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A systematic investigation of unstable steady-state solutions of the Darcy–Oberbeck–
Boussinesq equations at large values of the Rayleigh number Ra is performed
to gain insight into two-dimensional porous medium convection in domains of
varying aspect ratio L. The steady convective states are shown to transport less
heat than the statistically steady ‘turbulent’ flow realised at the same parameter
values: the Nusselt number Nu ∼ Ra for turbulent porous medium convection, while
Nu∼ Ra0.6 for the maximum heat-transporting steady solutions. A key finding is that
the lateral scale of the heat-flux-maximising solutions shrinks roughly as L ∼ Ra−0.5,
reminiscent of the decrease of the mean inter-plume spacing observed in turbulent
porous medium convection as the thermal forcing is increased. A spatial Floquet
analysis is performed to investigate the linear stability of the fully nonlinear steady
convective states, extending a recent study by Hewitt et al. (J. Fluid Mech., vol. 737,
2013, pp. 205–231) by treating a base convective state, and secondary stability modes,
that satisfy appropriate boundary conditions along plane parallel walls. As in that
study, a bulk instability mode is found for sufficiently small-aspect-ratio base states.
However, the growth rate of this bulk mode is shown to be significantly reduced
by the presence of the walls. Beyond a certain critical Ra-dependent aspect ratio,
the base state is most strongly unstable to a secondary mode that is localised near
the heated and cooled walls. Direct numerical simulations, strategically initialised to
investigate the fully nonlinear evolution of the most dangerous secondary instability
modes, suggest that the (long time) mean inter-plume spacing in statistically steady
porous medium convection results from a balance between the competing effects of
these two types of instability.

Key words: convection in porous media, instability, pattern formation

1. Introduction
Porous medium convection is a key environmental process that has been extensively

studied since the 1940s (Horton & Rogers 1945; Lapwood 1948) due to its numerous

† Email address for correspondence: greg.chini@unh.edu
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geoscientific applications including oil recovery, groundwater flow and geothermal
energy extraction (Phillips 1991, 2009; Nield & Bejan 2006). More fundamentally,
as a paradigm for forced-dissipative infinite-dimensional nonlinear dynamical systems,
buoyancy-driven convection in a fluid-saturated porous layer retains much of the
rich dynamics of Rayleigh–Bénard convection in a pure fluid layer yet provides
a simpler physical and mathematical setting for studying instabilities, bifurcations,
pattern formation and spatiotemporally chaotic dynamics. Recently, this system has
again become the subject of intense scrutiny due to applications in carbon dioxide
sequestration in terrestrial aquifers, one promising means of reducing the emission of
greenhouse gases into the atmosphere (Metz et al. 2005).

The flow in a horizontal porous layer uniformly heated from below undergoes a
sequence of bifurcations as the Rayleigh number Ra, the normalised temperature drop
across the layer, is increased. When Ra > 4π2, the simple conduction solution
becomes linearly unstable (Nield & Bejan 2006) and steady O(1) aspect-ratio
large-scale convection rolls emerge. In a two-dimensional (2D) domain, the steady
rolls strengthen but remain stable as Ra is increased up to Ra ≈ 400 (Schubert &
Straus 1982). For Ra slightly greater than 400, instabilities within the upper and lower
thermal boundary layers generate small-scale features that are advected around the
cell by the large-scale rolls. In this moderate-Ra parameter regime, 400 . Ra . 1300,
the resulting flow exhibits a series of transitions between periodic and quasi-periodic
roll motions, as discussed in considerable detail by Kimura, Schubert & Straus (1986,
1987), Aidun & Steen (1987) and Graham & Steen (1992, 1994). However, the rolls
do not completely lose coherence until Ra & 1300. The overall dynamics is then
better characterised as spatiotemporally chaotic plume shedding from the boundaries
rather than quasi-coherent cellular flow (Otero et al. 2004; Hewitt, Neufeld & Lister
2012). This marks the transition to the ‘turbulent’ high-Ra regime.

The direct numerical simulations (DNS) of Hewitt et al. (2012) reveal that at
large Ra porous medium convection exhibits a three-region asymptotic structure:
adjacent to the upper and lower walls are extremely thin thermal boundary layers,
with a thickness that scales as O(Ra−1); the interior region is dominated by a
nearly vertical columnar exchange flow (‘mega-plumes’) spanning the height of the
domain; and the transition zone between these regions is characterised by a series
of small ‘proto-plumes’ that grow from the boundaries and merge with the interior
mega-plumes. Remarkably, as Ra is increased, the interior columnar exchange flow
becomes increasingly well organised. Hewitt et al. (2012) model this interior flow
analytically using a single horizontal Fourier-mode ‘heat-exchanger’ solution, and
extract a Ra−0.4 scaling for the time-mean inter-plume spacing from their simulation
data. In a subsequent investigation, Hewitt, Neufeld & Lister (2013) show that the
vertical columnar exchange flow is unstable for horizontal wavenumbers k greater
than k ∼ Ra5/14 as Ra→∞, in evident agreement with their DNS results. However,
their stability analysis employs the analytical heat-exchanger model – in which the
upper and lower boundaries are ignored – as the pertinent base flow on the grounds
that k is not controlled directly by the small-scale dynamics of proto-plumes near
the boundary, since these have a lateral scale of Ra−1. Nevertheless, the relevance
of their stability analysis remains an open question, since the influence of the
boundaries is ignored. Our view is that it is preferable to analyse the stability of
(numerically) exact solutions of the complete dynamical system (i.e. in which the
base flow exactly satisfies the governing equations and all boundary conditions)
that also exhibit certain flow structures observed in the time-dependent simulations.
Specifically, the objective of our investigation is to determine the structure and
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secondary stability of steady cellular solutions in porous medium convection at large
Rayleigh number. Although our study is restricted to 2D configurations, we note that
recent DNS of Rayleigh–Bénard convection in a three-dimensional (3D) porous layer
at large Rayleigh number clearly exhibit the emergence of a three-region asymptotic
structure, with an interior flow that is increasingly well described by an extension
of the heat-exchanger model that consists of mega-plumes whose spacing decreases
approximately as Ra−0.5 (Hewitt, Neufeld & Lister 2014). Thus, we may reasonably
expect the results of our 2D investigation to provide at least partial insight into 3D
porous medium convection, too.

The structure and stability of steady 2D porous medium convection at small to
moderate Rayleigh number has been discussed in detail in many previous studies
(Elder 1967; Palm, Weber & Kvernvold 1972; Horne & O’Sullivan 1974; Schubert &
Straus 1982; Aidun & Steen 1987; Kimura et al. 1987; Graham & Steen 1992, 1994).
The study of high-Rayleigh-number steady solutions, however, has been rather limited,
in part because these solutions are unstable and exhibit fine-scale spatial structure. In
the present work, we overcome these difficulties by numerically solving the steady
governing equations using a Newton–Kantorovich iteration scheme (Boyd 2000). By
investigating the dependence of the steady solutions on the domain aspect ratio L,
we find that there exist two qualitatively distinct types of steady convective states
at large Ra: for small L, the flow has the heat-exchanger structure in the interior
identified by Hewitt et al. (2012); however, as L is increased, the steady convection
develops a stably stratified core with a horizontal structure involving multiple Fourier
modes. Comparison of the steady solutions with the long-time-averaged columnar
flow observed in the DNS reveals that the latter is neither a heat exchanger nor a
stably stratified core solution but instead combines certain attributes of both types of
steady solutions.

After characterising these steady convective states as a function of Ra and L,
we assess their stability to small-amplitude disturbances using Floquet theory. The
Floquet technique was first introduced as a tool for secondary stability analysis in fluid
dynamics by Kelly (1967), who applied this method to inviscid shear flows. Since
then, Floquet analysis has been applied to numerous other shear and convective flows,
including thermal convection (Busse 1967, 1972; Clever & Busse 1974), viscous
shear flows (Herbert 1983, 1988; Orszag & Patera 1983) and Langmuir circulation
(Tandon & Leibovich 1995; Chini, Julien & Knobloch 2009). In this paper, we follow
Chini et al. (2009) by employing a Fourier–Chebyshev spectral method to discretise
the differential eigenvalue problem derived from linearising the governing equations
of porous medium convection about the fully nonlinear steady states. Our analysis
reveals the existence of two types of instability for different L at large Ra: a bulk
instability in which the most unstable disturbance spans the convective layer, and a
wall instability in which the most unstable disturbance is strongly localised near the
hot and cold boundaries.

We explore the nonlinear evolution of these secondary instabilities using high-
resolution DNS. Both the bulk and the wall instability modes are shown to influence
the mean inter-plume spacing at large Ra. To obtain a reliable estimate of this mean
spacing the aspect ratio of the computational domain must be sufficiently large to
capture long-wavelength secondary instabilities. We quantify this inter-plume spacing
by performing DNS at extreme values of Ra, up to O(105), in large-L domains
containing more than 15 pairs of plumes. The simulations show that the interior
columnar exchange flow becomes very well organised for Ra > 39 716, and that, at a
given large Ra, there exists a small range of preferred plume spacings for which the
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bulk and wall instabilities are balanced so that the interior columnar exchange flow
is statistically steady.

The reminder of this paper is organised as follows. In the next section, we formulate
the standard mathematical model of porous medium convection and recall the key
results of linear stability theory for this system. In § 3, we outline the numerical
method used to find (generally unstable) steady high-Ra solutions, describe the
structure of these solutions for different aspect ratios, document the variation of heat
transport with aspect ratio, identify the steady flows that maximise the heat transport
as a function of both Ra and L, and quantitatively compare the mean interior columnar
exchange flow manifested in DNS with the interior structure of the steady solutions.
Using Floquet theory, we analyse the stability of these steady convective states in § 4.
In § 5, we perform DNS strategically initialised with a superposition of the steady
solutions and a small-amplitude contribution of the most unstable secondary instability
eigenfunction to investigate how these steady states evolve into the statistically steady
but spatiotemporally chaotic (turbulent) convective flow. Moreover, new results for
the mean inter-plume spacing in porous medium convection for Ra=O(105) are also
presented. Our conclusions are given in § 6.

2. Problem formulation
We consider a 2D fluid-saturated porous layer in a domain of aspect ratio L that

is heated from below at z = 0 and cooled from above at z = 1. For simplicity as
well as for consistency with the numerous prior stability, dynamical systems and
computational investigations of porous medium convection in a Rayleigh–Bénard
configuration referenced in § 1, the evolution of the 2D velocity u(x, t) = (u, w),
temperature T(x, t) and pressure p(x, t) fields is presumed to be governed by the
non-dimensional Darcy–Oberbeck–Boussinesq equations (Nield & Bejan 2006) in the
infinite Darcy–Prandtl number limit:

∂tT + u · ∇T =∇2T, (2.1)
u+∇p= Ra Tez (⇒∇2w= Ra ∂2

x T), (2.2)
∇ · u= 0, (2.3)

where x and z are the horizontal and vertical coordinates respectively, ez is a
unit vector in the z direction and ∇2 is the 2D Laplacian operator. Strictly, these
equations are only valid when there is no exchange of heat between the fluid and
the solid matrix or when the heat capacities per unit volume of the fluid and the
solid are equal. However, (2.1)–(2.3) are formally identical to the appropriately
non-dimensionalised equations governing solutal convection, which is, of course, the
more relevant interpretation for convective and diffusive transport of carbon dioxide in
the sequestration context and for which no flux of solute between the fluid and solid
is an appropriate idealisation. Moreover, the assumption of local thermal equilibrium
can be shown to be a reasonable approximation in many applications for which rapid
thermal adjustment of the solid matrix may be expected, as is often the case for
small-pore media such as fibrous insulation (Nield & Bejan 2006; Bejan 2013).

Equations (2.1)–(2.3) are solved subject to the boundary conditions

T(x, 0, t)= 1, T(x, 1, t)= 0, w(x, 0, t)= 0, w(x, 1, t)= 0 (2.4a−d)

and L-periodicity of all fields in x. The Rayleigh number Ra appearing in (2.2) is a
dimensionless parameter quantifying the ratio of driving to damping forces:

Ra= αg(Tbot − Ttop)KH
νκ

, (2.5)
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where α is the thermal expansion coefficient, g is the gravitational acceleration,
Tbot − Ttop is the dimensional temperature difference across the layer, K is the Darcy
permeability coefficient, H is the layer depth, ν is the kinematic viscosity and κ

is the thermal diffusivity. A second control parameter governing the behaviour of
this system is the domain aspect ratio L. One of the key quantities of interest in
convection is the Nusselt number Nu, the ratio of the heat transport in the presence
of convective motion to the conductive heat transport when u= 0:

Nu= 1+ 1
L

〈∫
wT dx dz

〉
, (2.6)

where the angle brackets denote a long-time average; i.e. for some function f

〈f 〉 = lim
t̃→∞

1
t̃

∫ t̃

0
f dt. (2.7)

From the equations of motion an alternative but equivalent expression for the Nusselt
number can be derived,

Nu=−1
L

〈∫
z=0
∂zT dx

〉
≡−〈∂zT|z=0〉 = 1

L
〈‖∇T‖2〉, (2.8)

where f = 1/L
∫ L

0 f dx and ‖f‖ = (∫ |f |2 dx dz)1/2.
One elementary solution of this system is the conduction state: T = 1 − z, u = 0

and p = Ra(z − z2/2). A linear stability analysis can be performed by setting T =
(1 − z) + θ ?(x, z, t) and u = (u?, w?), where θ ?, u? and w? are small perturbations,
and linearising (2.1)–(2.3) about the conduction solution. As first shown by Horton &
Rogers (1945) and Lapwood (1948), the resulting (normalised) eigenfunctions are

θ ? = cos(kx) sin(mπz)eλ
?t, w? = Ra k2

m2π2 + k2
cos(kx) sin(mπz)eλ

?t, (2.9a,b)

with the corresponding eigenvalue

λ? = Ra k2

m2π2 + k2
− (m2π2 + k2) (2.10)

representing the growth rate of the given eigenmode. The eigenvalues for different
Ra, vertical mode number m > 1 and (continuous) horizontal wavenumber k (in an
infinitely wide domain) are strictly real, implying that the onset of convection is to
steady cells, and the largest growth rates occur for m = 1. By setting λ? = 0 with
m= 1, an expression for the marginal stability boundary of the conduction state can
be obtained: Ra= (π2+ k2)2/k2. We denote the high-wavenumber branch of marginal
modes by

kc =
√

Ra+√Ra− 4π2

2
, (2.11)

and we define Lc = 2π/kc as the corresponding wavelength of these marginal modes.
At a given Ra> 4π2, the conduction solution will become linearly unstable for aspect
ratios L> Lc. Alternatively, by setting ∂λ?/∂k= 0, we find that the wavenumber kf of
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the fastest-growing linear mode is given by

kf =
√√

Raπ−π2. (2.12)

We define Lf = 2π/kf as the corresponding wavelength of this fastest-growing linear
mode. In the limit Ra→∞, kf ∼√πRa1/4 while kc ∼ Ra1/2.

3. Steady convective states
3.1. Newton–Kantorovich method

Following Corson (2011), we solve the steady version of the governing equations
(2.1)–(2.3) numerically using a Newton–Kantorovich (NK) iterative scheme (Boyd
2000). It is convenient to first introduce a stream function ψ to describe the fluid
velocity, so that (u, w) = (∂zψ, −∂xψ). Then the time-independent dimensionless
equations can be written as

∇2ψ =−Ra ∂xθ, (3.1)
∂zψ∂xθ − ∂xψ∂zθ =−∂xψ +∇2θ, (3.2)

where θ(x, z)= T(x, z)− (1− z), and θ and ψ satisfy Ls-periodic boundary conditions
in x and homogeneous Dirichlet boundary conditions in z. To avoid ambiguity, Ls is
used here and throughout to denote the domain width associated with a given steady
state. The solution of (3.1) and (3.2) can be expressed as[

θ
ψ

]
=

N/2∑
n=−N/2

[
θ̂n(z)
ψ̂n(z)

]
einksx =

N/2∑
n=−N/2

M∑
m=0

[
amn
bmn

]
Tm(z) einksx, (3.3)

where ks = 2π/Ls is the fundamental wavenumber of the spatially periodic steady
solution, M is the vertical truncation mode number, N is the horizontal truncation
mode number and Tm(z) is the mth Chebyshev polynomial. In each Ls × 1
computational domain we seek steady solutions with reflection symmetry about
x = Ls/2 and centrosymmetry within each of the two Ls/2 × 1 subdomains which
contain a single convection cell. These symmetry constraints require

amn is real; bmn is imaginary; amn = bmn = 0 if (m+ n) is even. (3.4)

To employ the NK algorithm, we rearrange (3.1) and (3.2) into the following form:

∇2ψ = Fψ(θx), (3.5)
∇2θ = Fθ(ψx, ψz, θx, θz), (3.6)

where a subscript denotes a partial derivative with respect to the given variable.
Suppose the ith iterates θ i(x, z) and ψ i(x, z) in the NK scheme are good approximations
to the true solution θ(x, z) and ψ(x, z). Taylor expansion of the functionals Fψ and
Fθ in (3.5) and (3.6) about these iterates yields

∇2ψ = (Fψ)i + (Fψ
θx
)i[θx − θ i

x] +O([θx − θ i
x]2), (3.7)

∇2θ = (Fθ)i + (Fθ
ψx
)i[ψx −ψ i

x] + (Fθ
ψz
)i[ψz −ψ i

z] + (Fθ
θx
)i[θx − θ i

x]
+ (Fθ

θz
)i[θz − θ i

z] +O([ψx −ψ i
x]2, [ψz −ψ i

z]2, [θx − θ i
x]2, [θz − θ i

z]2), (3.8)
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where, for example, Fθ
ψx

denotes the Frechet derivative of the function Fθ(ψx,ψz, θx, θz)

with respect to ψx. After defining the correction terms

1ψ =ψ i+1 −ψ i, 1θ = θ i+1 − θ i (3.9a,b)

and evaluating the Frechet derivatives, the linear differential equations for the
corrections can be expressed as

∇21ψ + Ra Dx1
θ =−Ra θ i

x −∇2ψ i, (3.10)
[−Dx + θ i

zDx − θ i
xDz]1ψ + [∇2 −ψ i

zDx +ψ i
xDz]1θ =ψ i

zθ
i
x −ψ i

xθ
i
z +ψ i

x −∇2θ i, (3.11)

where Dx and Dz denote the first partial derivative operators with respect to x and z.
According to the symmetry constraints (3.4), the solution (3.3) has the following form:

θ = θ̂0(z)+ 2
N/2∑
n=1

θ̂n(z) cos(nksx), ψ = 2
N/2∑
n=1

−φ̂n(z) sin(nksx), (3.12a,b)

where φ̂n ≡ Im{ψ̂n} is real. Then, for a given horizontal wavenumber nks, (3.10) and
(3.11) become

−[Dzz − (nks)
2]1φ̂n − nks Ra1θ̂n = nks Ra θ̂ i

n + [Dzz − (nks)
2]φ̂i

n, (3.13)

[nks + gi
n]1φ̂n + [Dzz − (nks)

2 + hi
n]1θ̂n = f̂ i

n, (3.14)

where
1φ̂n = φ̂i+1

n − φ̂i
n, 1θ̂n = θ̂ i+1

n − θ̂ i
n, (3.15a,b)

Dzz is the second partial derivative operator with respect to z, gi
n and hi

n can be
obtained by calculating the convolution of the non-constant coefficient terms on the
left-hand side of (3.11) for each iterate and f̂ i

n represents the coefficients of the
right-hand side of (3.11) in Fourier space at the ith iterate. We solve (3.13) and
(3.14) numerically using a Chebyshev spectral collocation method.

Although the NK method is only locally convergent, the basin of attraction (in the
space of initial iterates) can be expanded by updating the variables for each iterate
using [

φ̂n

θ̂n

]i+1

=
[
φ̂n

θ̂n

]i

+ a
[
1φ̂n

1θ̂n

]
, (3.16)

where 06 a6 1. The step-length coefficient a is reduced whenever Fi+1
res > bFi

res, where
Fi

res is the norm of the residual of the steady governing equations at the ith iterate and
b≈ 1 is an adjustable parameter. The iteration is continued until Fi+1

res < 10−7, and then
the spatial resolution is increased until the relative error in Nu is less than 10−5.

Computations are performed for a discrete set of Ra= 50× 10(̂−1)/10 from Ra= 50
to Ra= 31 548 and Ls = 0.01× 10(k̂−1)/10 (for integer ̂ and k̂). For each Ra, we first
solve the steady governing equations for a small aspect ratio Ls that is slightly greater
than Lc, and then use that solution as the initial guess for a case with larger Ls.
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FIGURE 1. (Colour online) Temperature and stream function fields at Ra = 9976 (Lc =
0.063): (a) Ls= 0.1; (b) Ls= 0.1585; (c) Ls= 0.3162; (d) Ls= 0.5012. The aspect ratio in
(c) is close to the mean inter-plume spacing Lm= 0.319 from DNS performed in a domain
with L = 5.01. At small Ls (a,b) the interior streamlines are independent of z. However,
as Ls is increased (c,d) the interior streamlines become z-dependent.

3.2. Solution structure
The structure of steady convection at large Ra depends on Ls. When Ls < Lc, the
only steady solution is the conduction state. As Ls is increased, the conduction
solution becomes linearly unstable, and two thin thermal boundary layers arise near
the upper and lower walls (figure 1). Unlike the unsteady flow observed in DNS, the
proto-plumes are absent in the steady solution. Near the walls there exists a boundary
layer in the temperature field and a thicker boundary layer in the stream function
field. Away from these nested boundary layers, the interior structure for small Ls is
quite simple: the temperature deviation from the horizontal mean θ ′ = T − T and
the stream function ψ are almost independent of z, so their z-derivatives are small
(figure 1a,b; figure 2a,b), and there exists only a single non-zero horizontal Fourier
mode (figure 2a,b). Indeed, this type of steady interior flow is well approximated
using the analytical heat-exchanger solution

T(x, z)= T̂ cos(kx)− k2

Ra
z+
(

k2

2 Ra
+ 1

2

)
, (3.17)

w(x)= Ra T̂ cos(kx), (3.18)
u= 0 (3.19)

given by Hewitt et al. (2012). This solution is obtained by balancing the vertical
advection of a linearly varying interior mean temperature field T with horizontal
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FIGURE 2. (Colour online) The z-dependent Fourier components of the temperature field
for steady convective states at Ra= 9976: (a) Ls = 0.1; (b) Ls = 0.1585; (c) Ls = 0.3162;
(d) Ls = 0.5012. At small Ls (a,b) the horizontal-mean temperature in the interior agrees
closely with the analytical heat-exchanger solution; in the core, only a single (non-mean)
Fourier mode is active and the temperature fluctuations are nearly independent of z.
However, as Ls is increased (c,d) more Fourier modes arise and the structure of the steady
solutions departs from that of the analytical heat-exchanger solution even in the interior.

diffusion of temperature anomalies (with Fourier amplitude T̂ , which must be
determined) between neighbouring mega-plumes. By comparing T (figure 2a,b), the
analytical heat exchanger and the steady-state numerical solutions are seen to agree
closely. One significant difference, of course, is that the analytical heat-exchanger
solutions do not satisfy the vertical boundary conditions. Therefore, we denote our
numerically computed steady states at large Ra and small Ls, which not only exhibit
the heat-exchanger structure in the interior but also satisfy the steady governing
equations and all boundary conditions, as numerical heat-exchanger solutions.

Perhaps not surprisingly, as Ls is increased the steady large-Ra numerical solutions
do not retain the heat-exchanger structure in the interior. Instead, the streamlines
deviate from the vertical (figure 1c,d), and multiple horizontal Fourier modes
are excited, although the fundamental mode still dominates the flow (figure 2c,d).
Moreover, when Ls is sufficiently large, the numerically computed T clearly deviates
from that predicted by the heat-exchanger solution. In fact, the slope of T at the
mid-plane z= 0.5 becomes positive, implying that hotter fluid overlies colder fluid in
the interior. We refer to this class of numerically computed steady states as stably
stratified core solutions.
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FIGURE 3. (Colour online) (a) Proximity of numerical solutions to the heat-exchanger
solution: γ =−(Ra/k2

s )∂zT|z=0.5 versus LsRa. As Ls is increased, γ eventually departs from
unity and the interior structure of the numerical solution changes from that of the heat-
exchanger solution to that of the stably stratified core solution. (b) Variation with Ra of Lh,
the wavelength of steady solutions with γ = 0.99 (i.e. numerical heat-exchanger solutions).
Also plotted for comparison are Lc ∼ 2πRa−0.5, the wavelength of the marginal stability
boundary, Lm ≈ (2π/0.47)Ra−0.4, the mean inter-plume spacing measured from the DNS
of Hewitt et al. (2012), and Lf ∼ 2

√
πRa−0.25, the wavelength of the fastest-growing linear

mode. Interestingly, at large Ra, Lm ≈ 2Lh.

To quantify the proximity of a given numerically computed steady solution to the
analytical heat-exchanger solution in the interior we introduce the parameter

γ =−Ra
k2

s

∂zT|z=0.5 (3.20)

measuring the ratio of the numerically computed mean temperature gradient at the
mid-plane to the analytically predicted (constant) vertical temperature gradient. The
solutions are identical when γ = 1, and so we quantitatively (but arbitrarily) define
the steady convective state as a numerical heat-exchanger solution when 0.996 γ 6 1.

Figure 3 shows how the structure of the steady solution changes as Ra and Ls are
varied. For small Ls > Lc, we observe that 0.99 6 γ 6 1, so these solutions belong
to the class of numerical heat-exchanger solutions. However, γ decreases appreciably
as Ls increases, and the steady solutions assume a transitional form for 0 6 γ < 0.99.
When Ls is sufficiently large, γ changes sign, yielding a family of stably stratified
core solutions. It should be noted that the wavelength Lh of solutions with γ = 0.99
(see figure 3b), which separates the heat-exchanger and non-heat-exchanger solutions,
is approximately half the mean inter-plume spacing (Lm in figure 3b) measured from
the DNS of Hewitt et al. (2012).

3.3. Maximising Nu
Of particular physical importance is the relationship between the Nusselt number Nu
and the two control parameters Ra and L. Wen et al. (2013) systematically studied
the influence of the domain aspect ratio on the heat transport in turbulent porous
medium convection using upper bound theory and DNS. At large Ra the turbulent flow
in porous medium convection was found to be self-sustaining with a Ra-dependent
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FIGURE 4. (Colour online) Contour plot of the Nusselt number in (Ra, Ls) parameter
space for steady convective states. The solid line (Lmax Nu) marks the path along which Nu
is maximised. Here, Lc, Lm and Lf are as in figure 3.

lateral scale, identified as a ‘minimal flow unit’, above which the heat transport is
effectively independent of L. The dependence of Nu on Ra and Ls in steady porous
medium convection, however, differs both qualitatively and quantitatively from that
characterising turbulent heat transport in a porous layer. Figure 4 shows the variation
of Nu with Ra and Ls for steady convective states (see also Corson 2011). There is
no convection when the domain aspect ratio is smaller than the wavelength Lc of the
marginal stability mode, so Nu= 1 in this regime. Unlike time-dependent convection,
for which the value of Nu asymptotes when the domain aspect ratio exceeds the size
of the minimal flow unit, the heat transport in steady convection is maximised along
a particular path in (Ra, Ls) parameter space (the solid black curve in figure 4).

To accurately extract the scalings associated with the steady heat-flux-maximising
solutions, we employed greater resolution in parameter space for (Ra, Ls) pairs near
the ridge along which Nu is maximised. We also continued the computations to Ra=
31 548, as shown in figures 4 and 5. When Nu is maximum and Ra is less than
roughly 100, Ls scales as Ra−1/4, the scaling for the wavelength Lf of the fastest-
growing linear mode. As Ra is increased, the ridge of maximum Nu shifts to the
right and for 103 < Ra < 104, Ls ∼ Ra−0.52. As is evident in figure 5(a), the heat-
flux-maximising solutions at large Ra are, in fact, numerical heat-exchanger states.
Figure 5(b) shows the variation of Nu with Ra for high-Ra steady solutions on the
ridge (Corson 2011), along with results from upper bound analysis and DNS. Both the
upper bound calculation and the DNS predict Nu∼ Ra for the unsteady flow. Steady
convection at large Ra is thus seen to transport less heat than the realised turbulent
flow, with Nu ∼ Ra0.6 for the equilibrium states (Corson 2011). Like the real flow,
however, the heat transported by the steady heat-flux-maximising solutions increases
substantially as the inter-plume spacing (i.e. Ls) decreases from O(1) to asymptotically
small values; in contrast, the matched asymptotic analysis of Fowler (1997) suggests
that in steady porous medium convection at fixed aspect ratio Nu∼ Ra1/3 = o(Ra0.6).
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FIGURE 5. (Colour online) (a) Rayleigh-number scaling of the inverse wavelength
associated with heat-flux-maximising steady convective states (dots). It should be noted
that at sufficiently large Ra multiple states yield nearly the same (maximum) heat flux.
The dashed line is the best fit curve 1/Ls = 0.070Ra0.52 for Ra 6 12 559. For reference,
1/Lh and 1/Lc are also plotted as functions of Ra. (b) Rayleigh-number scaling of the
Nusselt number for steady convective solutions (dots). The dashed line is the best fit curve
Nu= 0.155Ra0.60+ 1.213. For reference, data from upper bound analysis and various DNS
are also shown.

3.4. Statistical structure of the columnar flow in DNS
As described above, the spatial structure of steady convection varies appreciably
with Ls. A natural question concerns the difference between the structure of the
steady convective states and that of the time-averaged flow observed in DNS. As
Ra increases, DNS indicate that the interior flow becomes more organised and is
dominated by persistent vertical columnar flow across the domain, driven by the
chaotic mixing of small proto-plumes at the upper and lower boundaries (Otero
et al. 2004; Hewitt et al. 2012). The columnar flow has been modelled using the
heat-exchanger solution in Hewitt et al. (2012, 2013). As discussed in § 3.2, the
heat-exchanger solution is well represented by the interior part of steady solutions only
for convective states with sufficiently small aspect ratios; of course, the time-averaged
columnar flow in DNS need not satisfy the steady governing equations. To further
investigate the differences between the time-averaged columnar flow and the strictly
steady convective states, we performed DNS in the high-Ra regime, extending
previous results to Ra ≈ 105. The unsteady version of the system (3.1) and (3.2)
was solved numerically using a Fourier–Chebyshev-tau pseudospectral algorithm.
Temporal discretisation was achieved using the Crank–Nicolson method for the linear
terms and a two-step Adams–Bashforth method for the nonlinear terms, yielding
second-order accuracy in time. The code was thoroughly validated and gives Nu
values quantitatively matching those of previous DNS, as shown in figure 5(b).

Figure 6 shows snapshots of the temperature fields and corresponding long-
time-averaged magnitudes of the (complex) Fourier amplitudes of the temperature
fluctuations (i.e. deviations from the horizontal mean) as functions of z from our DNS
at Ra= 50 000 conducted in two different domains. As is evident in figure 6(a), there
exist 17 very well organised columnar flows, each consisting of a single rising and
descending mega-plume, at the given parameter values. The time-averaged amplitudes
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FIGURE 6. (Colour online) Snapshots of the temperature fields (a,b) and corresponding
time-averaged Fourier amplitudes (c,d) of the temperature fluctuations (i.e. deviations from
the horizontal mean) from DNS at Ra = 50 000. In (a,c) L = 2.39, while in (b,d) L =
2.39/17.

of the temperature fluctuations, 〈|θ̂n|〉, in figure 6(c) reveal that the interior flow is a
composite of a few low-wavenumber Fourier modes but is dominated by one mode,
features shared by the strictly steady stably stratified core solutions. Indeed, we recall
that steady convective states with Ls = Lm, the mean inter-plume spacing observed
in DNS, are stably stratified core solutions (figures 1c, 2c and 3b). Furthermore, at
high wavenumber, the Fourier amplitudes θ̂n are strongly localised near the upper
and lower walls, where they superpose to comprise the small rolls and proto-plumes
within the thermal and vorticity boundary layers. Figure 6(b,d) shows corresponding
results for DNS performed in a narrower domain, confirming that the flow has a
structure similar to that in the larger domain. In particular, the time-averaged interior
flow is well represented by only six Fourier modes.

Nevertheless, the DNS indicate that the interior slope of the time- and horizontal-
mean temperature field is not positive (figure 7a); i.e. the core is not stably stratified.
Furthermore, although the interior mean temperature profile is roughly linear in z with
negative slope for large Ra, this slope is not well predicted by the heat-exchanger
solution either: compared with the slope of T for the heat-exchanger solution, the
mean temperature gradient from the DNS is more negative (figure 7a). On the other
hand, figure 7 does confirm that the mean temperature gradient approaches zero as Ra
is increased and that the mean amplitude of the dominant Fourier mode in the interior
is almost independent of Ra at large Ra (figure 7b), consistent with the measurements
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FIGURE 7. (Colour online) Statistical structure of turbulent convection obtained from DNS.
(a) Comparison of the long-time- and horizontally averaged temperature profile 〈T〉 from
DNS with T from the analytical heat-exchanger model. (b) Time-averaged amplitude Ad
of the dominant Fourier mode (after subtraction of the horizontal mean) at z = 0.5. For
each Ra, DNS was performed in a domain with L= 10Lf so that 17 columnar flows were
captured. In (a), only half of the mean temperature profile (i.e. for 06 z6 0.5) is plotted
due to statistical antisymmetry about the mid-plane.

in Hewitt et al. (2012) and the form of the heat-exchanger solution. In short, the
statistical structure of the turbulent columnar flow at large Ra resembles the heat-
exchanger solution in the interior, but with a modified mean temperature gradient and
more than one Fourier mode to adequately represent the fluctuations.

4. Secondary stability analysis
4.1. Floquet theory

To investigate the stability properties of the steady convective states described in the
previous section, we next perform a secondary stability analysis using spatial Floquet
theory. First, all fields are expressed as the sum of the steady nonlinear base flow
(denoted with a subscript ‘s’) and a time-varying perturbation,

T(x, z, t)= Ts(x, z)+ θ̃ (x, z, t), (4.1)
ψ(x, z, t)=ψs(x, z)+ ψ̃(x, z, t), (4.2)

where Ts = (1− z)+ θs. Then the equations governing the evolution of the presumed
small-amplitude disturbances can be expressed as

∇2ψ̃ =−Ra ∂xθ̃ , (4.3)

∂tθ̃ =∇2θ̃ − ∂xθs∂zψ̃ + ∂zθs∂xψ̃ + ∂xψs∂zθ̃ − ∂zψs∂xθ̃ − ∂xψ̃, (4.4)

where the perturbation fields also satisfy the boundary conditions

θ̃ (x, 0, t)= 0, θ̃ (x, 1, t)= 0, ψ̃(x, 0, t)= 0, ψ̃(x, 1, t)= 0 (4.5a−d)

and L-periodicity (not generally Ls-periodicity) in x. Floquet theory implies that
solutions may be sought having the following form:[

θ̃

ψ̃

]
= eiβksx

{ ∞∑
n=−∞

[ ˆ̃
θ n(z)
ˆ̃
ψn(z)

]
einksx

}
eλt + c.c., (4.6)
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where λ is the temporal growth rate, iβks is the Floquet exponent, with the real
Floquet parameter β providing the freedom to modify the fundamental horizontal
wavenumber of the perturbation (i.e. for β 6= 0, βks is the wavenumber of the
largest horizontal scale), and c.c. denotes complex conjugate. Since (4.6) is invariant
under integer shifts in β and under reflections β→−β, we can restrict attention to
06β6 0.5 without loss of generality. Substitution of (4.6) into (4.3) and (4.4) yields

i(n+ β)k Ra ˆ̃θ n + [Dzz − (n+ β)2k2] ˆ̃ψn = 0, (4.7)

[Dzz − (n+ β)2k2 + h̃n] ˆ̃θ n + [−i(n+ β)k+ g̃n] ˆ̃ψn = λ ˆ̃θ n (4.8)

for each n, where h̃n and g̃n can be determined by calculating the convolution of the

non-constant-coefficient terms in (4.4). After setting ˆ̃ψn = i ˆ̃φn, (4.7) and (4.8) can be
written in the form

AV = λBV, (4.9)

where A and B are real matrices due to the symmetries (3.4) of the base flow,

and the vector V = (· · · ˆ̃θ n−1,
ˆ̃
θ n,
ˆ̃
θ n+1 · · · ˆ̃φn−1,

ˆ̃
φn,
ˆ̃
φn+1 · · ·)T. The eigenvalue λ

and the corresponding eigenvector V can be obtained by numerically solving this
differential eigenvalue problem. It should be noted that in the following sections,
the convective rather than diffusive time, τ ≡ tRa, will be utilised, so that the
corresponding convective growth rate σ ≡ λ/Ra.

4.2. Secondary stability results
The eigensystem (4.9) is discretised using a Chebyshev collocation method and the
infinite-dimensional system is truncated to 06m6M vertically and −N/26 n6N/2
horizontally. Arnoldi iteration is used to solve the resulting algebraic eigenvalue
problem to obtain the leading eigenvalues and eigenfunctions. The numerical
resolution is increased until the relative error in the eigenvalue with the largest
real part, σm, is less than 10−4.

Figure 8 shows the contours of maximum growth rate, Re{σm}, as a function of β
and Ls for various Ra. At a given Ra, the steady solution at small Ls (specifically, Lc<
Ls < Lb, where Lb is a stability boundary defined in figures 10 and 11) is marginally
stable for β = 0 – corresponding to disturbances that simply translate the steady base
flow in x – although there is insufficient resolution around β = 0 to observe this
clearly in the contour plots. However, the solution is unstable for a range of long-
wavelength perturbations (0<β 6 0.5, see figure 8). The Floquet parameter β of the
fastest-growing perturbation is approximately 0.2–0.3, implying that the most unstable
disturbance has a wavelength 3–5 times the wavelength of the base flow. At Ra=1581
and 3155, the growth rate of the most unstable mode decreases as Ls is increased and,
in fact, the steady solution becomes linearly stable for a finite range of Ls. However,
as Ls is further increased, the steady state becomes unstable, exhibiting a growth rate
that is essentially independent of β. Similar phenomena are observed at larger Ra
except that the linearly stable region shrinks nearly to a point at Ra = 5000 and
vanishes completely at larger Ra.

Figure 9 shows, for Ra = 9976, the 2D eigenfunctions corresponding to these
two families of secondary instabilities. At small Ls, e.g. Ls = 0.1, when the growth
rate depends on the horizontal wavenumber βks, the most unstable perturbation
(occurring for β ≈ 0.2) is a bulk mode that spans the layer (figure 9a). However,
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FIGURE 8. Contours of the maximum growth rate Re{σm} as a function of β and Ls
for various Ra: (a) Ra = 1581; (b) Ra = 3155; (c) Ra = 5000; (d) Ra = 9976. At small
Ls (Lc<Ls<Lb), the base state is stable within small domains of size Ls× 1 (since L=Ls
for β = 0), but unstable to certain long-wavelength perturbations (0<β 6 0.5); at large Ls,
the base state is unstable even for β = 0, and has the same growth rate for different β. It
should be noted that the contour plot in (d) has been annotated to indicate the parameters
corresponding to the bulk (‘B’) and wall (‘W’) mode eigenfunctions displayed in figure 9.
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FIGURE 9. (Colour online) The fastest-growing 2D temperature eigenfunctions at Ra =
9976 shown in a domain with aspect ratio L = 5Ls (where Ls is the wavelength of the
steady base state): (a) Ls = 0.1, β = 0.2; (b) Ls = 0.1585, β = 0; (c) Ls = 0.1585, β = 0.2.
At small Ls, a bulk mode controls the instability, and at large Ls, a wall mode dominates.
It should be noted that at large Ls the spatial structure of the fastest-growing (wall) mode
is nearly independent of β.
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FIGURE 10. (Colour online) The leading eigenvalues at Ra= 9976: (a) Ls= 0.1, β = 0.2;
(b) Ls= 0.1585, β = 0; (c) Ls= 0.1585, β = 0.2; Re σ (Im σ) is the real (imaginary) part
of σ . In each case, the inset shows a magnification of the region near the origin, with
the asterisk denoting the most unstable bulk mode(s). Here, Lb is defined such that when
Ls < Lb (as in a) only bulk modes exist. As Ls is increased (b,c), an increasing number
of wall modes are destabilised. One should note the similarity of the eigenspectra in (b)
and (c) for the same (large) Ls.

Lo Ls6Ls1 LbLs2 Ls3 Ls4

Bulk mode Wall mode

L

Stably stratified core solution
Heat-exchanger

solution
Conduction

solution

0 Lc Lh Lm (Ls5)

FIGURE 11. Schematic identifying distinct steady states and the associated secondary
instability regimes at large Ra. DNS are performed for six steady base states with aspect
ratios Ls1–Ls6 to study the fully nonlinear evolution of the fastest-growing instability
modes. Here, Lo is the aspect ratio for which the normalised horizontal-mean temperature
gradient γ = 0.

for larger Ls, e.g. Ls = 0.1585, the most unstable perturbation for each β has nearly
the same growth rate and a very similar spatial structure, which is strongly localised
near the upper and lower walls (figure 9b,c). Figure 10 shows the eigenspectrum
for three different (β, Ls) combinations. We note that the bulk mode, as shown in
figure 9(a), occurs for certain long-wavelength (e.g. β= 0.2) disturbances and exhibits
comparably small growth rates (σm = O(0.1)). At small Ls, the bulk modes control
the instability. As Ls is increased, however, an increasing number of wall modes
become unstable. These wall modes, which are born in a Hopf bifurcation associated
with the advection of small-scale disturbances within the thermal boundary layers
(see Aidun & Steen (1987) and Graham & Steen (1992, 1994)), ultimately dominate
the secondary instability with growth rates 10–50 times larger than those associated
with the bulk modes. For sufficiently large Ls, the eigenspectra for disturbances
with distinct fundamental horizontal wavenumbers are very similar. We conclude
this section by contrasting our secondary stability results with those of Hewitt et al.
(2013). Not only do we find two modes of instability rather than one, but in the
presence of walls the bulk modes are found to have much reduced growth rates:
specifically, O(0.1) rather than O(1).
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5. Nonlinear evolution of the instability
In this section we use strategically initialised high-resolution DNS in wide domains

to investigate the nonlinear evolution of the fastest-growing secondary instability mode
for various steady convective states distinguished by their wavelength Ls. Our aim
is to gain insight into the mechanisms by which the base flow, with plume spacing
Ls, evolves to the final columnar flow, with mean inter-plume spacing Lm (in the
bulk). The steady state at a given Ls plus a small-amplitude contribution of the most
unstable secondary instability mode is chosen as the initial condition, and then DNS
is performed in a large domain with L= 10Ls–20Ls.

As shown in figure 11, for a specific large Ra=O(104), with increasing L, generally
Lc<Lb<Lmax Nu<Lh<Lo<Lm, where Lc is the wavelength of the neutral mode on the
right-hand marginal stability boundary of the conduction state, Lb is the largest aspect
ratio at which only the bulk instability mode exists, Lmax Nu is the wavelength of the
steady cellular flow that maximises the heat transport, Lh is the largest aspect ratio
at which the heat-exchanger solution is relevant and Lo is the aspect ratio at which
the parameter γ vanishes (implying a steady base flow with zero mean stratification
in the centre of the cell). In the following sections, six different steady convective
states, five at Ra= 9976 and one at Ra= 50 000, are considered: Ls1 is less than Lc
so that the base state is the conduction solution; Ls2 is greater than Lc but within
the aspect-ratio range for which the bulk mode controls the instability; Ls3 is greater
than Lb but is within the numerical heat-exchanger solution regime; Ls4 is between
Lh and Lm, within the stably stratified core solution regime; Ls5 is close to the final
mean inter-plume spacing Lm; and Ls6 is much larger than Lm. Thus, for Ra= 9976,
for example, Lc = 0.063, Lb = 0.106, Lh = 0.172, Lm = 0.319 (measured from DNS in
L= 5.012) and Lf = 0.36.

5.1. Ls2 (Ra= 9976)
For Ra = 9976, we first perform DNS to investigate the dynamics ensuing from
unstable steady states with Ls = Ls2, which is within the bulk instability parameter
regime. The initial condition comprises 20 replicas of the steady convective state
at Ls = 0.1 plus a small-amplitude contribution of the corresponding fastest-growing
perturbation at β = 0.2. Figure 12 depicts the nonlinear evolution from this initial
state to the final turbulent columnar flow. Initially, the dominant horizontal mode
number in the interior is nd = 20. In accord with the stability analysis in § 4 and
as is evident in figure 12(b,c), the base state is unstable to a bulk mode. As the
secondary mode grows in amplitude, the pattern coarsens to an unsteady convective
state at τ = 87.29 (figure 12d) with five times the wavelength of the initial steady
cellular solution. The resulting mean inter-plume spacing, however, is larger than the
final Lm. Subsequently, some plumes growing from the upper and lower boundary
layers split the wider plumes into narrower ones (figure 12e). These proto-plumes
appear to be generated by a localised instability that closely resembles the wall-mode
secondary instability of strictly steady base states having a wavelength greater than Lb
(figure 12d). Ultimately, the system converges to a statistically steady turbulent state
(figure 12f ). Thus, there exist two stages of evolution: initially, the bulk instability
controls the evolution of the flow so that the background plumes merge forming
a convective flow with smaller interior wavenumber; then, as the plume spacing
becomes too wide, a variant of the boundary instability intensifies so that small
plumes generated from the upper and lower walls are able to split the wider plumes
into narrower ones until the flow settles into a statistically steady state. We note
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FIGURE 12. (Colour online) Snapshots of the temperature field from DNS showing the
nonlinear evolution of the fastest-growing secondary instability mode for Ls2 = 0.1, L =
20Ls2, Ra= 9976: (a) τ = 0; (b) τ = 49.38; (c) τ = 54.37; (d) τ = 87.29; (e) τ = 93.28;
(f ) τ = 446.94. (g) The time evolution of the dominant horizontal mode number nd at
z= 0.5 (solid line). The dashed line shows the time-average dominant mode number and
the circles correspond to the times highlighted in (a–f ).

that the first stage of this process is loosely similar to the instability and predicted
nonlinear evolution of the analytical heat-exchanger flow described in Hewitt et al.
(2013), in which only the bulk instability mode is found.

5.2. Ls3 (Ra= 9976)
Next, we consider a wider base flow with Ls = Ls3 = 0.1585, which also is a
member of the numerical heat-exchanger family but which is (most) unstable to wall
modes. From the stability analysis, the growth rate and spatial structure of the most
unstable perturbation are nearly independent of β (figures 8d and 9b,c). The initial
condition for the DNS consists of 16 copies of this steady state plus a small-amplitude
contribution of the most unstable perturbation at β= 0. Figure 13 shows the nonlinear
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FIGURE 13. (Colour online) Snapshots of the temperature field from DNS showing the
nonlinear evolution of the fastest-growing secondary instability mode for Ls3= 0.1585, L=
16Ls3, Ra = 9976: (a) τ = 0; (b) τ = 2.49; (c) τ = 42.90; (d) τ = 57.86; (e) τ = 82.30;
(f ) τ = 349.17. (g) The time evolution of the dominant horizontal mode number nd at
z= 0.5 (solid line). The dashed line shows the time-average dominant mode number and
the circles correspond to the times highlighted in (a–f ).

evolution from this initial condition to the final state. By construction, the dominant
horizontal mode number in the interior is nd = 16 at τ = 0. At early times (τ = 2.49,
figure 13b), proto-plumes generated in the upper and lower boundary layers because of
the wall instability are continually swept into and thus merge with the mega-plumes in
the interior. However, the resulting quasi-time-periodic flow itself evidently is unstable
to a variant of the bulk mode (figure 13c), causing a coarsening of the convective
pattern (figure 13d,e), in rough correspondence with the first stage of the evolution
for the base flow with Ls = Ls2. The plumes generated from the walls then split the
wider plumes before the flow reaches a statistically steady state (figure 13f ), similar
to the second stage of the evolution for the case for which Ls = Ls2. Interestingly,
the final state is not dominated by a unique horizontal wavenumber in the interior.
In short, there exist three evolutionary stages for the scenario with Ls = Ls3. In the
linear instability regime, the wall mode dominates the evolution of the flow so that a
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FIGURE 14. The time evolution of the dominant horizontal mode number nd at z= 0.5
for the temperature field from DNS at Ra= 9976 (solid line); the dashed line shows the
time-average dominant mode number: (a) Ls4=0.224, L=12Ls4; (b) Ls5=0.316, L=10Ls5.

series of proto-plumes rising from the walls merge with the background mega-plumes;
this process leaves the mean inter-plume spacing unchanged from its initial value Ls.
However, the modified roughly time-periodic flow appears to be susceptible to a
bulk instability, causing the merger of some mega-plumes. Finally, as the inter-plume
spacing increases, a wall-like mode is again activated and some of the nascent
proto-plumes split the wider plumes, yielding the final turbulent convective state. This
scenario suggests that a generalisation of the bulk instability may occur for unsteady
flow, and that this instability intensifies as the inter-plume spacing is reduced.

5.3. Ls4 and Ls5 (Ra= 9976)
Figure 14 shows the time evolution of the dominant horizontal mode number in the
interior for the cases Ls = Ls4 and Ls = Ls5. For Ls = Ls4 = 0.224, the steady state
belongs to the family of stably stratified core solutions, but the inter-plume spacing is
still less than that of the final state. From figure 14(a), it can be ascertained that the
evolution for the case Ls4 is similar to that for the case Ls3. In figure 14(b), Ls5=0.316
is very close to Lm so that the base state evolves directly to the final state, with the
dominant interior horizontal wavenumber fluctuating within a small range.

5.4. Ls6 (Ra= 9976)
Figure 15 shows the evolution for the case Ls = Ls6 = 0.501, which is much larger
than Lm. As demonstrated using secondary stability analysis, this wide-aspect-ratio
convective state is strongly unstable to a wall mode. At early times, a series of
proto-plumes generated from the upper and lower boundary layers continually feed
the background mega-plumes (figure 15b,c), creating a quasi-periodic flow state.
Moreover, for a short time, the dominant interior horizontal wavenumber for this
unsteady flow remains constant at Ls6, hence the inter-plume spacing remains much
larger than Lm. However, due to the strong boundary instability some proto-plumes
grow and split the wider mega-plumes into narrower ones. This process continues
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FIGURE 15. (Colour online) Snapshots of the temperature field from DNS showing the
nonlinear evolution of the fastest-growing secondary instability mode for Ls6 = 0.5012,
L = 10Ls6, Ra = 9976: (a) τ = 0; (b) τ = 1.50; (c) τ = 40.40; (d) τ = 573.64. (e) The
time evolution of the dominant horizontal mode number nd at z = 0.5 (solid line). The
dashed line shows the time-average dominant mode number and the circles correspond to
the times highlighted in (a–d).

until the flow converges to the final state. Thus, there is only a single stage of
evolution for this case: the strong boundary instability dominates the evolution of
both the initial steady state and the ensuing unsteady flow with large Ls, generating
boundary plumes that ultimately split the wide-aspect-ratio interior mega-plumes. This
boundary instability becomes much stronger as Ls increases.
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FIGURE 16. (Colour online) The splitting process from a wider plume to a narrower one,
Ls6= 0.5012, L= 10Ls6, Ra= 9976: (a) τ = 40.4; (b) τ = 43.4; (c) τ = 47.9; (d) τ = 51.4;
(e) τ = 56.4; (f ) τ = 59.9; (g) τ = 61.9; (h) τ = 68.8. The solid ellipse marks the growing
process for the hot plume and the dashed ellipse marks the growing process for the cold
plume. Only the portion of the domain 0 6 x 6 0.69 is shown to highlight the plume
splitting process.

As noted above, only a fraction of the growing proto-plumes successfully split the
wide mega-plumes. Figure 16 shows this plume splitting process. Initially, a small
(warm) proto-plume is generated near the lower wall because of the boundary-
localised instability (figure 16a). Shortly thereafter, many smaller proto-plumes
generated around its root merge with the primary proto-plume, accelerating its
growth (figure 16b,c). Meanwhile, another (cold) proto-plume is generated near the
upper wall and grows downward (figure 16c,d). The upward growing plume soon
reaches the upper wall, forming a mega-plume (figure 16e). Near the bottom wall,
this mega-plume begins to merge with its neighbouring warm mega-plume; however,
the growing cold plume disrupts this merging process by splitting the wider root into
two narrower roots (figure 16f ). Finally, the cold plume reaches the bottom wall,
forming another downwelling mega-plume (figure 16g). Hence, the wider plume is
successfully split into two narrower ones (figure 16h).

5.5. Ls1 (Ra= 50 000)
As described in § 2, the conduction solution is linearly stable in domains of sufficiently
small aspect ratio (L<Lc). This solution is, of course, linearly unstable at larger L. We
note that since the wavenumber of the fastest-growing mode kf = ±(π

√
Ra − π2)1/2,

the corresponding wavelength 2π/kf is larger than the mean inter-plume spacing
measured from DNS at large Ra, e.g. at Ra = 50 000. To illustrate the nonlinear
evolution of a non-convective base flow with very small Ls = Ls1 6 Lc in the high-Ra
regime, the conduction solution plus its most unstable perturbation at Ra = 50 000
is used as the initial condition for DNS in a larger domain with L = 10Lf . From
figure 17, we see that at early times the flow evolves in accord with the predictions
of linear theory (see (2.9) and figure 17b,c). However, after a short while, thermal
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FIGURE 17. (Colour online) Snapshots of the temperature field from DNS showing the
nonlinear evolution of the fastest-growing linear instability mode for any Ls1 6 Lc, L =
10Lf (Lf = 0.2387), Ra = 50 000: (a) τ = 0; (b) τ = 6; (c) τ = 8.25; (d) τ = 9.5; (e)
τ = 10.5; (f ) τ = 16.5; (g) τ = 28; (h) τ = 227. (i) The time evolution of the dominant
horizontal mode number nd at z = 0.5 (solid line). The circles correspond to the times
highlighted in (a–h).

boundary layers form near the upper and lower walls, and in the interior the flow
develops a stably stratified structure (with hot/lighter fluid above cold/heavier fluid,
figure 17d). This structure is similar to that of the steady stably stratified core solution
at large Ls. Since the inter-plume spacing is comparably large, a boundary instability
dominates the subsequent evolution, with many small proto-plumes generated near the
walls (figure 17e). Unlike the previous cases in which the proto-plumes merge into the
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Ra
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100

101

FIGURE 18. (Colour online) Variation of mean inter-plume spacing with Ra. The points
have been computed from the DNS reported here; the solid line marks the fitted mean
inter-plume spacing measured from the DNS of Hewitt et al. (2012). The DNS performed
in this study were carried out in a domain with aspect ratio L= 10Lf for 39 716 6 Ra 6
99 763; a domain with L = 11Lf was also used for Ra = 39 716. For Ra 6 19 905, the
dominant interior horizontal mode varies (in time) within a small range so that Lm can be
determined by taking a long-time average of the inter-plume spacing. However, for Ra >
39 716, the interior flow becomes very well organised and (apparently) can be statistically
steady for a band of wavelengths (the dash-dotted box).

background mega-plumes, the strong stable stratification in the core prevents the warm
and cold plumes from penetrating across the domain. Instead, these proto-plumes
impact near the mid-plane (figure 17f ). After a series of plume merging and splitting
events, the flow evolves to the final state (figure 17g,h). Figure 17(i) shows the
evolution of the dominant interior mode number for this scenario.

5.6. Statistical inter-plume spacing up to Ra=O(105)

From the preceding discussion, we conclude that for large Ra the final mean
inter-plume spacing is determined by a balance between (suitably generalised)
bulk-mode and wall-mode instabilities. When the inter-plume spacing is small, the
bulk mode controls the instability, causing plume merger and coarsening of the
convective pattern; when the inter-plume spacing is large, the wall-mode instability
dominates, causing small plumes generated from the walls to split the wider plumes
into narrower ones. To find the mean inter-plume spacing at which the effects of
these two instabilities balance, we performed DNS up to Ra=O(105) and measured
Lm by taking a long-time average of the inter-plume spacing. Our results are plotted
in figure 18. Interestingly, for Ra > 39 716, the interior flow becomes very well
organised and appears to be metastable within a band of wavelengths. For instance,
at Ra = 50 000, given different initial conditions, there can exist 14, 16, 17 or
18 plumes in a domain with L = 10Lf . These numerical experiments suggest that
very long averaging times and very wide domains are required to firmly establish
the nonlinear scale selection manifested in turbulent porous medium convection. In
particular, our data arguably could be fitted by scaling relations of the form Lm∼Raα
with α 6= −0.4, the exponent proposed by Hewitt et al. (2012).
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6. Conclusion
We have examined the form, stability and nonlinear evolution of initially steady

cellular porous medium convection in the high-Ra regime as a function of the
domain aspect ratio. Our results show that the steady solutions capture certain
features characterising the turbulent columnar flows observed in DNS. For steady
states with small aspect ratio Ls (but for which Ls > Lc, the linear stability boundary),
the steady flow has a heat-exchanger structure in the interior: the vertical advection
of the horizontal-mean temperature is precisely balanced by the lateral diffusion
of the fluctuation temperature field associated with a single horizontal Fourier
mode. However, as Ls increases, the interior flow develops a stably stratified core
involving many Fourier modes; moreover, the interior fluctuation fields are not
depth-independent, also unlike their heat-exchanger counterparts. By comparing
these equilibrium solutions with the time-averaged columnar flow in DNS, we find
that the interior part of the mean columnar convection is neither a heat exchanger
nor a stably stratified core flow, but rather blends certain features of these two
steady solutions. Our results indicate that Lh, the maximum Ls at which the strictly
steady heat-exchanger solution exists, is almost half of the mean inter-plume spacing
Lm measured from the DNS. Furthermore, heat transport in steady porous medium
convection is confirmed to be less efficient than that occurring in turbulent convection.
Specifically, steady convection has a ridge of maximum Nu in (Ra,Ls) parameter space
along the curve Ls ∼ Ra−0.52, with Nu∼ Ra0.6 along this ridge.

Linear stability analysis of these fully nonlinear steady states indicates that the
steady solutions are most unstable at large Ra to one of two types of secondary
modes. For small Ls, the most unstable disturbance is a bulk mode having roughly
three to five times the wavelength of the steady convective state. The bulk instability
intensifies as Ls is reduced. For large Ls, the most unstable disturbance has a growth
rate that is essentially independent of horizontal scale and a vertical structure that
is strongly localised near the walls. The growth rate of this wall mode increases
as Ls increases and is generally an order of magnitude larger than that of the bulk
mode. The nonlinear evolution of unstable steady convective states suggests that
these two types of secondary instability play a primary role in determining the
mean inter-plume spacing realised in turbulent porous medium convection. When
the inter-plume spacing is small, the bulk mode drives the instability, causing plume
merging and coarsening of the convective pattern; when the inter-plume spacing is
large, the wall-mode instability dominates, causing small plumes generated from the
walls to split the wider plumes into narrower ones. For generic initial conditions, this
to-and-fro process continues until there is a balance between the effects of these two
types of instability. We note that for the particular case in which a conduction solution
is established at large Ra and then subjected to a broad spectrum of small-amplitude
disturbances, the fastest-growing linear mode will dominate the early evolution. As
shown in § 5.5, the flow evolves towards a steady convective state that necessarily
has a lateral scale ≈Lf (the wavelength of the fastest-growing linear mode) that is
larger than the final mean inter-plume spacing. In this scenario, too, the dominant
secondary instability by which the resulting quasi-steady flow initially approaches the
final mean inter-plume spacing Lm observed in statistically steady turbulent porous
medium convection is the wall mode rather than the bulk mode identified in Hewitt
et al. (2013).

Our DNS show that, in sufficiently wide domains, for Ra 6 19 976 the dominant
wavelength of the interior columnar flow may vary with time within a small range
(figure 15e). In contrast, for Ra > 39 716, the dominant interior wavelength remains
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constant at sufficiently large times (figure 17i). Interestingly, our simulations suggest
that this final inter-plume spacing is not unique but may itself fall within some
small band. Although more simulations are required to determine the boundaries
of this band, it is clear that the precise high-Ra scaling of the mean interior
inter-plume spacing in statistically steady porous medium convection remains to
be firmly established and will require extremely long simulations in very wide
computational domains.
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