reduced

signature is considered (for example, for TCP) as an alternative to other techniques (such

as the one in Bergstra and Klop (1985)).

The paper is structured as follows. In Section 2 we describe the different treatments of

recursion and process variables in CCS, CSP and ACP. In Section 3 we present the model

of processes that we consider: transition systems modulo observational congruence. In

Section 4 we present the generic process algebra TCP+REC, its operational semantics,

and the encoding of the operators of the other algebras CCS, CSP and ACP. In Section 5

we present the proposed syntactical constraint over sets of equations and the process

algebra TCP+RECf: we prove that TCP+RECf terms produce finite-state transition

systems only (and, conversely, every finite-state transition system can be expressed in

terms of a TCP+RECf term) and give a formal argument supporting the claim that

this syntactical constraint is the weakest that guarantees finite stateness. In Section 6

we present the axiomatisation and show that it is sound and ground complete for

observational congruence over the TCP+RECf signature. Section 7 gives conclusions.

This paper is an extended integrated version of Baeten and Bravetti (2005) and Baeten

and Bravetti (2006) that includes proofs for all theorems.

2. Process variables and recursion

The different viewpoint assumed in the ACP process algebra compared with, for example,

the CCS process algebra gives rise to a different technical treatment of process variables

in axiomatisations.

In CCS, axioms are considered as equations between terms, which can be expressed

by using meta-variables P (as in, for example, P + P = P ) standing for any term. The

meaning is that the model generated by the term to the left of ‘=’ is equivalent to the term

to the right of ‘=’ according to the notion of equivalence under consideration (for example,

observational congruence for CCS). Terms to the left and right of ‘=’ may also include

free variables X (they may be so-called open terms): often a different meta-variable E is

used to range over open terms, while P just ranges over closed terms, that is, terms where

free variables X do not occur (or if they do occur, they are bound by, for example, a
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recursion operator as in recX.E). The meaning of ‘=’ in this case is the following: for any

substitution of free variables with closed terms, the term on the left is equivalent to the

term on the right. Note that in this context the word ‘process’ (recalling the meta-variable

P ) is used as synonymous with ‘closed term’.

In ACP, axioms are instead considered as equations over process variables ‘x’ (repres-

enting any process in the model that is assumed for the algebra) combined by means of

operators in the signature of the algebra (as in, for example, x + x = x). Note that here,

unlike the case for CCS, the word process is used to denote any element in the model

under consideration (for example, transition systems modulo branching bisimilarity).

Such process variables act like meta-variables P in CCS only if the so-called term model is

assumed: the model in which each element is generated/represented by terms made up of

operators of the signature of the process algebra considered. Equivalence over elements of

the term model can then be assumed, for example, to be based on observational congruence

like in CCS. In ACP, syntactical free variables like X of CCS are not considered (term

models never include free variables): this is mainly due to the fact that in ACP a binding

operator (such as ‘recX.P ’ in CCS) is not considered.

As a consequence, while the CCS axiom E + E = E allows us to derive X + X = X

(by instantiating E with the open term X), we cannot do this with the corresponding

ACP axiom x + x = x. Note, however, that this does not prevent the possibility of

‘reasoning’ with open terms in ACP: this is done in axiom systems by deriving, from

the initial axioms, (possibly) open equations, that is, identities between terms that use

process variables as in such axioms. This capability of deriving (open) equations from

(open) equations is obtained by exploiting the axiom system derivation rules that allow

us, for example, to instantiate, in an equation, a process variable with a term that can

include process variables and to replace equations in the body of other equations. For

example, if we consider the axiom x + 0 = x, we can derive from x + x = x the open

equation x + x + 0 = x. In this view, the capability in ACP of deriving an open equation

corresponds to the capability in CCS of deriving an equation between two open terms,

where syntactical free variables X are used instead of process variables. In the example

above, the ability to derive x + x + 0 = x in ACP corresponds to the ability to derive

X+X+0 = X from E+E = E and E+0 = E in CCS. Related to this difference between

ACP and CCS is the use of the word ‘calculus’ to denote a process algebra. Unlike the

case for CCS, in the ACP context the word calculus is only used if binding operators are

introduced, and this is to emphasise the fact that in the presence of such operators we

leave the purely algebraic domain. Finally, note that if in ACP we consider the model

of labelled transition systems (or, optionally, the term model) modulo observational

congruence, the notion of ‘axiomatisation complete over closed terms’ in the context of

CCS corresponds to what in ACP is said to be ‘ground complete’: the axiomatisation

is complete with respect to closed equations, that is, identities between closed terms.

Moreover, if in ACP we consider the term model (in this case the usage of such a model is

mandatory for the correspondence to hold) modulo observational congruence, the notion

of ‘axiomatisation complete over open terms’ in the context of CCS corresponds to what

in ACP is said to be ‘ground complete’: the axiomatisation is complete with respect to

(possibly) open equations, that is, identities between terms that (possibly) include process
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variables. Alternatively, completeness over open terms in CCS can be expressed in ACP in

terms of the ground-completeness requirement described above (to express completeness

over closed terms) plus ‘ω-completeness’, which basically requires an open equation to be

derivable if and only if all its closed instances are derivable.

Now that we have explained these basic differences, we will focus on the different ways

of expressing recursion in the three process algebras CCS, CSP and ACP. Let V be a

set of variables ranging over processes, which are ranged over by X,Y . According to a

terminology that is usual in the ACP setting (and which we also used in the introduction),

a recursive specification E = E(V ) is a set of equations E = {X = tX | X ∈ V } where

each tX is a term over the signature in question and variables from V . A solution of

a recursive specification E(V ) is a set of elements {yX | X ∈ V } of some model of the

equational theory under consideration such that the equations of E(V ) correspond to

equal elements if, for all X ∈ V , yX is substituted for X. Mostly we are interested in

one particular variable X ∈ V , called the initial variable. The guardedness criterion for

such recursive specifications ensures unique solutions in preferred models of the theory,

and unguarded specifications will have several solutions. For example, the unguarded

specification {X = X} will have every element as a solution and, for example, if transition

systems modulo observational congruence are considered, the unguarded specification

{X = τ.X} will have multiple solutions, as any transition system with a τ-step as its only

initial step will satisfy this equation.

As far as guarded recursive specifications are concerned, while in CCS the unique

solution can be represented by using the recursion operator ‘recX.P ’, in ACP, where there

is no explicit recursion operator, this is not possible. As a consequence, while in CCS the

property of uniqueness of the solution is expressed by the two axioms we showed in the

introduction

recX.t = t{recX.t/X} (Unfold)

t′ = t{t′/X} ⇒ t′ = recX.t if X is guarded in t , (Fold)

which actually make it possible to derive the solution, in ACP this property is expressed

by using so-called ‘principles’. The Recursive Definition Principle, which corresponds to the

Unfold axiom, states that each recursive specification has a solution (whether it is guarded

or not). The Recursive Specification Principle, which corresponds to the Fold axiom, states

that each guarded recursive specification has at most one solution.

As far as unguarded recursive specifications are concerned, the process algebras ACP,

CCS and CSP handle them in different ways. In ACP, variables occurring in unguarded

recursive specifications are treated as (constrained) variables, and not as processes. In

CCS, where recursive specifications are made using so-called ‘constants ’, which are ranged

over by A,B, . . . , or equivalently by the recX.t operator, where t is a term containing

variable X, from the set of solutions the solution will be that has the fewest transitions

in the generated transition system chosen. Thus, the solution chosen for the equation

{X =X} has no transitions (it is the deadlocked process 0 in the ACP terminology), and

the solution chosen for {X = τ.X} has only a τ-transition to itself, a process that is

bisimilar to τ.0 in observational congruence. As already observed in the introduction, in
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CCS such behaviour is expressed by the three axioms for unguarded recursion

recX.(X + t) = recX.t , (FUng)

recX.(τ.X + t) = recX.τ.t (WUng1)

recX.(τ.(X + t) + s) = recX.(τ.X + t + s) , (WUng2)

which make it possible to turn each unguarded recursive specification into a guarded

one (actually WUng1 and WUng2 can be expressed by a single axiom, as we will see

in Section 6). It is worth noting that if unguardedness is just caused by τ actions (weak

unguardedness), as in {X = τ.X}, and not by a variable being directly executable on the

right-hand side of equations (full unguardedness), as in {X = X}, in ACP it is possible

to obtain the same effect as with recX.t in CCS by means of the hiding operator: for

example, the CCS semantics of {X = τ.X} can be obtained in ACP by writing τ{a}(X),

where X = a.X (in ACP, ‘τI (t)’ is the hiding operator). This technique makes it possible

to ‘reason’ about weakly guarded recursion in ACP also, but in an indirect way, using

the hiding operator. More precisely, in ACP it is possible to express an analogue of

axioms WUng1 and WUng2 by adding a much more complex set of conditional equations

called CFAR (Cluster Fair Abstraction Rule), which was introduced in Vaandrager (1986).

CFAR is a generalisation of the KFAR (Koomen’s Fair Abstraction Rule) introduced

in Bergstra and Klop (1986). Note, however, that CFAR and KFAR, unlike the axioms

above, are also valid if we work with rooted branching bisimilarity instead of Milner’s

observational congruence. Finally, in CSP, the way of dealing with unguarded recursive

specification is such that a solution will be chosen like in CCS, but a different one: the

least deterministic one. Thus, both CCS and CSP use a least fixed point construction, but

with respect to a different ordering relation. In CSP, the solution chosen for the equation

{X = X} is the chaos process ⊥, a process that satisfies x+ ⊥ = ⊥ for all processes x (for

an extension of ACP with such a process see Baeten and Bergstra (1997)).

3. Behaviours modulo observational congruence

Here we consider the model of transition systems modulo Milner’s observational congru-

ence.

Definition 3.1 (Transition-system space). A transition-system space over a set of labels L

is a set S of states equipped with one ternary relation → and one subset ↓:

1. →⊆ S × L × S is the set of transitions.

2. ↓⊆ S is the set of terminating or final states.

The notation s
α→ t is used for (s, α, t) ∈→ and s ↓ for s ∈ ↓.

Here we will always assume that the set S is countable and the set L is finite. Moreover,

the set of labels will consist of a set of actions A and a special label τ 
∈ A.

Given a transition-system space (S, L,→, ↓), each state s ∈ S can be identified with

a transition system that consists of all states and transitions reachable from s, with the

notion of reachability being defined as usual.
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The definition of weak bisimulation equivalence that we consider in the following is

the usual extension of the standard one that is adopted when successful termination is

distinguished from unsuccessful termination. Such a distinction is technically needed to

have compatibility (congruence) with a sequential composition operator. It corresponds

exactly to the standard one when successful termination is represented by means of an

outgoing transition labelled with a special action, instead of a predicate ↓.

Definition 3.2 (Weak bisimilarity). Define s ⇒ t if there is a sequence of 0 or more

τ-steps from s to t. A symmetric binary relation R on the set of states S of a transition-

system space is a weak bisimulation relation if and only if the following so-called transfer

conditions hold:

1. For all states s, t, s′ ∈ S , whenever (s, t) ∈ R and s
α→ s′ for some α ∈ L, we have

either α = τ and (s′, t) ∈ R or there are states t∗, t′′, t′ such that t ⇒ t∗
a→ t′′ ⇒ t′ and

(s′, t′) ∈ R.

2. Whenever (s, t) ∈ R and s ↓, there is a state t∗ such that t ⇒ t∗ ↓.

Two transition systems s, t ∈ S are weak bisimulation equivalent or weakly bisimilar,

notation s↔wt, if and only if there is a weak bisimulation relation R on S with (s, t) ∈ R.

The pair (s, t) in a weak bisimulation R satisfies the root condition if whenever s
τ→ s′

there are states t′′, t′ such that t
τ→ t′′ ⇒ t′ and (s′, t′) ∈ R. Two transition systems

s, t ∈ S are rooted weak bisimulation equivalent, observationally congruent or rooted weakly

bisimilar, notation s↔rwt, if and only there is a weak bisimulation relation in which the

pair (s, t) satisfies the root condition.

Note that the choice of adopting rooted weak bisimilarity is not a crucial assumption

for the theory that we develop. For example, a model based on rooted branching

bisimilarity (van Glabbeek and Weijland 1996) could also be considered. As we discuss in

the paper’s conclusions, the development of a corresponding theory for rooted branching

bisimilarity is left for future work.

4. A generic process algebra

4.1. Theory of Communicating Processes

We consider the process algebra TCP (Theory of Communicating Processes), which was

introduced in Baeten (2003) and completely worked out in Baeten et al. (2008).

Our theory has two parameters: the set of actions A and a communication function

γ : A × A → A. The function γ is partial, commutative and associative. The signature

elements are as follows:

— Constant 0 denotes inaction (or deadlock), and is the neutral element of alternative

composition.

Process 0 cannot execute any action, and cannot terminate.

— Constant 1 denotes the empty process or skip and is the neutral element of sequential

composition.

Process 1 cannot execute any action, but terminates successfully.
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— For each a ∈ A, there is the unary prefix operator a. .

Process a.x executes action a and then proceeds as x.

— There is the additional prefix operator τ. .

Here, τ 
∈ A is the silent step, which cannot be observed directly.

— Binary operator + denotes alternative composition or choice.

Process x+y executes either x or y, but not both (the choice is resolved upon execution

of the first action).

— Binary operator · denotes sequential composition.

Having sequential composition as a basic operator, makes it necessary to distin-

guish between successful termination (1) and unsuccessful termination (0). Sequential

composition is more general than action prefixing.

— Binary operator ‖ denotes parallel composition.

In order to give a finite axiomatisation of parallel composition, there are two variations

on this operator: the auxiliary operators ‖ (left-merge) and | (synchronisation merge).

In the parallel composition x ‖ y, the separate components x and y may execute a

step independently (denoted x‖ y and y‖ x, respectively), or they may synchronise

in executing a communication action (when they can execute actions for which γ is

defined), or they may terminate together (the last two possibilities given by x | y).
— Unary operator ∂H denotes encapsulation or restriction for each H ⊆ A.

Actions from H are blocked and cannot be executed.

— Unary operator τI denotes abstraction or hiding for each I ⊆ A.

Actions from I are turned into τ, and are thus made unobservable.

— Unary operator ρf denotes renaming or relabelling for each f : A → A.

In the following we will use:

— meta-variables x, y to range over processes of our process algebra, that is, transition-

systems possibly denoted using a term over the signature of the algebra;

— a, b, c to range over A; and

— α to range over A ∪ {τ}.
Moreover, by exploiting the commutativity and associativity of choice +, we will use the

sum notation
∑

i∈I xi to denote a choice among all processes xi with i ∈ I , where we

assume an empty sum (case I = �) to stand for 0.

We turn the set of closed terms (that is, terms containing no variables) over the signature

of the algebra into a transition-system space by providing so-called operational rules – see

Figure 1. States in the transition-system space are denoted by closed terms over the signa-

ture. These rules give rise to a finite transition system, without cycles, for each closed term.

Observational congruence is a congruence over TCP and an axiomatisation can

be provided that is ground complete, that is, an equation can be derived from the

axioms between two closed terms exactly when the corresponding transition systems

are observationally congruent. The basic set of axioms is presented in Figure 2.

4.2. Theory of Communicating Processes with recursive specifications

Here we will add to TCP the possibility of performing recursive specifications E = E(V ),

where E = {X = tX | X ∈ V }.
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1 ↓ α.x
α→ x

x
α→ x′

x + y
α→ x′

y
α→ y′

x + y
α→ y′

x ↓

x + y ↓

y ↓

x + y ↓

x
α→ x′

x · y α→ x′ · y

x ↓, y α→ y′

x · y α→ y′

x ↓, y ↓

x · y ↓

x
a→ x′, y

b→ y′, γ(a, b) = c

x ‖ y
c→ x′ ‖ y′

x ↓, y ↓

x ‖ y ↓

x
α→ x′

x ‖ y
α→ x′ ‖ y

y
α→ y′

x ‖ y
α→ x ‖ y′

x
a→ x′, y

b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′

x ↓, y ↓

x | y ↓

x
α→ x′

x‖ y
α→ x′ ‖ y

x
τ→ x′, x′ | y α→ z

x | y α→ z

y
τ→ y′, x | y′ α→ z

x | y α→ z

x
τ→ x′, x′ | y ↓

x | y ↓

y
τ→ y′, x | y′ ↓

x | y ↓

x
α→ x′, α 
∈ H

∂H (x)
α→ ∂H (x′)

x ↓

∂H (x) ↓

x
α→ x′, α 
∈ I

τI (x)
α→ τI (x

′)

x
a→ x′, a ∈ I

τI (x)
τ→ τI (x

′)

x ↓

τI (x) ↓

x
a→ x′

ρf(x)
f(a)→ ρf(x

′)

x
τ→ x′

ρf(x)
τ→ ρf(x

′)

x ↓

ρf(x) ↓

Fig. 1. Deduction rules for TCP.

Since as the model for our theory we are considering transition systems modulo

observational congruence, the guardedness criterion for recursive specifications (which we

discussed in Section 2) is as follows. Let t be a term containing a variable X. We say an

occurrence of X in t is guarded if this occurrence of X is in the scope of an action prefix

operator (not τ prefix) and not in the scope of an abstraction operator. We say a recursive

specification is guarded if all occurrences of all its variables in the right-hand sides of all

its equations are guarded or it can be rewritten to such a recursive specification using the

axioms of the theory and the equations of the specification. Now, in the models obtained

by adding rules for recursion to the operational semantics given above and then dividing

out one of the congruence relations of strong bisimilarity or observational congruence,
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x + y = y + x A1 x ‖ y = x‖ y + y‖ x + x | y M

(x + y) + z = x + (y + z) A2

x + x = x A3 0‖ x = 0 LM1

(x + y) · z = x · z + y · z A4 1‖ x = 0 LM2

(x · y) · z = x · (y · z) A5 α.x‖ y = α.(x ‖ y) LM3

x + 0 = x A6 (x + y)‖ z = x‖ z + y‖ z LM4

0 · x = 0 A7

1 · x = x A8 x | y = y | x SM1

x · 1 = x A9 0 | x = 0 SM2

(α.x) · y = α.(x · y) A10 1 | 1 = 1 SM3

a.x | b.y = c.(x ‖ y) if γ(a, b) = c SM4

∂H (0) = 0 D1 a.x | b.y = 0 otherwise SM5

∂H (1) = 1 D2 a.x | 1 = 0 SM6

∂H (a.x) = 0 if a ∈ H D3 (x + y) | z = x | z + y | z SM7

∂H (α.x) = α.∂H (x) otherwise D4

∂H (x + y) = ∂H (x) + ∂H (y) D5 ρf(0) = 0 RN1

ρf(1) = 1 RN2

τI (0) = 0 TI1 ρf(a.x) = f(a).ρf(x) RN3

τI (1) = 1 TI2 ρf(τ.x) = τ.ρf(x) RN4

τI (a.x) = τ.τI (x) if a ∈ I TI3 ρf(x + y) = ρf(x) + ρf(y) RN5

τI (α.x) = α.τI (x) otherwise TI4

τI (x + y) = τI (x) + τI (y) TI5

α.τ.x = α.x T1 τ.x + x = τ.x T2

α.(τ.x + y) = α.(τ.x + y) + α.x T3 τ.x | y = x | y T4

Fig. 2. Axioms of TCP.

we have that guarded recursive specifications have unique solutions, so we can talk about

the process given by a guarded recursive specification.

Our extension to TCP, however, will not be limited to guarded recursive specifications:

we will also add the possibility of including general (not necessarily guarded) recursive

specifications by means of an operator 〈X|E〉 (where E = E(V ) is a recursive specification

and X is a variable in V that acts as the initial variable) that, similarly as in CCS, yields the

least transition relation satisfying the recursive specification. Note that our approach also

encompasses recursive specifications in ACP, which are usually assumed to be guarded.

The extended signature gives rise to a process algebra, which we call TCP+REC.

More precisely, the set of terms of TCP+REC is generated by the following syntax:

t ::= 0 | 1 | a.t | τ.t | t + t | t · t | t ‖ t | t‖ t | t | t | ∂H (t) | τI (t) | ρf(t) | X | 〈X|E〉

where E = E(V ) is a set of equations E = {X = t | X ∈ V }. In the following we will use

s, t, u, z to range over terms of TCP+REC.
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〈tX |E〉 α→ y

〈X|E〉 α→ y

〈tX |E〉 ↓

〈X|E〉 ↓

Fig. 3. Deduction rules for recursion.

Note that terms t included in recursive specifications are again part of the same syntax,

that is, they may again include recursive specifications. In the following we will use tX to

denote the term defining variable X (that is, X = tX) in a given recursive specification.

As usual, in the following, we will use, as terms representing processes, closed terms over

the syntax above. In the above setting, a closed term is a term in which every variable X

occurs in the scope of a binding recursive specification E(V ) such that X ∈ V . Note that

the binding recursive specification may not be the one that directly includes the equation

that contains the occurrence of X in the right-hand term, but X may be bound by an

outer recursive specification, as in, for example:

〈X | {X = a.〈Y |{Y = X + Y }〉}〉.

In the following we use the usual operation t{s/X} to express syntactical replacement

of a closed term s for every free occurrence of variable X: as usual, we do not just replace

variables X occurring directly in t, but also variables X occurring freely inside its inner

recursive specifications.

Figure 3 provides deduction rules for recursive specifications. Such rules are similar to

those in van Glabbeek (1987), but we have the additional possibility of nesting recursion

operators inside recursion operators. They come down to looking upon 〈X|E〉 as the

process 〈tX |E〉 given by the following definition.

Definition 4.1. Given a set of equations E = {X = tX | X ∈ V } and a TCP+REC term

t, we define 〈t|E〉 to be t{〈X|E〉/X | X ∈ V }, that is, t where, for all X ∈ V , all free

occurrences of X in t are replaced by 〈X|E〉.

Therefore, in 〈t|E〉 we replace not only variables Y ∈ V occurring directly in t, but

even Y occurring freely inside inner recursive specifications, for example, in

〈a.〈Y |{Y = X + Y }〉 | {X = a.〈Y |{Y = X + Y }〉}〉

variable X of a.〈Y |{Y = X + Y }〉 is replaced by

〈X | {X = a.〈Y |{Y = X + Y }〉}〉

yielding

a.〈Y | {Y = 〈X|{X = a.〈Y |{Y = X + Y }〉}〉 + Y }〉.

Taken together, Figures 1 and 3 provide a transition-system space: the minimal one

(with respect to inclusion of → relations and ↓ sets) that satisfies the operational rules,

over closed TCP+REC terms.
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4.3. Encoding of other process algebras

The TCP+REC process algebra is generic in the sense that most features of commonly

used process algebras can be embedded in it. In particular, we will show that the

standard process algebras ACP, CCS and CSP are subalgebras of reduced expressions of

TCP+REC.

In the following, we made use of van Glabbeek (1994; 1997) and Baeten et al. (1991) –

the translation of CSP external choice is due to Pedro D’Argenio; a similar translation

has also been developed by Rob van Glabbeek.

We consider a subtheory corresponding to CCS (Milner 1989a). This is done by omitting

the signature elements 1, ·, ‖ , | . Next, we specialise the parameter set A by separating it

into three parts: a set of names A, a set of co-names Ā and a set of communications

Ac such that for each a ∈ A there is exactly one ā ∈ Ā and exactly one ac ∈ Ac.

The communication function γ is specialised so that the only defined communications

are γ(a, ā) = γ(ā, a) = ac, and then the CCS parallel composition operator | CCS can be

defined by the formula

x | CCS y
def
= τAc

(x ‖ y).

We consider a subtheory corresponding to ACPτ (Bergstra and Klop 1985). This is

done by defining, for each a ∈ A, a new constant a by a = a.1, and then omitting the

signature elements 1, ., ρf .

We consider a subtheory corresponding to CSP (Hoare 1985). The non-deterministic

choice operator � can be defined by

x � y
def
= τ.x + τ.y.

As far as the CSP parallel composition operator ‖S is concerned, we specialise the parameter

set A into two parts: a set of names A and a set of communications Ac such that for

each a ∈ A there is exactly one ac ∈ Ac. The communication function γ is specialised

so that the only defined communications are γ(a, a) = ac, and, furthermore, we use the

renaming function f that has f(ac) = a. Then x ‖S y, where x and y are processes using

names over A only and S ⊆ A, can be defined by the formula

x ‖S y
def
= ρf(∂S∪(Ac−Sc)(x ‖ y))

where we use ‘Sc’ to denote the set of names {ac | a ∈ S} and ‘−’ to express set difference.

Notice that just adopting the naive communication function γ(a, a) = a would not work

because, for example, if we try to translate a.x ‖{a} a.y into a.x ‖ a.y, we can erroneously

do independent a moves; if, instead, we consider ∂{a}(a.x ‖ a.y), the synchronisation on

a is erroneously blocked. As far as the CSP external choice operator � is concerned, we

further specialise the set of names A into three parts: a set of names B, and two sets of

names B1 and B2 such that for each a ∈ B there is exactly one name a1 ∈ B1 and one

name a2 ∈ B2. The communication function γ is not changed (no further communication

is added). Finally, we use the renaming functions f′ and f′′ that have f′(a1) = a and

f′′(a2) = a. Then x� y, where x and y are processes using names over B only, can be
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defined by the formula

x� y
def
= ρf′∪f′′((ρf′−1 (x) ‖ ρf′′−1 (y)) ‖B1∪B2

(B1
∗1 + B2

∗1))

where, given a set of names B and a process x, ‘B∗x ’ stands for〈
X |

{
X = x +

∑
a∈B

a.X

}〉
.

Note that the definition above does not work for versions of � (like, for example, the one

given in Baeten et al. (2008)) that take the distinction between successful and unsuccessful

termination into account.

5. A generic process algebra for finite behaviours

In order to restrict to a setting of processes with a finite-state model only, we now consider

a restricted syntax for constants 〈X|E〉 that guarantees that transition systems generated

by the operational rules are indeed finite state. The restricted syntax is based on the

requirement that E is an essentially finite-state recursive specification according to the

definition we present below.

We consider the process algebra TCP+RECf obtained by extending the signature of

TCP with essentially finite-state recursive specifications; that is, we consider closed terms

in the TCP+REC syntax, where we additionally require that every recursive specification

is essentially finite state.

Definition 5.1. A free variable X is serial in a term t of TCP + REC if every free occurrence

of X is in the scope of one of the operators ‖, ‖ , | , ∂H , τI , ρf , or in the left-hand side of

the operator ·.

Definition 5.2. Let E be a recursive specification over a set of variables V . We say E is

essentially finite state if E has only finitely many equations and all variables are serial in

the right-hand sides of all equations of E. We say E is regular if E has only finitely many

equations and each equation is of the form

X =
∑

1�i�n

αi.Xi + {1},

where an empty sum stands for 0 and the 1 summand is optional, for some n ∈ IN, αi ∈
A ∪ {τ}, Xi ∈ V . It is immediate that every regular recursive specification is essentially

finite state.

Now it is a well-known fact that each finite-state process can be described by a

regular recursive specification. Conversely, in the following proposition we show that

every process specified by a term including essentially finite-state recursive specifications

only, has finitely many states in the transition system generated by the operational rules.

In the proof of the proposition we make use of the fact that, according to the Fresh

Atom Principle (Baeten and van Glabbeek 1987), we can always introduce a fresh action

r by extending with r the parameters A and γ of the theory under consideration (γ can,
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possibly, be extended to include communication with r): for terms over the signature with

the previous parameters A and γ (that is, where the new action r does not appear) we

have unchanged transition systems/bisimilarities/equalities. In this paper we assume that

γ remains unchanged when we introduce fresh actions.

Proposition 5.3. Let t be a closed term such that every recursive specification E included

in t is essentially finite state. The transition system for t generated by the operational

rules has only finitely many states.

Proof. We begin by defining c(t) to be the closed term obtained from any (possibly

open) term t by replacing each free variable X occurring in t with aX.0, where aX is a

fresh action.

We now show by structural induction over the syntax of (possibly open) terms t that if

t is such that every recursive specification E included in t is essentially finite state, then

c(t) generates a finite-state transition system.

The base cases of the induction are:

— If t ≡ 0, then c(t) = 0 is obviously finite state.

— If t ≡ 1, then c(t) = 1 is obviously finite state.

— If t ≡ X, then c(t) = aX.0 is obviously finite state.

The inductive cases are:

— If t ≡ a.t′ or t ≡ τ.t′ or t ≡ t′ + t′′ or t ≡ t′ · t′′ or t ≡ t′ ‖ t′′ or t ≡ t′‖ t′′ or t ≡ t′ | t′′ or

t ≡ ∂H (t′) or t ≡ τI (t
′) or t ≡ ρf(t

′), then c(t) is obviously finite state by an inductive

argument over t′ and t′′.

— If t ≡ 〈X|E ′〉, then c(t) is proved to be finite state as follows. Given E = E(V ) such

that 〈X|E〉 ≡ c(〈X|E ′〉) and assuming that the set of states in the transition system

generated by a term t′ is denoted by S(t′), we show that

S(〈X|E〉) ⊆ {〈X|E〉} ∪ ren

( ⋃
Y ∈V

S(c(tY ))

)

where ren(t′) is a renaming function for a term t′ that for any Y ∈V replaces every

occurrence of aY .0 with 〈Y |E〉 (here we use the obvious extension of function ren to a set

of terms where such a renaming is applied to every term in the set). Once we have proved

that the above statement holds, c(t) is obviously finite state by an inductive argument

over terms tY , for every Y ∈ V .

In the following we prove that the above inclusion does indeed hold. First we assume

that in 〈X|E〉 bound variables inside E are α-renamed in such a way that there is no

recursion operator binding a variable by using a name that is already bound by an outer

operator. Then we show, by induction on the height of the inference tree by which any

transition s
α→ s′ is derived with the operational semantics, that:

— If there is no Y ∈ V such that 〈Y |E〉 is included in s, then there is no Y ∈ V such

that 〈Y |E〉 is included in s′.

— If there is no Y ∈ V such that 〈Y |E〉 is included in s inside the scope of one of the

operators ‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator ·, then there is
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no Y ∈ V such that 〈Y |E〉 is included in s′ inside the scope of one of the operators

‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator ·.
— If for every Y ∈ V the occurrence of 〈Y |E ′′〉 in s implies E ′′ = E, then for every

Y ∈ V the occurrence of 〈Y |E ′′〉 in s′ implies E ′′ = E.

This can be proved easily by analysis of each operational rule by supposing that the above

statement holds for the premise and observing that it holds for the transition derived in

the conclusion.

Then, by induction on the length of a derivation sequence from 〈X|E〉 to any state u,

we have that the following holds true. u ∈ S(〈X|E〉) implies:

— There is no Y ∈ V such that 〈Y |E〉 is included in u inside the scope of one of the

operators ‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator ·.
— For every Y ∈ V , the occurrence of 〈Y |E ′′〉 in u implies E ′′ = E.

Now, given any transition s
α→ s′, we say that s

α→ s′ can be inferred without E if and

only if s
α→ s′ can be inferred by using no operational rule of any 〈Y |E〉, with Y ∈ V .

Given any transition s
α→ s′ that cannot be inferred without E, with s ∈ S(〈X|E〉), we say

that s
α→ s′ can be inferred by using 〈Y |E〉 if and only if s

α→ s′ can be inferred in such a

way that the operator 〈Z |E〉, with Z ∈ V , whose operational rule is applied at the highest

depth in the inference (distance from the derivation of s
α→ s′) is such that Z = Y .

Note that, the latter is well defined because, for the properties above that characterise
states in S(〈X|E〉), it is not possible to infer s

α→ s′ by means of multiple operational rules

for operators 〈Y |E〉, with Y ∈ V , that are applied in different branches of the inference.

We now conclude the proof by showing that given u ∈ S(〈X|E〉), either u ≡ 〈X|E〉, or

there exists t′ such that c(t′) is derivable from c(tY ) for some Y ∈ V and u = ren(c(t′)).

Assuming that u 
≡ 〈X|E〉, then given the non-empty derivation sequence from 〈X|E〉
to u, we consider the last transition s

α→ s′ in such a sequence such that s
α→ s′ cannot be

inferred without E (we are sure that such a transition exists because the first transition

in the derivation sequence is of this kind). So, let us consider a variable Y such that

s
α→ s′ can be inferred by using 〈Y |E〉. It is easy to see that there exists t′ such that c(t′)

is derivable from c(tY ) and u = ren(c(t′)). This is because:

— s′ is such that ren(c(tY ))
α→ s′ and ren(c(tY ))

α→ s′ can be inferred without E. This

follows from the fact that s
α→ s′ can be inferred by using 〈Y |E〉 and for the properties

above that characterise states in S(〈X|E〉): that is, 〈Y |E〉 is allowed to occur inside s

only in the scope of + or recursion operators or in the right-hand side of · operators.

— Given any t1, v
′, α′ such that var(ren(c(t1))

α′

→ v′) can be inferred without E, there exists

t′1 such that v′ = ren(c(t′1)) and c(t1)
α′

→ c(t′1). This follows by induction on the height

of the inference tree of transitions var(ren(c(t1))
α′

→ v′) inspecting each operational

rule.

The syntactical restriction that we propose on recursive specifications ensures that the

operational rules generate only finitely many states. But, even if the operational rules

generated infinitely many states, it can still be the case that there are only finitely many

states modulo bisimilarity. For instance, for the recursive equation X = τ{a}(a.X), a

new abstraction operator is generated at each iteration, but all the generated terms are
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bisimilar since the abstraction operator is idempotent. Of course, in other cases, such

as for X = (a.1) + (b.X · X), we do obtain infinitely many terms that are not bisimilar.

However, it should be noted that the axioms we will present in Section 6 remain valid

even if recursive specifications that are not essentially finite state are considered (thereby

obtaining a model of possibly infinite transition systems modulo bisimilarity).

In the following we present a proposition that shows that the definition of essentially

finite state does not unnecessarily disregard terms that generate finite-state transition

systems, but first we need to introduce some machinery related to the representation of

contexts, together with a technical lemma.

Definition 5.4. A context is a term tẊ that includes a single occurrence of the free variable

X (and possibly other free variables). A context tẊ is a closed context if X is the only

free variable in tẊ . A context tẊ is unfolded if X does not occur in tẊ in the scope of an

operator 〈Y |E〉 for any Y , E. We use tẊ(t′) to stand for tẊ{t′/X} and tn
Ẋ
, with n � 0 to

stand for the term inductively defined as follows:

t0
Ẋ

≡ X

tn
Ẋ

≡ tẊ
(
tn−1
Ẋ

)
for n > 0.

A static context is a context such that X may only occur in the scope of ‖, ∂H , τI , ρf
operators or in left-hand side of operators ·.

Note that a closed static context is obviously unfolded. In the following we use w to

range over action sequences, that is, non-empty strings of actions α ∈ A ∪ {τ}. We also

use w.t as a shorthand notation for a sequence of prefixes generating a path labelled with

w that leads to t, that is, w.t ≡ α.t if w = α, and w.t ≡ α.(w′.t) if w = αw′. Finally, we

implicitly assume that when we introduce some fresh action r, the renaming functions f

occurring inside terms under consideration leave r unchanged, that is, they are such that

f(r) = r.

Definition 5.5. Let tẊ , t
′
Ẋ

be closed contexts with tẊ unfolded, w be an action sequence

and α ∈ A ∪ {τ}. We say that t′
Ẋ

is an α-derivative of tẊ for w, if and only if, considering

a fresh action r, we have tẊ(w.r.0)
α→ t′

Ẋ
(r.0) and t′

Ẋ
(r.0)

r→.

Definition 5.6. Let tẊ be a static context. We define the static context free(tẊ) as the

unique (up to renaming of non-X free variables) static context t′
Ẋ

such that:

— all subterms of t′
Ẋ

that do not include X are free variables;

— for every free variable Y of t′
Ẋ

a single occurence of Y is included; and

— for some substitution θ of the non-X free variables in t′
Ẋ

we have t′
Ẋ
θ ≡ tẊ .

Lemma 5.7. Let tẊ be a closed unfolded context and v be a closed term. If tẊ(v · 0)
α→ t′

for some α ∈ A ∪ {τ} and closed term t′, then at least one of the following conditions is

true:

1. There exist a closed context t′
Ẋ

and a closed term v′ that is reachable from v via a path

labelled by some sequence of actions w, with t′ ≡ t′
Ẋ
(v′ · 0) and t′

Ẋ
is an α-derivative of

tẊ for w, such that:
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(a) t′
Ẋ

is static and:

— if tẊ has X in the scope of one of the operators ‖, ‖ , | , ∂H , τI , ρf or in left-hand

side of the operator ·, then t′
Ẋ


≡ X;

— if tẊ is also static, then free(t′
Ẋ
) coincides up to renaming of non-X free variables

with free(tẊ).

(b) For any closed terms s, s′ such that there exists a path from s to s′ labelled by w,
we have tẊ(s)

α→ t′
Ẋ
(s′).

2. There exists a closed unfolded context t′
Ẋ
, with t′ ≡ t′

Ẋ
(v · 0) and, considering a fresh

action r, we have tẊ(r.0)
α→ t′

Ẋ
(r.0). Moreover, the following two properties are satisfied:

— If tẊ is static or, for some static context sẊ and closed term u, tẊ ≡ sẊ | u or

tẊ ≡ u | sẊ , then t′
Ẋ

is static.

— If X occurs in t′
Ẋ

in the scope of a + operator, then X occurs in tẊ in the scope of

a + operator.

3. X occurs in tẊ in the scope of a + operator and, considering a fresh action r, we have

tẊ(r.0)
α→ t′.

Moreover, if tẊ(v · 0) ↓, then X occurs in tẊ in the scope of a + operator and, considering

a fresh action r, we have tẊ(r.0) ↓.

Proof. The proof is by induction on the height of the inference tree by which transitions

tẊ(v · 0)
α→ t′ of tẊ(v · 0) for any closed unfolded context tẊ and closed term v, or its

termination capability, are inferred.

As the base step of the induction, we consider the cases tẊ ≡ X and tẊ ≡ α.sẊ , for

some context sẊ – the lemma is obvious in these cases (Conditions 1 and 2, respectively,

obviously hold).

The inductive step is divided into cases depending on the topmost operator in tẊ .

We will just develop the case tẊ ≡ sẊ |u for any sẊ and u (tẊ ≡ u|sẊ is symmetric) as this

is the most intricate one – the proof for the other operators is an easy verification of the

properties. Note that the case tẊ ≡ 〈Y |E〉, for any Y and E, cannot be obtained because

tẊ is unfolded. Furthermore, in the case tẊ ≡ sẊ · u, the statement about the termination

capability of tẊ(v ·0) in the lemma is needed to derive the fact that sẊ(v ·0) ·u α→ t′ satisfies

Condition 3 in the case sẊ(v · 0) ↓ and u
α→ t′.

From sẊ(v · 0) | u α→ t′ we have three possible cases corresponding to the operational

rules for the | operator that yield an outgoing transition:

— sẊ(v · 0)
τ→ s′′ and s′′ | u α→ t′.

By induction, sẊ(v · 0)
τ→ s′′ must satisfy one of the conditions of the lemma, thus we

have three cases, which are numbered according to the condition satisfied.

1. There are s′′
Ẋ

and v′′ such that s′′ ≡ s′′
Ẋ
(v′′ · 0) and s′′

Ẋ
is a τ-derivative of sẊ for some

w′ labelling a path from v to v′′. Hence w′ is such that sẊ(w′.r.0)
τ→ s′′

Ẋ
(r.0) and

s′′
Ẋ
(r.0)

r→.

By induction, s′′
Ẋ
(v′′ ·0) |u α→ t′ must satisfy one of the conditions of the lemma, thus

we have three subcases, which are numbered according to the condition satisfied.
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1.1. There are t′
Ẋ

and v′ such that t′ ≡ t′
Ẋ
(v′ · 0) and t′

Ẋ
is an α-derivative of

s′′
Ẋ

| u for some w′′ labelling a path from v′′ to v′. Hence w′′ is such that

s′′
Ẋ
(w′′.r.0) | u α→ t′

Ẋ
(r.0) and t′

Ẋ
(r.0)

r→.

By observing that sẊ(w′w′′.r.0)
τ→ s′′

Ẋ
(w′′.r.0), we conclude that sẊ(v · 0) | u α→ t′

satisfies Condition 1 (with w = w′w′′).

1.2. There is t′
Ẋ

such that t′ ≡ t′
Ẋ
(v′′ ·0) and, considered a fresh action r, s′′

Ẋ
(r.0) |u α→

t′
Ẋ
(r.0).

By observing that t′
Ẋ

is static because s′′
Ẋ

is static, we conclude that sẊ(v·0)|u α→ t′

satisfies Condition 1 (with w = w′ and v′ ≡ v′′).

1.3. This case cannot be obtained because s′′
Ẋ

is static.

2. There is s′′
Ẋ

such that s′′ ≡ s′′
Ẋ
(v · 0) and, considering a fresh action r, we have

sẊ(r.0)
τ→ s′′

Ẋ
(r.0).

By induction, s′′
Ẋ
(v · 0) | u α→ t′ must satisfy one of the conditions of the lemma, thus

we have three subcases, which are numbered according to the condition satisfied.

2.1. There are t′
Ẋ

and v′ such that t′ ≡ t′
Ẋ
(v′ ·0) and t′

Ẋ
is an α-derivative of s′′

Ẋ
|u for

some w labelling a path from v to v′. Hence w is such that s′′
Ẋ
(w.r.0) |u α→ t′

Ẋ
(r.0)

and t′
Ẋ
(r.0)

r→.

By observing that sẊ(w.r.0)
τ→ s′′

Ẋ
(w.r.0), we conclude that sẊ(v · 0) | u α→ t′

satisfies Condition 1.

2.2. There is t′
Ẋ

such that t′ ≡ t′
Ẋ
(v · 0) and, considering a fresh action r, we have

s′′
Ẋ
(r.0) | u α→ t′

Ẋ
(r.0).

By observing that s′′
Ẋ

is static whenever sẊ is static, we conclude that sẊ(v·0)|u α→
t′ satisfies Condition 2.

2.3. Considering a fresh action r, we have s′′
Ẋ
(r.0) | u α→ t′.

By observing that X occurs in sẊ in the scope of a + operator because X

occurs in s′′
Ẋ

in the scope of a + operator, we conclude that sẊ(v · 0) | u α→ t′

satisfies Condition 3.

3. Considering a fresh action r, we have sẊ(r.0)
τ→ s′′.

We can immediately conclude that sẊ(v · 0) | u α→ t′ satisfies Condition 3.

— u
τ→ u′′ and sẊ(v · 0) | u′′ α→ t′.

By an easy verification of the properties, we conclude that sẊ(v · 0) | u α→ t′ satisfies the

same condition as that satisfied by sẊ(v · 0) | u′′ α→ t′.

— sẊ(v · 0)
a→ s′, u

b→ u′, γ(a, b) = α and t′ ≡ s′ ‖ u′.

By an easy verification of the properties, we conclude that sẊ(v · 0) | u α→ t′ satisfies the

same condition as that satisfied by sẊ(v · 0)
a→ s′.

From sẊ(v · 0) | u ↓, we have three possible cases, which correspond to the operational

rules for the | operator that yield a terminating term, and are completely analogous to

the three cases considered above for transitions: we only need to consider termination

↓ rather than a,b or α outgoing transitions. In particular, for the first case considered
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above, we have the same three cases corresponding to the condition that is satisfied: in

the case of Conditions 1 and 2, we follow a similar argument to that in subcase 3 (thus

Condition 1 cannot be obtained).

From the above lemma we have the following direct consequence. Given an unfolded

context sẊ , for any action α ∈ A ∪ {τ} and context s′
Ẋ

such that s′
Ẋ

is an α-derivative of

sẊ for some sequence of actions w, we have that (a) and (b) of the lemma, where we take

tẊ ≡ sẊ and t′
Ẋ

≡ s′
Ẋ
, hold true. This is obtained from the lemma by considering a fresh

action r′ and by taking v to be w.r′.0 and tẊ to be sẊ and t′ to be s′
Ẋ
((r′.0) · 0). Since the

second and third conditions cannot hold in this case (the second one because t′
r′

→ and t′
Ẋ

cannot syntactically include r′ because tẊ does not; the third one because t′ syntactically

includes r′ while tẊ does not), the first one must hold. Moreover, from

— t′
Ẋ
(v′ · 0)

r′

→ (because t′ ≡ s′
Ẋ
((r′.0) · 0) and we take t′

Ẋ
(v′ · 0) ≡ t′),

— the fact that t′
Ẋ

does not syntactically include r′ (because tẊ does not), and

— the fact that v′ is reachable from w.r′.0,

we derive v′ ≡ r′.0, hence, also, t′
Ẋ

≡ s′
Ẋ
.

Definition 5.8. Let t, t′ be open terms. t′ is a one-step unfolding of t if t has a subterm

〈Y |E〉, for some Y and E, and t′ is obtained from t by replacing it with 〈tY |E〉. t′ is a

multi-step unfolding of t if t′ ≡ t or t′ is a one-step unfolding of t′′ and t′′ is a multi-step

unfolding of t. Let tẊ , t
′
Ẋ

be closed contexts and t be a closed term. We say that t′
Ẋ

is an

unfolding of tẊ with respect to t if there exists an unfolded context t′′
Ẋ

and a variable Y

such that t′′
Ẋ

{X/Y } is a multi-step unfolding of tẊ and t′
Ẋ

= t′′
Ẋ

{t/Y }.

Definition 5.9. An action α (possibly τ) is not restricted by a context tẊ if, for every

substitution θ of the non-X free variables in tẊ , there exists α′ (possibly τ) and a closed

context t′
Ẋ

such that t′
Ẋ

is an α′-derivative of tẊθ for α. We say that a set of actions

S ⊆ A ∪ {τ} is not restricted by a context tẊ if for any α ∈ S such a condition holds true.

Proposition 5.10. Let t be a closed term that includes a recursive specification E that has

finitely many equations but is not essentially finite state, that is, some occurrence of some

variable Y ∈ V (E) violates the seriality condition. Then t has infinitely many states if:

1. There exists a (possibly zero-length) path from t to tẊ(〈Y |E ′〉) for some E ′ obtained

from E by substitution of its free variables (if present) and for some context tẊ having

X in the scope of one of the operators ‖, ‖ , | , ∂H , τI , ρf or in left-hand side of the

operator · and tẊ is such that there exists an α transition from tẊ(〈Y |E ′〉) to t′
Ẋ
(t′),

where t′
Ẋ

is an α-derivative of an unfolding of tẊ with respect to 〈Y |E ′〉 for some

action sequence labelling a path that goes from 〈Y |E ′〉 to t′.

2. There exists a (possibly zero-length) path labelled over S ⊆ A ∪ {τ} from t′ to

tẊ(〈Y |E ′〉).
3. For any n � 1, S ∪ {α} is not restricted by the static context free(t′n

Ẋ
).

Proof. We show by induction on n that for every n � 1 there is a path from t to a state

free(t′n
Ẋ
)(t′)θ for some substitution θ of its free variables. Note that by Lemma 5.7, t′

Ẋ
is
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〈X|E ∪̃ {Y = t}〉 = 〈〈X|E〉|Y = t〉 if X 
= Y Dec

〈X|X = t〉 = 〈t|X = t〉 Unf

s = t{s/X} ⇒ s = 〈X|X = t〉 if X = t guarded Fold

〈X|X = X + t〉 = 〈X|X = t〉 Ung

〈X|X = τ.(X + t) + s〉 = 〈X|X = τ.(t + s)〉 WUng

τI (〈X|X = t〉) = 〈X|X = τI (t)〉 if X is serial in t Hid

Fig. 4. Axioms for recursion.

static and includes at least one operator because it is an α-derivative of an unfolding of

tẊ . Therefore, proving this yields the conclusion that t has infinitely many states.

If n = 1, we have directly from Assumption 1 above that there is a path from t to t′
Ẋ
(t′),

where, by definition, t′
Ẋ

is obtained from free(t′
Ẋ
) by substitution of its free variables.

In the case n > 1 we resort to the induction hypothesis, that is, we assume that there

is a path from t to a state free(t′n−1
Ẋ

)(t′)θ for some substitution θ of its free variables. We

have:

— from Assumption 2 above, there is a path labelled over S ⊆ A ∪ {τ} from t′ to

tẊ(〈Y |E ′〉),
— from Assumption 1 above, there is a transition α from tẊ(〈Y |E ′〉) to t′

Ẋ
(t′), and

— from Assumption 3 above, S ∪ {α} is not restricted by the static context free(t′n−1
Ẋ

).

So, by Lemma 5.7 (a) and (b), there is a path from free(t′n−1
Ẋ

)(t′)θ to free(t′n−1
Ẋ

)(t′
Ẋ
(t′))θ′

for some substitution θ′. We therefore conclude that there exists a substitution θ′′ such

that there is a path from t to a state free(t′n
Ẋ
)(t′)θ′′.

Of course, it may be the case that for terms t considered in the proposition above, the

transition system modulo bisimilarity that we produce has only finitely many states.

6. An axiomatisation that is complete for finite behaviours

We will now present a sound axiomatisation that is ground complete for the process

algebra TCP+RECf . The axioms in Figure 2 together with the axioms in Figure 4 form

such an axiomatisation. In the axioms of Figure 4, the symbol ∪̃ stands for disjoint union.

Note that the axioms in Figure 4 are axiom schemes: we have these axioms for each

possible term s, t.

The axiom Dec is used to decompose recursive specifications E made up of multiple

(finitely many) equations into several recursive specifications made up of single equations.

For example the process

〈X | {X = a.X + b.Y , Y = c.X + d.Y }〉

is turned into

〈X | {X = a.X + b.〈Y |{Y = c.X + d.Y }〉}〉.
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Since, thanks to the decomposition axiom, we only deal with recursive specifications that

are in the form 〈X|{X = t}〉, we denote them just using 〈X|X = t〉.
The unfolding axiom Unf is Milner’s standard one (corresponding to the Recursive

Definition Principle in ACP): it states that the constant 〈X|E〉 is a solution of the

recursive specification E. Thus, each recursive specification has a solution. The folding

axiom (Fold) is also Milner’s standard one (corresponding to the Recursive Specification

Principle in ACP): it states that if y is a solution for X in E, and E is guarded, then

y = 〈X|E〉.
Axioms Ung, WUng and Hid are used to deal with unguarded specifications. Ung,

which is the same as in Milner’s axiomatisation, is the axiom that deals with variables

not in the scope of any prefix operator (fully unguarded recursion). On the other hand,

WUng and Hid are needed to get rid of weakly unguarded recursion.

WUng gets rid of weakly unguarded recursion arising purely from prefixing and

summation. It is easy to see that it replaces the two axioms of Milner:

〈X|X = τ.X + t〉 = 〈X|X = τ.t〉
〈X|X = τ.(X + t) + s〉 = 〈X|X = τ.X + t + s〉

The first is obtained from WUng by taking t = 0. The second is obtained from WUng as

follows:

〈X|X = τ.(X + t) + s〉 = 〈X|X = τ.(t + s)〉

by directly applying WUng and then

〈X|X = τ.(t + s)〉 = 〈X|X = τ.X + t + s〉

by applying WUng, where we take s = t + s and t = 0.

As explained in the introduction, the axiom Hid is used to get rid of weak unguardedness

generated by the hiding operator. It allows us to turn a term into a form for which the

standard axioms for weak unguardedness can be used (see the proof of Proposition 6.5

below). Notice that the ‘X serial in t’ condition in axiom Hid is needed for it to be sound.

This is because if X occurs inside an operator like relabelling or parallel that can change

the type of the actions in I that X executes (so that their type is no longer in I), then

such actions are hidden by 〈X|X = τI (t)〉 but not by τI (〈X|X = t〉). For instance, if f

is a relabelling function that turns a into b and I = {a}, τI (〈X|X = a.1 + ρf(X)〉) is not

equivalent to 〈X|X = τI (a.1+ρf(X))〉, because the former can do a b transition, while the

latter cannot.

Note that if we want to derive a ground-complete axiomatisation in a setting where

no construct is added for recursion, as is usually done in the context of the ACP process

algebra (so we just have closed terms over the syntax of TCP and just consider sets of

recursion equations over this syntax), then in order to achieve the unguardedness removal

effect that we obtain here by our axiom Hid (plus the WUng axiom), but in the different

context of branching bisimilarity, we have to consider the much more complex set of

conditional equations called CFAR (Cluster Fair Abstraction Rule) (Vaandrager 1986),

which we have already mentioned in Section 2.
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Proposition 6.1. The axiomatisation formed by the axioms in Figures 2 and 4 is sound

for TCP+REC and the model of transition systems modulo observational congruence

generated by the rules in Figures 1 and 3.

Proof. Most of the axioms are standard. We provide a full proof for the new axiom

τI (〈X|X = t〉) = 〈X|X = τI (t)〉 if X is serial in t. (Hid)

We show that

β = {(τI (〈s|X = t〉), τI (〈s|X = τI (t)〉)) | s contains at most X free and X is serial in s}

satisfies the conditions:

— If τI (〈s|X = t〉) α→ u, then for some u′, u′′

τI (〈s|X = τI (t)〉)
α→ u′′, u′′↔wu

′ and (u, u′) ∈ β.

— If τI (〈s|X = t〉) ↓, then τI (〈s|X = τI (t)〉) ↓.

— And symmetrically for a move and the termination capabilities of τI (〈s|X = τI (t)〉).

This implies that β is a weak bisimulation up to ↔w (see the revised version of

Milner (1989a) as corrected by Sangiorgi and Milner (1992)), hence β ⊆ ↔w . From

this result it follows that τI (〈X|X = t〉)↔rw〈X|X = τI (t)〉 because τI (〈X|X = t〉) α→ u

if and only if τI (〈t|X = t〉) α→ u and, similarly, 〈X|X = τI (t)〉
α→ u if and only if

〈τI (t)|X = τI (t)〉 ≡ τI (〈t|X = τI (t)〉)〉
α→ u.

In the following we prove that β satisfies the condition above by induction on the height

of the inference tree by which α transitions of τI (〈s|X = t〉) or its termination capability

are inferred.

The base cases of the induction (distinguished by the form of s) are:

— If s ≡ 0 or s ≡ 1, the above conditions hold trivially.

— If s ≡ α.s′, then τI (〈s|X = t〉) ≡ τI (α.(〈s′|X = t〉)) and τI (〈s|X = τI (t)〉) ≡ τI (α.(〈s′|X =

τI (t)〉)).
We have the following two cases for transitions α:

– τI (α.(〈s′|X = t〉)) τ→ τI (〈s′|X = t〉) and α ∈ I ∪ {τ}.
We have τI (α.(〈s′|X = τI (t)〉))

τ→ τI (〈s′|X = τI (t)〉) directly, and the targets are

related by β.

– τI (α.(〈s′|X = t〉)) α→ τI (〈s′|X = t〉) and α /∈ I ∪ {τ}.
We have τI (α.(〈s′|X = τI (t)〉))

α→ τI (〈s′|X = τI (t)〉) directly, and the targets are

related by β.

For the termination capability, we have that τI (α.(〈s′|X = t〉)) ↓ obviously cannot hold

because α.(〈s′|X = t〉) 
↓.

For the induction step we have the following cases based on the form of s:
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— If s ≡ X, then τI (〈s|X = t〉) ≡ τI (〈X|X = t〉) and τI (〈s|X = τI (t)〉) ≡ τI (〈X|X = τI (t)〉).
Since τI (〈X|X = t〉) α→ u, we must have α /∈ I and 〈X|X = t〉 α′

→ v with u ≡ τI (v)

where α′ = α if α 
= τ; α′ ∈ I otherwise. Furthermore, we must also have 〈t|X = t〉 α′

→ v

by a shorter inference. As a consequence, we derive τI (〈t|X = t〉) α→ u. By induction,

we derive τI (〈t|X = τI (t)〉)
α→ u′′ with u′′↔wu

′ and (u, u′) ∈ β. As a consequence,

〈X|X = τI (t)〉
α→ u′′ and, since α /∈ I , we have τI (〈X|X = τI (t))〉

α→ τI (u
′′). Since u′′ has

hiding as the outermost operator (because it is derived by a transition from a term

that has hiding as the outermost operator), we also have that τI (u
′′) is isomorphic to

u′′ (hence they are weak equivalent).

For the termination capability, we have, by performing the same steps as for the case

of transitions, that τI (〈X|X = t〉) ↓ requires 〈t|X = t〉 ↓, hence τI (〈t|X = t〉) ↓ and, by

induction, τI (〈t|X = τI (t)〉) ↓.

— If s ≡ s′ + s′′, then τI (〈s|X = t〉) ≡ τI (〈s′|X = t〉 + 〈s′′|X = t〉) and τI (〈s|X = τI (t)〉) ≡
τI (〈s′|X = τI (t)〉 + 〈s′′|X = τI (t)〉).
Since τI (〈s′|X = t〉 + 〈s′′|X = t〉) α→ u, we must have α /∈ I and 〈s′|X = t〉 + 〈s′′|X =

t〉 α′

→ v with u ≡ τI (v) where α′ = α if α 
= τ; α′ ∈ I otherwise. Now we have two cases:

– If 〈s′|X = t〉 α′

→ v, then τI (〈s′|X = t〉) α→ u and (by induction) τI (〈s′|X = τI (t)〉)
α→ u′′

with u′′↔wu
′ and (u, u′) ∈ β. Therefore, we must have 〈s′|X = τI (t)〉

α′′

→ v′′ with

u′′ ≡ τI (v
′′), and α′′ = α if α 
= τ and α′′ ∈ I otherwise. As a consequence, 〈s′|X =

τI (t)〉 + 〈s′′|X = τI (t)〉
α′′

→ v′′ and, finally, τI (〈s′|X = τI (t)〉 + 〈s′′|X = τI (t)〉)
α→ u′′.

– If 〈s′′|X = t〉 α′

→ v, the result is derived in a similar way.

For the termination capability, the proof follows the same steps as for transitions.

— If s ≡ 〈Y |Y = s′〉, with Y 
= X, then τI (〈s|X = t〉) ≡ τI (〈Y |Y = 〈s′|X = t〉〉) and

τI (〈s|X = τI (t)〉) ≡ τI (〈Y |Y = 〈s′|X = τI (t)〉〉).
Since τI (〈Y |Y = 〈s′|X = t〉〉) α→ u, we must have α /∈ I and 〈Y |Y = 〈s′|X = t〉〉 α′

→ v

with u ≡ τI (v) where α′ = α if α 
= τ; α′ ∈ I otherwise. Hence, we must have

〈〈s′|X = t〉|Y = 〈s′|X = t〉〉 α′

→ v. As a consequence, τI (〈〈s′|X = t〉|Y = 〈s′|X = t〉〉) ≡
τI (〈〈s′|Y = s′〉|X = t〉) α→ u. By induction, we have τI (〈〈s′|Y = s′〉|X = τI (t)〉)

α→ u′′

with u′′↔wu
′ and (u, u′) ∈ β. Therefore, we must have 〈〈s′|Y = s′〉|X = τI (t)〉 ≡

〈〈s′|X = τI (t)〉|Y = 〈s′|X = τI (t)〉〉 α′′

→ v′′ with u′′ ≡ τI (v
′′), and α′′ = α if α 
= τ;

α′′ ∈ I otherwise. As a consequence, 〈Y |Y = 〈s′|X = τI (t)〉〉 α′

→ v′′ and, finally,
τI (〈Y |Y = 〈s′|X = τI (t)〉〉) α→ u′′.

For the termination capability, the proof follows the same steps as for transitions.

— If s ≡ s′ ·s′′, then τI (〈s|X = t〉) ≡ τI (s
′ · 〈s′′|X = t〉) and τI (〈s|X = τI (t)〉) ≡ τI (s

′ · 〈s′′|X =

τI (t)〉) because X cannot occur inside s′.

Since τI (s
′ · 〈s′′|X = t〉) α→ u, we must have α /∈ I and s′ · 〈s′′|X = t〉 α′

→ v with u ≡ τI (v)

where α′ = α if α 
= τ; α′ ∈ I otherwise. Now we have two cases:

– If s′ α′

→ z with v = z ·〈s′′|X = t〉, we have directly that s′ ·〈s′′|X = τI (t)〉
α′

→ z ·〈s′′|X =

τI (t)〉, hence τI (s
′ · 〈s′′|X = τI (t)〉)

α→ τI (z · 〈s′′|X = τI (t)〉)
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– If s′ ↓ and 〈s′′|X = t〉 α′

→ v, then τI (〈s′′|X = t〉) α→ u and (by induction) τI (〈s′′|X =

τI (t)〉)
α→ u′′ with u′′↔wu

′ and (u, u′) ∈ β. Therefore, we must have 〈s′′|X = τI (t)〉
α′′

→
v′′ with u′′ ≡ τI (v

′′), and α′′ = α if α 
= τ; α′′ ∈ I otherwise. As a consequence,

〈s′′|X = τI (t)〉
α′′

→ v′′ and, finally, τI (〈s′′|X = τI (t)〉)
α→ u′′.

For the termination capability, the proof follows the same steps as for transitions.

— If s ≡ s′ ‖ s′′ or s ≡ s′‖ s′′ or s ≡ s′ | s′′ or s ≡ ∂H (s′) or s ≡ τI (s
′) or s ≡ ρf(s

′), the

condition trivially holds because X cannot occur inside s′ or s′′.

A completely symmetric inductive proof is performed when we start from α transitions

and the termination capability of τI (〈s|X = τI (t)〉) in the conditions above.

Notice that the axioms are actually valid over TCP+REC, and hence also on terms

that contain recursive specifications that are not essentially finite state (the axiom Hid

contains a recursive specification that is not essentially finite state).

Before we finally present the completeness result, we first need to define normal forms

and to present two technical lemmas.

Definition 6.2. Normal forms are terms made up of only 0,1,X,a.t′,τ.t′,t′ + t′′ and 〈X|E〉,
where E is guarded and contains one equation only.

Lemma 6.3. Any closed normal form t can be turned by the axiomatisation in Figures 2

and 4 into the form ∑
1�i�n

αi.ti + {1}

where
αi→ ti, with 1 � i � n, are the outgoing transitions of t (no outgoing transitions

corresponds to the sum being 0) and 1 is present if and only if t ↓, according to the model

of transition system defined in Figures 1 and 3.

Proof. We show that any closed normal form t can be turned by the axiomatisation

into the form
∑

1�i�n αi.ti + {1} with the above properties using induction on the maximal

length of the inference trees by which α transitions of t or its termination capability are

inferred. From this result we can conclude that the lemma holds for any closed normal

form t because, since normal forms include only guarded recursion, for any t we have

only a finite number of inference trees yielding outgoing transitions.

The base cases of the induction (t ≡ 0 or t ≡ 1 or t ≡ α.t′) are trivial because they are

already in the desired form.

The inductive cases are:

— If t ≡ t′ + t′′, then t can be turned into the desired form by just summing the

terms obtained by applying the inductive argument to t′ and t′′ (t is equated by the

axiomatisation to such a term by substitutivity of subterms, and the operational rules

for ‘+’ just gather up the outgoing transitions and the termination capability).

— If t ≡ 〈X|{X = t′}〉, then t can be turned into the desired form by direct consideration

of the term obtained by applying the inductive argument to 〈t′|{X = t′}〉 (t is equated

by the axiomatisation to such a term by means of the unfolding axiom Unf, and the
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operational rules for the recursion operator just leave the outgoing transitions and the

termination capability unchanged).

Lemma 6.4. Let t′, t′′ be closed normal forms. t ≡ t′ · t′′ or t ≡ t′ ‖ t′′ or t ≡ t′‖ t′′ or

t ≡ t′ | t′′ or t ≡ ∂H (t′) or t ≡ τI (t
′) or t ≡ ρf(t

′) can be turned by the axiomatisation in

Figures 2 and 4 into the form ∑
1�i�n

αi.ti + {1}

where
αi→ ti, with 1 � i � n, are the outgoing transitions of t (no outgoing transitions

corresponds to the sum being 0) and 1 is present if and only if t ↓, according to the model

of transition system in Figures 1 and 3.

Proof. Let t′, t′′ be closed normal forms and t′next ≡
∑

i�n α
′
i.t

′
i + {1} and t′′next ≡∑

i�m α′′
i .t

′′
i + {1} be the terms obtained from t′, t′′ by applying Lemma 6.3.

We first consider the case of sequence, that is, t ≡ t′ · t′′. We initially have

t′ · t′′ = t′next · t′′ =
∑
i�n

((α′
i.t

′
i) · t′′) + {1 · t′′}

where the second summand is present if and only if 1 is present in t′next. We therefore have

t′next · t′′ =
∑
i�n

α′
i.(t

′
i · t′′) + {t′′next}.

One can see immediately that, since
α′
i→ t′i, with i � n, and

α′′
i→ t′′i , with i � m, are the

outgoing transitions of t′ and t′′, respectively, and as 1 is present in t′next (t′′next) if and only

if t′ ↓ (t′′ ↓), the arguments of the above sum correspond to the transitions/termination

capability derived for t from the operational rules of sequence.

The cases of left merge, that is, t ≡ t′‖ t′′, restriction, that is, t ≡ ∂H (t′), hiding, that

is, t ≡ τI (t
′), and relabelling, that is, t ≡ ρf(t

′), are proved similarly by performing the

following transformations:

t′‖ t′′ = t′next‖ t′′ =
∑
i�n

(α′
i.t

′
i‖ t′′) =

∑
i�n

α′
i.(t

′
i ‖ t′′)

∂H (t′) = ∂H (t′next) =
∑
i�n

∂H (α′
i.t

′
i) + {1} =

∑
i�n,α′

i /∈H

α′
i.∂H (t′i) + {1}

τI (t
′) = τI (t

′
next) =

∑
i�n

τI (α
′
i.t

′
i) + {1} =

∑
i�n,α′

i∈I

τ.τI (t
′
i) +

∑
i�n,α′

i /∈I

α′
i.τI (t

′
i) + {1}

ρf(t
′) = ρf(t

′
next) =

∑
i�n

ρf(α
′
i.t

′
i) + {1} =

∑
i�n

ρf(α
′
i).ρf(t

′
i) + {1}.

We now consider the case of synchronisation merge, that is, t ≡ t′ | t′′. We initially have

t′ | t′′ = t′next | t′′next =
∑
i�n

( ∑
j�m

(α′
i.t

′
i | α′′

j .t
′′
j )

)
+ {1}
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where 1 is present if and only if it is present in both t′next and t′′next, hence

t′next | t′′next =
∑

i�n,α′
i=τ

(τ.t′i | t′′)

+
∑

j�m,α′′
j =τ

(t′ | τ.t′′j )

+
∑

i�n,j�m,(α′
i ,α

′′
j )∈dom(γ)

γ(α′
i, α

′′
j ).(t

′
i ‖ t′′j )

+ {1}.

We show that we can turn any t ≡ t′ | t′′ into
∑

1�i�n αi.ti + {1} such that the arguments

of the sum correspond to the transitions/termination capability of t by inducing on the

following measure: the maximal length of the sequences of τ transitions performable by

t′ plus the maximal length of the sequences of τ transitions performable by t′′. From

this result we can conclude that any such t can be turned into the desired form because,

since normal forms include only guarded recursion, t′, t′′ cannot include cycles of τ

loops (and are finite state), hence the sequences of τ transitions they can perform are

bounded.

— The base case of the induction corresponds to such a measure being 0, that is, neither

t′ nor t′′ can perform τ transitions. This means that when transforming t in the

sum form above, the first two sums do not occur, and thus the assertion obviously

holds.

— The inductive case is performed by just observing that the summands τ.t′i | t′′ and t′ |τ.t′′j
obtained by transforming t into the sum form above can be rewritten into t′i | t′′ and

t′ | t′′j , respectively. For such terms we can apply the induction hypothesis and turn

them into the form
∑

1�i�n α
′′′
i .t

′′′
i + {1} such that the arguments of the sum correspond

to their transitions/termination capability. Therefore, since
α′
i→ t′i, with i � n, and

α′′
i→ t′′i ,

with i � m, are the outgoing transitions of t′ and t′′, respectively, and since 1 is present

in t′next (t′′next) if and only if t′ ↓ (t′′ ↓), and since, according to the operational rules for

synchronisation merge, t′ |t′′ is (additionally) endowed with the transitions/termination

capability of t′i | t′′ (t′ | t′′j ) whenever t′
τ→ t′i (t′′

τ→ t′′i ), the arguments of the sum obtained

by turning such terms into
∑

1�i�n α
′′′
i .t

′′′
i + {1} inside the sum form above correspond

to the transitions/termination capability of t′ | t′′.
We now consider the case of the parallel operator, that is, t ≡ t′ ‖ t′′. We initially have

t′ ‖ t′′ = t′next‖ t′′ + t′′next‖ t′ + t′next | t′′next.

We then apply the transformation for t′next‖ t′′ considered in the proof for the case of left

merge (and we also apply it to t′′next‖ t′) and the transformation for t′next | t′′next considered

in the proof for the case of synchronisation merge. Here, however, instead of dealing

with the first and second sums of the sum form obtained from t′next | t′′next by means of

an inductive transformation, we just get rid of them as follows. Since, for any i and

j, we have τ.t′i | t′′ = t′i | t′′ and t′ | τ.t′′j = t′ | t′′j and such terms already occur in the

transformation of t′next‖ t′′ and t′′next‖ t′ (by additionally applying axiom M to parallel) in
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the form τ.((t′i | t′′) + t′′′) and τ.((t′ | t′′j ) + t′′′), respectively, we derive

t′ ‖ t′′ =
∑
i�n

α′
i.(t

′
i ‖ t′′) +

∑
i�m

α′′
i .(t

′ ‖ t′′i ) +
∑

i�n,j�m,(α′
i ,α

′′
j )∈dom(γ)

γ(α′
i, α

′′
j ).(t

′
i ‖ t′′j ) + {1}

where in the second sum we have also exploited the commutativity of ‘‖’. One can then see

immediately that since
α′
i→ t′i, with i � n, and

α′′
i→ t′′i , with i � m, are the outgoing transitions

of t′ and t′′, respectively, and as 1 is present in t′next (t′′next) if and only if t′ ↓ (t′′ ↓), the

arguments of the above sum correspond to the transitions/termination capability derived

for t from the operational rules of parallel.

Proposition 6.5. The axiomatisation formed by the axioms in Figure 2 and by the axioms

in Figure 4 is ground complete for TCP+RECf and the model of transition systems

modulo observational congruence generated by the rules in Figures 1 and 3.

Proof. We show by structural induction over the syntax of (possibly open) terms t

of TCP+RECf whose free variables do not occur in the scope of one of the operators

‖, ‖ , | , ∂H , τI , ρf or on the left-hand side of the operator · that t can be turned into

normal form (that is closed if t is closed). Proving this yields ground completeness; this

is because normal forms are like terms of basic CCS (the only difference being that we

have two non-equivalent kinds of terminating processes 0 and 1 instead of just one) and

completeness over such terms was proved in Milner (1989b). Since we do not have · or ‖
operators in normal forms, the presence of the two ways of termination does not change

the proof: it is just sufficient to consider 1 as a distinguished prefix followed by 0.

The base cases of the induction (t ≡ 0 or t ≡ 1 or t ≡ X) are trivial because they are

in normal form already.

The inductive cases of the induction are:

— If t ≡ a.t′ or t ≡ τ.t′ or t ≡ t′ + t′′, then t can be turned into normal form by directly

exploiting the inductive argument over t′ and t′′.

— If t ≡ t′ ‖ t′′ or t ≡ t′‖ t′′ or t ≡ t′ | t′′ or t ≡ ∂H (t′) or t ≡ ρf(t
′), we can turn t

into normal form as follows. By exploiting the inductive argument over t′ and t′′, and

by observing that t cannot include free variables, we know that the closed term t′′′

obtained by replacing both t′ and t′′ inside t has a finite transition system. Let t1 . . . tn
be the states of the transition system of t′′′, tn ≡ t′′′. It is easy to see that, due to

Lemma 6.4, for each i ∈ {1 . . . n}, there exist mi, {αij}j�mi
(denoting actions) and {kij}j�mi

(denoting natural numbers) such that we can derive ti =
∑

j�mi
αij .tkij + {1}. Hence we

can characterise the behaviour of t′′′ by means of a set of equations (t1 . . . tn are the

solution of a regular recursive specification with n variables). We can, therefore, turn

t′′′ into normal form in a similar way to what is done in Milner (1989b) in the proof

of the unique solution of guarded sets of equations theorem. In particular, we show

that there is a term t′′′′ in normal form such that we can derive t′′′′ = tn ≡ t′′′ as

follows. For each i, from 1 to n, we do the following. If i is such that ∃j � mi : kij = i,

applying Fold gives us ti = 〈X|X =
∑

j�mi:k
i
j 
=i α

i
j .tkij +

∑
j�mi:k

i
j=i α

i
j .X + {1}〉. Note

that axiom Fold is applicable because, by exploiting the inductive argument, t′ and

t′′ have been turned into normal form and contain guarded recursion only, so (since
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the operators considered cannot turn visible actions into τ ones) every cycle in the

derived transition system contains at least one visible action, that is, according to the

definition in Milner (1989b), the equation set under consideration is guarded. Then

we replace each subterm ti occurring in the equations for ti+1 . . . tn with its equivalent

term. When, in the equation for tn ≡ t′′′, we have replaced tn−1, we are done.

— If t ≡ t′ · t′′, then t is turned into normal form in a similar way to the previous

item. The main difference is that t′′ may include free variables. Let t′′′ be the term

obtained from t by replacing t′ and t′′ with their normal forms, which are obtained

by exploiting the inductive argument. We will use c(t′′′) to denote the closed term

obtained from t′′′ by replacing each free occurrence of a variable X by aX.0, where

aX is a fresh action. Note that free variables may only occur in t′′′ inside the normal

form of t′′, that is, in the subterm to the right of ‘·’. We know that c(t′′′) has a finite

transition system, hence c(t′′′) can be turned into normal form using the procedure

of the previous item: by considering its states, by transforming them into a sum of

prefixes leading to other states using Lemma 6.4 (note that in this case only states

containing the ‘·’ operator need to be transformed in this way) and by then deriving an

equivalent term in normal form by applying the Fold axiom. The normal form t′′′′ for

the open term t′′′ is obtained by following exactly the same derivation procedure (and

therefore applying the same axioms) as described above for deriving a normal form

from the corresponding term c(t′′′) (which yields a corresponding normal form c(t′′′′)).

In particular, a set of open terms t1 . . . tn must be considered such that c(t1) . . . c(tn)

are the states of c(t′′′), and for each of them a transformation into a sum of prefixes

and open variables ti =
∑

j�mi
αij .tkij +

∑
j�mi

Xi
j + {1} is obtained by following exactly

the same derivation procedure as described in Lemma 6.4, which allows us to derive

c(ti) =
∑

j�mi
αij .c(tkij ) +

∑
j�mi

aXi
j
.0 + {1} correspondingly. It is possible to follow the

same derivation procedure when Xi
j variables replace aXi

j
.0 prefixes because variables

Xi
j cannot occur inside ti in the subterm to the left of ‘·’ (which is a closed subterm),

hence in the derivation of Lemma 6.4, the axiom A10 (which is used to move prefixes

from inside to outside of a ‘·’ operator, representing their execution) is never applied to

an aXi
j
prefix. One can see immediately that all the other axioms used in the derivation

are still applicable when Xi
j variables replace aXi

j
.0 prefixes.

— If t ≡ 〈X|E〉, then t is turned into normal form by first exploiting the inductive

argument over terms tY where Y ∈ V , assuming E = E(V ), and then by applying

axioms Ung and WUng to get rid of any generated unguarded recursion as in the

standard approach of Milner (after decomposing multi-variable recursion with axiom

Dec).

— If t ≡ τI (t
′), then t is turned into normal form as follows. By exploiting the inductive

argument over t′, we consider term t′′, which is obtained by turning t′ into normal

form. Observe that t′ (hence t′′) cannot include free variables, and that it has a finite

transition system (because it is in normal form).

We first show by structural induction that for any (possibly open) normal form t′′, we

can turn τI (t
′′) into τI (t

′′′), where t′′′ is obtained from t′′ by syntactically replacing each

occurrence of an action in I with τ.
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The base cases of the induction (t′′ ≡ 0 or t′′ ≡ 1 or t′′ ≡ X) are trivial because no

action in I is included.

The inductive cases are:

– If t′′ ≡ a.t′′1, we have the following two cases:

• If a ∈ I , then, since τI (a.t
′′
1) can be turned into τ.τI (t

′′
1), which by the induction

hypothesis can be turned into τ.τI (t
′′′
1 ) with t′′′1 such that each occurrence of an

action in I is replaced with τ, we obtain term t′′′ by the final transformation

into τI (τ.t
′′′
1 ).

• If a 
∈ I , we have a repeat of the previous case where a is not turned into τ.

– If t′′ ≡ τ.t′′1, we have a repeat of the previous item where τ is not affected by the
transformation.

– If t′′ ≡ t′′1 + t′′2, then, since τI (t
′′
1 + t′′2) can be turned into τI (t

′′
1) + τI (t

′′
2), which by the

induction hypothesis can be turned into τI (t
′′′
1 ) + τI (t

′′′
2 ) with t′′′1 and t′′′2 such that

each occurrence of an action in I is replaced with τ, we obtain term t′′′ by the final

transformation into τI (t
′′′
1 + t′′′2 ).

– If t′′ ≡ 〈X|{X = t′′1}〉, then, since τI (〈X|{X = t′′1}〉) can be turned into 〈X|{X =

τI (t
′′
1)}〉 by means of axiom Hid, which by the induction hypothesis can be turned

into 〈X|{X = τI (t
′′′
1 )}〉 with t′′′1 such that each occurrence of an action in I is replaced

with τ, we obtain term t′′′ by the final transformation into τI (〈X|{X = t′′′1 }〉) by

means again of axiom Hid.

Notice that, due to the usage of axiom Hid in the last item, the equational trans-

formation procedure from τI (t
′′) to τI (t

′′′) arising from the above induction works on

TCP+REC.

Then we use Ung and WUng to get rid of any generated unguarded recursion into t′′′

as in Milner’s standard approach, thus getting a guarded t′′′′.

Finally, we consider τI (t
′′′′) and apply the same technique as for, for example, the ‖

operator to turn it into normal form (exploiting the fact that t′′′′ is guarded, finite

state and does not include free variables). In particular, we can now do this because

the application of the hiding operator has no effect on the labels of transitions, and

hence it cannot generate cycles made up purely of τ actions when the semantics is

considered.

7. Conclusion

In conclusion, we will just make some comments about future work. First, we claim that

the axiomatisation we have presented is complete over all terms in the signature of TCP

plus the recursion operator 〈X|E〉 (without syntactical restriction) that are finite state,

that is, we can also include terms with variables bound by an outer recursion operator

that are in the scope of static operators (or on the left-hand side of a sequence) provided

they are not reachable. Moreover, we plan to rebuild the whole machinery developed

here for the case of rooted branching bisimilarity instead of observational congruence.

In particular, we claim that we can find a ground-complete axiomatisation for essentially

finite-state behaviours modulo branching bisimilarity by taking the axiomatisation of van
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Glabbeek (1993) extending the syntax as we have done, and adding our axiom Hid as the

only extra axiom.
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