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This paper tests the ability of New Keynesian models to match the data regarding a key
channel for monetary transmission: the dynamic interactions between macroeconomic
variables and their corresponding expectations. We exploit survey expectations data and
adopt a dynamic stochastic general equilibrium (DSGE)-VAR approach to assess the
extent and sources of model misspecification. The results point to serious misspecification
in the expectations-formation side of the DSGE model. The rational expectations
hypothesis is primarily responsible for the model’s failure to capture the co-movements
between observed macroeconomic expectations and realizations. Alternative models of
expectations formation help partially reconcile the New Keynesian model with the data.
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1. INTRODUCTION

Expectations have always played a central role in models of monetary policy analy-
sis. Fluctuations in real activity and inflation are in large part driven by expectations
about future demand, inflation, and monetary and fiscal policy choices. Over the
last two decades, the management of expectations has evolved into probably the
most fundamental and widely discussed component of monetary policy making.
Woodford (2003), in his seminal textbook on New Keynesian thought, writes
“For successful monetary policy is not so much a matter of effective control of
overnight interest rates as it is of shaping market expectations of the way in which
interest rates, inflation, and income are likely to evolve over the coming year and
later.” He then goes on to add that not only expectations matter in policy making,
but also little else matters. Svensson (2004), Bernanke (2004), and Blinder et al.
(2008), as well as many other monetary researchers and policy makers, subscribe
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to the same view that recognizes the expectations channel as the main channel for
stabilization policy.

In state-of-the-art monetary business cycle models, macroeconomic expecta-
tions are almost universally modeled according to the rational expectations hy-
pothesis (REH). Agents form model-consistent expectations using all available
information. They are assumed to know the correct model of the economy, its
parameters, the distribution of the shocks, and so forth. Whereas various elements
of the models are routinely checked and tested one against the other, the REH is
often taken for granted in empirical work and left unchecked.

But are New Keynesian models subject to the REH able to capture the pat-
terns of interactions between macroeconomic expectations and macroeconomic
realizations that are observed in the data?

We argue that understanding the model’s ability to match the data in this di-
mension is particularly critical in light of the fundamental role played by expec-
tations, and the growing view of monetary policy as management of expectations.
Furthermore, the focus on expectations has increased even more in the aftermath of
the Great Recession, in light of current efforts by central banks around the world
to provide markets with “forward guidance,” with the aim of creating expecta-
tions of expansionary future monetary policies and thus stimulate their respective
economies.

1.1. Our Approach

We exploit data on survey expectations to estimate a benchmark New Keynesian
model with frictions and rational expectations. We use a dynamic stochastic gen-
eral equilibrium (DSGE)-VAR approach to study misspecification in the model,
with a particular focus on potential misspecification in the expectations block.

The DSGE-VAR approach, proposed by Del Negro and Schorfheide (2004),
and also used in Del Negro and Schorfheide (2005, 2009) and Del Negro et al.
(2007), allows us to evaluate, in the estimation, all models in the continuum
between two extremes: the rational expectations DSGE model, which imposes all
the cross-equation restrictions that exist under the REH, and the unrestricted VAR
model, which characterizes the joint dynamics of the observable variables and
expectations without imposing restrictions from theory or the REH. A parameter,
which will be denoted by λ, governs the weight placed on the DSGE restrictions in
the specification that is found to be favored by the data within the model continuum.
This approach is particularly suited to investigate misspecification of structural
models. A similar approach has been used by Del Negro et al. (2007) to identify the
areas of misspecification in small and medium-scale DSGE models. As typical in
the DSGE literature, however, they retain the assumption of rational expectations
throughout the analysis. Here, we explicitly focus on potential misspecification in
the way that expectation formation is modeled.

We start by estimating the New Keynesian model under the conventional as-
sumption of rational expectations. We then include observed survey data to the
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set of observable variables that the estimation is required to match. We can,
therefore, evaluate whether the DSGE’s restrictions prove useful in successfully
capturing the co-movement between macroeconomic expectations and outcomes,
or, alternatively, whether the data suggest the rejection of such restrictions.

1.2. Results

The DSGE-VAR approach reveals a substantial failure of the New Keynesian
model under rational expectations to match the joint evolution between macroe-
conomic observations and expectations that exist in the data.

The estimated prior tightness parameter λ declines toward values favoring the
unrestricted VAR in the case in which observed expectations are added to the
estimation. DSGE restrictions obtain a higher weight when the model with rational
expectations is freed from the need to match actual data on expectations.

We then proceed to study misspecification in more detail by checking where
exactly the model is failing. We do so by comparing the impulse responses obtained
for the best-fitting DSGE-VAR model with the optimal λ with those corresponding
to the model in which the DSGE restrictions are imposed. The DSGE model’s
responses predominantly and continually leave the probability intervals implied
by the DSGE-VAR model with the optimal λ. In various instances, the DSGE
model’s responses of output growth, inflation, and the interest rate, fail to match
the required persistence found in the best-fitting DSGE-VAR model. The responses
of expectations within the DSGE model are often misspecified and display signs
and patterns inconsistent with the responses of survey expectations in the data.

We therefore propose a selection of alternative expectation formation schemes
that relax, in part or fully, the REH. The first alternative is based on a perceived law
of motion (PLM) that has the same structural form as the minimum state variable
solution of the model (excluding the disturbances, which are now assumed to
remain outside the agents’ information set), and that corresponds to a VAR model
in output, inflation, and interest rates (we also consider a misspecified AR(1) law
of motion, as alternative). This expectation formation assumption is in the spirit
of learning models [Evans and Honkapohja (2001), Milani (2007)]; we do not,
however, directly incorporate learning dynamics. The second deviation allows
for heterogeneous expectations. We assume that a share of private-sector agents
in the economy forms expectations according to the previously described VAR
model, whereas the remaining share forms rational expectations. Finally, as a third
alternative, we motivate our expectation models from the evidence on expectation
formation available from laboratory experiments. Hommes (2011) and Assenza
et al. (2012) show that expectations from the lab are clearly heterogeneous and
cluster around three groups: adaptive expectations, trend-following expectations,
and “anchor and adjustment” rules. We insert those expectation formation rules
in our New Keynesian model and add a share of agents maintaining rational
expectations. The relative shares are estimated from the data. Besides changing
the expectations formation rules, we also allow expectations to be affected by
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expectation shocks, which are independent from fundamentals, and potentially
account for excesses of optimism and pessimism. The use of these expectation
shocks is motivated by empirical evidence in Milani (2011, 2013).

We find that for the alternative expectation models, the overall fit substantially
improves. Moreover, the DSGE-VAR estimations show that the model-imposed
restrictions now become more valuable since larger values of λ provide the best
fit of the data. The parsimonious cases with the AR and VAR perceived laws of
motions are the overall best-fitting specifications.

Expectation shocks are also important. For instance, an expectation shock to
expected one-period-ahead output growth is found to explain 86%, 28.1%, and
41.7% of fluctuations in output growth, inflation, and the interest rate, respectively.
The expectation shocks also explain a large amount of fluctuations in the expecta-
tion series of output growth and inflation (53.9% and 46.8%, respectively). These
shares collapse to zero by construction in benchmark rational expectation models.

1.3. Related Literatures

The main scope of this paper is to highlight the misspecification of New Keyne-
sian models of monetary policy in a key area: the empirical relationship between
macroeconomic expectations and realizations. As we discussed, this misspecifi-
cation is particularly relevant in light of recent studies investigating the potential
impact of central bank communication, announcements, and forward guidance
policies, which relies heavily on private-sector expectations responding as envi-
sioned. Del Negro et al. (2012) show that the impact of forward guidance in New
Keynesian DSGE models is exceedingly large to be deemed believable. Our paper
has a different focus, but it further stresses the failure of the model under rational
expectations to capture the behavior of expectations.

This paper closely relates to the literatures that have focused on relaxing the
REH. A large body of literature relaxes rational expectations to assume that
agents are learning about the economy over time. The research in this area
studies eventual convergence to the rational expectations equilibrium [Evans and
Honkapohja (2001)], the contribution of transitional learning to business cycles
[Milani (2007, 2011), Eusepi and Preston (2011)], and the role of less-than-fully-
rational expectations for monetary policy [Preston (2008), Cole (2015, 2016)].
Other studies emphasize the importance of heterogeneous expectations. Branch
and McGough (2009) incorporate heterogeneous expectations in a New Keyne-
sian model. Hommes (2011) provides experimental evidence on the importance
of heterogeneity and adaptive behavior in the formation of expectations.

A number of papers have used data on survey forecasts in related contexts
before. Roberts (1997) uses nonfully rational expectations as a way to predict
costly disinflations. Brissimis and Magginas (2008) analyze the fit of the New
Keynesian Phillips curve when inflation expectations are replaced by survey in-
flation forecasts. Adam and Padula (2011) also estimate versions of the New
Keynesian Phillips curve with survey data and show that it performs well, using
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both detrended output and unit labor costs as inflation driving variables. These
works focus on a single equation, the Phillips curve, and consider only inflation
forecasts. Our study exploits a wider range of forecasts, including also output
growth expectations for one- and two-quarters ahead. The main innovation of our
paper, however, is the study of fit and misspecification of the New Keynesian
model using a DSGE-VAR approach.

We also add to previous studies [Del Negro and Schorfheide (2004, 2005), Del
Negro et al. (2007), Del Negro and Schorfheide (2009)] that highlight the promise
of DSGE-VAR’s as means of investigating the sources of misspecification in
empirical DSGE models, although always retaining the REH. Granziera (2012)
also focuses on expectations formation, but she is interested in testing the empirical
evidence of adaptive learning. She does not exploit data on survey expectations in
the DSGE-VAR estimation. We also evaluate the fit of the New Keynesian model
under alternative expectations. We show in this paper that modeling expectations as
suggested by learning or heterogeneous expectation approaches can considerably
improve the fit of a benchmark New Keynesian model to the data.

2. NEW KEYNESIAN MODEL

The following section describes the benchmark New Keynesian model that we
use in the empirical analysis. The model is built from explicit microeconomic
foundations and it includes the endogenous sources of persistence that are typ-
ically necessary to fit macroeconomic data, such as habit formation in private
expenditures and indexation to lagged inflation in firms’ price-setting. The model
is thoroughly analyzed in Woodford (2003) and it has been estimated in Gian-
noni and Woodford (2004) and Milani (2007), among others.1 The log-linearized
aggregate demand, Phillips curve, and monetary policy equations are given by

x̃t = Et x̃t+1 − (1 − βη)σ(it − Etπt+1 − rn
t ), (1)

π̃t = ξp{ωxt + [(1 − ηβ)σ ]−1x̃t } + βEt π̃t+1 + μt, (2)

it = ρit−1 + (1 − ρ)(χππt + χxxt ) + ε
mp
t , (3)

where

π̃t ≡ πt − γπt−1,

x̃t ≡ (xt − ηxt−1) − βηEt(xt+1 − ηxt ),

and where xt , πt , and it denote the output gap, inflation, and the nominal interest
rate, respectively. Equation (1) describes aggregate demand: The current gap be-
tween actual and potential output is a function of expected one-period-ahead and
two-period-ahead output gaps, expected one-period-ahead inflation, the nominal
interest rate, and the natural real interest rate disturbance rn

t .2 Households’ prefer-
ences are characterized by internal habit formation, with the coefficient 0 ≤ η ≤ 1
denoting the strength of habits in their utility function. The household’s discount
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rate is given by 0 ≤ β ≤ 1, whereas σ > 0 measures the elasticity of intertemporal
substitution of consumption. Equation (2) is the New Keynesian Phillips curve,
which expresses inflation as a function of lagged, current, and expected one-
period-ahead output gaps, lagged and expected one-period-ahead inflation, and a
cost-push shock μt . This equation derives from the profit maximization decision
of monopolistically competitive firms. Following the price-setting framework of
Calvo (1983), a fraction (1 − θ) of firms are able to re-optimize each period with
respect to their prices. The remaining fraction θ of firms index their prices to past
inflation following Christiano et al. (2005), with 0 ≤ γ ≤ 1 denoting the degree of
inflation indexation. The composite coefficient ξp ≡ (1−θβ)(1−θ)/θ is inversely
related to the degree of price stickiness in the economy. The elasticity of marginal
costs with respect to output is defined by the parameter ω. Finally, equation (3)
characterizes monetary policy in the economy as a Taylor rule with interest-rate
smoothing. The central bank adjusts the nominal interest rate based on the lagged
nominal interest rate, current inflation, and output gap; ε

mp
t captures unanticipated

monetary policy shocks. The feedback coefficients χπ and χx denote the weights
place on the control of inflation and the output gap. The parameter ρ captures the
central bank preference for smoothing interest rate changes over time.

The structural disturbances, with the exception of the monetary policy shock,
which is conventionally modeled as independent and identically distributed (i.i.d.),
evolve as AR(1) processes:

rn
t = φdr

n
t−1 + σrε

r
t , (4)

μt = φμμt−1 + σμε
μ
t . (5)

All innovations ε
mp
t , εr

t , and ε
μ
t are assumed to be drawn from a Normal distribu-

tion.
Following the dominant paradigm in macroeconomics, expectations, denoted

by the mathematical operator Et , are modeled for now according to the REH.

2.1. RE Solution and State-Space Representation

The structural model can be rewritten in state-space form as

�0Xt = �1Xt−1 + �εt + �ηt , (6)

where Xt includes the endogenous variables, the expectation terms, and the AR
disturbances, εt is a vector including the model’s exogenous innovations, and
ηt = Xt−Et−1Xt represents a vector of expectational errors, such that Etηt+1 = 0.
The model written in this form can be solved under the assumption of rational
expectations, using the approach laid out in Sims (2000). Under rational expecta-
tions, the expectational errors disappear from the model as they are mapped into
the set of structural shocks. The solution can be written in state space as

Xt = FXt−1 + Gεt , (7)

which yields the transition equation for our state-space model.
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We will estimate the model by both omitting and including the available data
series on expectations as observables, in addition to macroeconomic realizations
on output growth, inflation, and the interest rate.

The transition equation is, therefore, augmented with the following set of ob-
servation equations, expressed here for the case in which expectations series are
added to the list of observables:⎡

⎢⎢⎢⎢⎢⎢⎣

gobs
t

πobs
t

iobs
t

Eobs
t gt+1

Eobs
t gt+2

Eobs
t πt+1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

gt

πt

it
Etgt+1

Etgt+2

Etπt+1

⎤
⎥⎥⎥⎥⎥⎥⎦

+
[

03×3

I3×3

] ⎡
⎣ o

gt+1
t

o
gt+2
t

o
πt+1
t

⎤
⎦ , (8)

where gt denotes the growth rate of real output, and Etgt+1 and Etgt+2 denote
one-period-ahead and two-period-ahead real output growth expectations, respec-
tively. Therefore, we assume that observed expectations are equal to the rational
expectations implied by the model plus an i.i.d. measurement error, denoted by ot .

3. DSGE-VAR ESTIMATION

3.1. The DSGE-VAR Approach

The DSGE-VAR estimation approach used in this paper follows the framework
developed in Del Negro and Schorfheide (2004). We provide some intuition here
and lay out the technical details in Appendix A. The DSGE-VAR method exploits
information from a DSGE model to aid in estimating the parameters of a VAR.
Although VAR’s are typically successful in identifying interrelationships among
variables under minimal theoretical restrictions and outperform various alterna-
tives in out-of-sample forecasting, one of their most significant drawbacks is that
they are far from parsimonious. The DSGE-VAR approach helps in this dimension
by essentially shrinking the VAR parameter subspace toward the values implied
by the DSGE model. At the same time, the approach improves over structural
DSGE estimation by providing it with more flexibility: The DSGE cross-equation
restrictions may not necessarily be imposed dogmatically, but the data are allowed
to deviate from them (or from some of them) to the extent that they need.

To aid the interpretation, one way to think about the DSGE-VAR approach
is as follows. For a given value of the DSGE model’s parameters, and given
realizations of the shocks, the DSGE model is simulated to generate artificial
data. Adopting a DSGE model prior, in fact, is equivalent to augmenting the data
with new, generated, dummy observations. The parameters of the VAR model are
subsequently estimated using a sample merging the DSGE simulated data and
real data. A key parameter, which will be denoted by λ, can be interpreted, for
now, as the ratio of artificial DSGE observations over actual observations. If the
process is repeated for different values of the DSGE parameters, and if the DSGE
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is covariance-stationary, a mapping can be defined between the VAR and DSGE
parameters. The mapping creates a restriction function for the VAR parameters
based on the DSGE model. If λ → 0, the DSGE contains no useful information:
The best fit is obtained when the artificial DSGE observations and, hence, their
implied theoretical restrictions are entirely ignored. If λ → ∞, DSGE prior
dummy observation dominates the sample. Therefore, the DSGE model provides
a superior description of the data. The parameter λ, therefore, can measure the
relative fit of the DSGE model to the VAR model.3

In practice, λ will scale the standard deviation of the variance–covariance matrix
of the priors for the VAR coefficients. The DSGE-VAR estimation considers
all possible cases in the continuum between the VAR and the DSGE model. A
small λ indicates that the VAR coefficient prior distributions are centered at the
values consistent with DSGE restrictions, but they are extremely diffuse; a large λ

indicates a prior that is more tightly centered around the DSGE restrictions (with
a lower variance). By finding the best-fitting λ, we can gain intuition about how
useful DSGE restrictions are in explaining the data.

3.2. Data Description

We use quarterly data on real GDP growth, GDP implicit price deflator inflation,
and the Federal funds rate, from Federal reserve economic data (FRED), as observ-
able variables that need to be matched in the estimation. For estimated DSGE and
DSGE-VAR models with expectations, we add to the previous set of realized series
observed data on expectations, which enter the measurement equation as shown
in (8). We use expectations about one-period-ahead real GDP growth, two-period-
ahead real GDP growth, and one-period-ahead GDP deflator inflation. These are
the expectations that directly enter the model and are obtained from the Survey
of Professional Forecasters (SPF) (we use means across forecasters in the main
estimations, and medians in Section 6.2).4 The sample in the estimation spans
the years between the last quarter of 1968, chosen because the survey series on
expectations start from this date, and 2009, when we stop to avoid the nonlinearity
imposed by the binding zero-lower-bound constraint in the subsequent years.

Figure 1 shows the relation over the sample among realizations for output
growth and inflation and the corresponding expectations series from the SPF.

3.3. Prior Selection and Bayesian Estimation

Our choices for the parameters’ prior distributions are shown in Table 1. We
select a Gamma prior for the intertemporal elasticity σ with mean equal to 1. The
priors for ξp and ω have means that are chosen based on Giannoni and Woodford
(2004). We use inverse gamma priors for the standard deviation coefficients of the
structural innovations. For the standard deviations related to measurement error,
instead, we use Gamma(0.3,0.3) distributions, which allow us to assign higher
probability to values that fall closer to zero than to larger values. We choose Beta
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FIGURE 1. Real output growth and inflation: Expectations and realizations.
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TABLE 1. Prior and posterior estimates

Posterior distribution
Prior

distribution w/o Exp.(λ = λ̂opt) w/ Exp.(λ = λ̂opt) w/ Exp.(λ = ∞)

Distribution Mean 5% 95% Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.67 0.22 1.10 0.72 0.23 1.20 0.32 0.20 0.43
100 ∗ ξp G(0.15,0.05) 0.14 0.07 0.21 0.15 0.07 0.23 0.08 0.04 0.12
ω N(0.90,0.25) 0.88 0.47 1.28 0.91 0.51 1.30 0.82 0.41 1.23
η B(0.70,0.10) 0.74 0.60 0.88 0.63 0.47 0.80 0.47 0.42 0.52
ρ B(0.75,0.10) 0.68 0.57 0.78 0.67 0.55 0.80 0.69 0.63 0.76
χπ N(1.50,0.25) 1.24 0.88 1.58 1.42 1.02 1.83 1.06 0.89 1.24
χx N(0.125,0.05) 0.17 0.11 0.23 0.16 0.08 0.23 0.10 0.06 0.14
γ B(0.50,0.15) 0.50 0.23 0.77 0.31 0.11 0.49 0.72 0.66 0.79
φd B(0.50,0.20) 0.84 0.73 0.95 0.84 0.70 0.97 0.91 0.88 0.94
φμ B(0.50,0.20) 0.22 0.03 0.40 0.16 0.02 0.29 0.03 0.01 0.06
λopt U(λmin, ∞) 0.57 0.35 0.77 0.16 0.12 0.21 ∞ – –
σd IG(0.30, 2.00) 0.68 0.23 1.18 0.41 0.14 0.72 0.45 0.28 0.63
σμ IG(0.30, 2.00) 0.13 0.10 0.16 0.13 0.09 0.17 0.17 0.15 0.19
σm IG(0.30, 2.00) 0.23 0.19 0.27 0.24 0.17 0.31 0.34 0.31 0.38
σ me

g1 G(0.30,0.30) – – – 0.19 0.14 0.24 0.29 0.26 0.32
σ me

g2 G(0.30,0.30) – – – 0.14 0.10 0.18 0.19 0.17 0.21
σ me

π G(0.30,0.30) – – – 0.11 0.08 0.13 0.20 0.18 0.22

logMargL (3 series) −290.19
logMargL (6 series) −215.49 −357.23
λ̂opt − λmin 0.43 0.08 –

Notes: w/o Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model without expectation data; w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with expectation data;
w/ Exp.(λ = ∞) corresponds to DSGE-VAR(λ = ∞) model with expectation data. G: Gamma distribution, N: Normal distribution, B: Beta distribution, U: Uniform distribution, IG:
Inverse-Gamma distribution.
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distributions with mean 0.7 for the habit formation in consumption coefficient and
with mean 0.5 for the inflation indexation coefficient. Finally, a key parameter of
focus in this paper is λ, indicating the tightness of DSGE prior restrictions. We
use an uninformative uniform prior between the allowed λmin and ∞.5 We have
experimented with more informative Gamma priors and, given that the data appear
very informative, the results were entirely similar.

We estimate the combined DSGE-VAR models using Bayesian methods. We
generate draws through a Metropolis–Hastings algorithm. We run four chains of
one million draws each, starting from different initial values and discarding a
burn-in of 200,000 draws. To choose the ideal lag length, we performed a search
by estimating all DSGE-VAR models with lag length going from one to eight. For
each estimated DSGE-VAR, we report the results corresponding to the best-fitting
specification.6

4. EMPIRICAL RESULTS

4.1. RE without Expectations Data

As a benchmark, we first estimate the New Keynesian model summarized by
equations (1)–(5), with expectations formed according to the REH. We follow the
conventional approach in the empirical macroeconomic literature by not requiring
rational expectations to try to fit the corresponding observed expectations from
surveys.

Table 1 shows the posterior results. The posterior mean estimates are in line with
previous existing evidence. The model requires large degrees of habit formation
(η = 0.74) and inflation indexation (γ = 0.50) to match the persistence in the
data. The disturbance entering the aggregate demand equation displays a sizable
serial correlation, with a posterior mean for the AR coefficient equal to 0.84. We
obtain moderate degrees of intertemporal substitution (σ = 0.67) and a Phillips
curve coefficient ξp equal to 0.0014, the latter in line with the estimate in Giannoni
and Woodford (2004).7

The main interest in the estimation, however, lies in the estimate of the best-
fitting λ, governing the tightness of the DSGE prior restrictions that are imposed
on the VAR coefficients. We obtain a value of λ equal to 0.57. To facilitate compar-
ison across different estimations, we also present a relative indicator of distance
between the DSGE and VAR specifications, which corrects for the different values
of λmin. The relative indicator, as suggested by Adolfson et al. (2008) is given by
(λopt − λmin) and, here, it is equal to 0.43. The results, therefore, conform with
the evidence in Del Negro and Schorfheide (2004) and Del Negro et al. (2007):
A DSGE-VAR with intermediate λ fits the data best, outperforming both the
DSGE and the VAR benchmarks. The DSGE restrictions are, therefore, useful in
improving the unrestricted VAR estimates.

In this estimation scenario, however, we have let expectations free to adjust to fit
the realized data. But do actual private-sector expectations behave in the same way
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as the implied rational expectations from the model? We now turn to investigate
this issue by explicitly incorporating the available data on expectations from the
SPF in the estimation.

4.2. RE with Expectations Data

We re-estimate the model, but now adding observed survey expectations to the list
of observable variables to match. Observed expectations and rational expectations
obtained from the model are related through the measurement equations laid out
in (8).

First, we re-estimate the DSGE-VAR to find the best-fitting specification in
the model space between the unrestricted VAR and the fully restricted DSGE
model, i.e., the optimal λ. We then re-estimate the model by imposing the DSGE
restrictions, i.e., we consider the DSGE-VAR(λ = ∞) approximation. Estimation
of these two cases allows us to study where misspecification takes place in the
model. We can gain intuition on the areas of misspecification, for example, by
comparing the impulse responses between the specification that yields the best fit
of the data and the specification that dogmatically imposes the DSGE restrictions.

Table 1 shows the posterior estimates corresponding to the two cases. Although
the addition of expectations does not substantially alter the DSGE-VAR coefficient
estimates, the conclusions regarding the ability of the DSGE restriction to help in
explaining the data need to be largely reassessed.

When the estimation is required to match the co-movement observed in the
data between macroeconomic outcomes and expectations, the data point toward
substantially rejecting the DSGE restrictions. The posterior estimate for λ is equal
to 0.16, only marginally larger than the minimum allowed λ (which falls around
0.08). Our relative indicator of misspecification (λopt − λmin), hence, falls from
0.43 to 0.08, when the model is asked to match expectations. The DSGE model,
therefore, is unable to capture the dynamic adjustment between macroeconomic
data and expectations. We believe that this is a key failure of the New Keynesian
model, given the role that the expectations channel plays both in the propagation
of business cycles and in the transmission of monetary policy decisions to the
economy.

Therefore, we seek to investigate in more depth where the main sources of mis-
specification in the theoretical model lie. Figures 2–4 show the impulse response
functions of output growth, inflation, the nominal interest rate, expected output
growth, and expected inflation, to demand, supply, and monetary policy shocks.
The DSGE model’s impulse responses are compared to the impulse responses of
the best-fitting DSGE-VAR with λ = ˆλopt, which, as we have seen, is very close
to an unrestricted VAR.

We summarize the main findings into three key points. First, the impulse re-
sponses confirm that the DSGE model is fundamentally misspecified and is unable
to capture the dynamic movements found by the DSGE-VAR(λ = ˆλopt). The DSGE
model’s impulse responses continually leave the 95% probability bands implied
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FIGURE 2. Impulse response functions. Response of observables to natural rate shocks. The solid blue line denotes responses obtained for the
DSGE-VAR (λ = λ̂opt) model; the dashed red line denotes responses obtained for the corresponding DSGE model. Dotted lines denote 95% error
bands.
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FIGURE 3. Impulse response functions. Response of observables to cost-push shocks. The solid blue line denotes responses obtained for the
DSGE-VAR (λ = λ̂opt) model; the dashed red line denotes responses obtained for the corresponding DSGE model. Dotted lines denote 95% error
bands.
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FIGURE 4. Impulse response functions. Response of observables to monetary policy shocks. The solid blue line denotes responses obtained for the
DSGE-VAR (λ = λ̂opt) model; the dashed red line denotes responses obtained for the corresponding DSGE model. Dotted lines denote 95% error
bands.
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by the DSGE-VAR(λ = ˆλopt) model. The exceptions are the responses of inflation
and expected inflation to a monetary policy shock, which fall, however, around
zero and display sizable uncertainty.8 In addition, the second finding concerns
the persistence in the responses to the structural shocks. In particular, the DSGE
model’s response of inflation and interest rate to a cost-push shock does not exhibit
as much persistence as the impulse responses from the DSGE-VAR(λ = ˆλopt)
model. The third finding concerns the responses of the observed expectations
to the structural shocks. The responses of expected inflation to a natural rate
and cost-push shock do not show enough persistence under the DSGE model.
The DSGE-VAR(λ = ˆλopt) model exhibits a hump-shaped response, whereas the
DSGE model quickly levels out. In the case of cost-push and monetary policy
shocks, the DSGE model’s impulse responses seem to follow different paths than
those implied by the DSGE-VAR(λ = ˆλopt) model. Expected output growth (one-
and two-quarters ahead) displays responses that are very different in the DSGE
model compared with the best-fitting DSGE-VAR benchmark, and that often have
the opposite sign.

5. RELAXING RATIONAL EXPECTATIONS: ALTERNATIVE EXPECTATION
FORMATION MECHANISMS

To study whether rational expectations are responsible for the failure of the DSGE
model to match the interactions between macroeconomic expectations and the
corresponding realizations, we investigate the performance of the model under
alternative expectation formation mechanisms.

5.1. VAR and AR Perceived Laws of Motion

First, we assume that agents form expectations from a VAR, whose set of en-
dogenous variables correspond to those that would appear in the minimum state
variable (MSV) solution of the DSGE model under RE, and under the assumption,
which we find more empirically realistic, that agents cannot observe the exogenous
structural shocks. This corresponds to a specification that is usually chosen as a
PLM in adaptive learning models. For simplicity, however, we do not allow here
for learning. Adding time-varying coefficients to the DSGE-VAR framework is
beyond the scope of this analysis. A study along these lines is Granziera (2012).

The VAR expectations are formed as

Êt−1Y
VAR
t+1 = a(1 + b) + b2Yt−1 + et−1,t+1, (9)

where Yt = [xt , πt , it ]′. To be consistent with the learning literature, we assume
that economic agents observe only data up to t − 1 when forming expectations in
period t about variables in t + 1 and further. We also find that this case provides
a better fit of the data than the time t information alternative. Moreover, a second
important modification to the RE case is that we allow disturbances to affect the

https://doi.org/10.1017/S1365100517000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517000104


990 STEPHEN J. COLE AND FABIO MILANI

formation of expectations. We allow expectations to depart from the point VAR
forecast by including an exogenous term, et−1,t+1, which can be interpreted as
an expectation shock (the shock affects expectations related to t + 1 variables,
formed using t − 1 information). The shock is in the spirit of the judgment
variable studied in Bullard et al. (2008), and of the expectation, or sentiment,
shocks proposed in Milani (2011, 2013), who finds that they explain roughly half
of business cycle fluctuations in general equilibrium settings. The sentiment shocks
can be interpreted as waves of optimism or pessimism that are unwarranted by the
fundamentals of the economy. Under rational expectations, these are ruled out by
construction, as forecast errors arise only as a function of structural innovations.
Here, we let the data decide by allowing excesses of optimism and pessimism to
potentially play a role.

As a second, related, specification, we simplify the previous case by assuming
that agents form expectations from simpler AR(1) models for output and inflation.
The expectations, denoted by Êt−1Y

AR
t+1, are formed as in (9), but now with Yt =

[xt , πt ]′ and with b being a diagonal matrix.

5.2. Heterogeneous Expectations

Besides the expectation models motivated by the adaptive learning literature, we
also examine alternatives that allow for heterogeneous expectations. A fraction
ωVAR of the agents in the model is assumed to form VAR expectations, as in
the previous section, whereas the remaining fraction, 1 − ωVAR, forms rational
expectations:

ÊtY
Het
t+1 = ωVARÊt−1Y

VAR
t+1 + (1 − ωVAR)EtYt+1 + et−1,t+1, (10)

where EtYt+1 denotes rational expectations, and where we allow, as in the previous
section, for an exogenous sentiment disturbance et−1,t+1 to affect aggregate ex-
pectations formation. In the estimation, we select an uninformative Uniform(0,1)
prior for the share parameter ωVAR.

5.3. (Heterogeneous) Expectations from the Lab

Hommes (2011) provides experimental evidence on the formation of macroeco-
nomic expectations in a laboratory setting. Subjects in the experiment are asked
to forecast future output and inflation, in an environment where actual data are
generated by simulating a textbook New Keynesian model.

Their main findings are that expectations are heterogeneous, but they seem to
cluster around representative groups, who base their forecasts on simple heuristic
rules. One group is characterized by trend-following (TF) expectations, another
by adaptive expectations, and the last one by expectations that can be labeled as
“anchor and adjustment.” In this section, we let expectations in the model match the
evidence from the lab, by allowing for heterogeneity and modeling expectations
according to the clusters that emerged from the experiments.
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The TF expectations, adaptive (AD), and the anchor and adjustment (AA)
expectations are formed, respectively, as

ÊTF
t Yt+1 = Yt−1 + a(Yt−1 − Yt−2), (11)

ÊAD
t Yt+1 = bYt−1 + (1 − b)Êt−1Yt , (12)

ÊAA
t Yt+1 = c(Y ave

t−1 + Yt−1)/2 + (Yt−1 − Yt−2), (13)

where a, b, c are coefficients to be estimated, Yt = [xt , πt ]′, and Y ave
t−1, the anchor

in the anchor and adjustment case, is computed as Y ave
t−1 = (1/8)

∑8
i=1 Yt−i .

We consider these expectation clusters in an encompassing model with hetero-
geneous expectations, which also includes a residual fraction of agents, who form
rational expectations. Aggregate expectations equal

ÊtYt+1 = ωTFÊ
TF
t Yt+1 + ωADÊAD

t Yt+1 + ωAAÊAA
t Yt+1 +

(1 − ωTF − ωAD − ωAA)EtYt+1 + et,t+1. (14)

The framework closely mirrors the heterogeneous expectations identified from
the lab in Hommes (2011) and Assenza et al. (2012), with the only addition of the
expectation shock et,t+1.

In the estimation, we assume Beta prior distributions, with mean 0.167 and
standard deviation 0.1, for the ωTF,AD,AA parameters. We select a N(0.4,0.2) prior
for coefficients a, a Beta with mean 0.5 and standard deviation 0.2 for b, and a
N(0.25,0.125) for c.

5.4. Results under Alternative Expectations

We report the posterior estimates for the structural coefficients as well as for the
optimal λ in Table 2 under the alternative expectations. The coefficient estimates
do not substantially vary from the estimates presented in Table 1. The exception,
however, is given by the optimal λ. The estimate for the optimal λ is approximately
0.80 across the alternative expectations models. By allowing agents to have one of
the alternative expectations, the DSGE model-imposed restrictions now become
more valuable. The model fits the data better under the alternative expectation
formation schemes. For any alternative expectations model, the estimated marginal
likelihood substantially improves, reaching values between −189.46 and −195.33,
compared to the marginal likelihood for the model with rational expectations,
which is equal to −215.49.

The measures of relative fit (λopt − λmin) equal to 0.53–0.54, substantially
rising from the value of 0.08, obtained for the model that imposed fully rational
expectations. The single best-fitting model is the one assuming AR expectations,
possibly because of its relative parsimony compared with the other models.

Evidence on the difficulties of rational expectations is also apparent looking
at posterior estimates of the relative weights of boundedly rational expectations.
In the heterogeneous expectations model, the posterior means for the shares of

https://doi.org/10.1017/S1365100517000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517000104


992
STEPH

EN
J.C

O
LE

A
N

D
FA

B
IO

M
ILA

N
I

TABLE 2. Prior and posterior estimates with alternative expectations

Posterior distribution
Prior

distribution VAR AR HE Lab

Distribution Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.55 0.21 0.90 0.63 0.19 1.09 0.62 0.22 1.00 0.69 0.18 1.16
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.23 0.15 0.07 0.22 0.15 0.07 0.22
ω N(0.90,0.25) 0.89 0.49 1.31 0.90 0.49 1.31 0.89 0.47 1.30 0.90 0.50 1.31
η B(0.70,0.10) 0.63 0.47 0.80 0.63 0.46 0.81 0.69 0.54 0.85 0.69 0.53 0.86
ρ B(0.75,0.10) 0.80 0.71 0.90 0.78 0.69 0.89 0.79 0.70 0.89 0.79 0.69 0.90
χπ N(1.50,0.25) 1.29 0.89 1.68 1.31 0.92 1.70 1.27 0.88 1.67 1.23 0.88 1.58
χx N(0.125,0.05) 0.11 0.03 0.19 0.14 0.06 0.21 0.11 0.03 0.19 0.14 0.07 0.22
γ B(0.50,0.15) 0.36 0.14 0.58 0.36 0.14 0.57 0.40 0.17 0.64 0.45 0.21 0.70
φd B(0.50,0.20) 0.24 0.08 0.39 0.24 0.09 0.40 0.23 0.08 0.38 0.25 0.10 0.40
φμ B(0.50,0.20) 0.14 0.02 0.24 0.14 0.02 0.24 0.12 0.02 0.21 0.11 0.02 0.21
φex1 B(0.50,0.20) 0.51 0.29 0.73 0.50 0.29 0.70 0.57 0.36 0.78 0.54 0.31 0.78
φex2 B(0.50,0.20) 0.62 0.47 0.77 0.63 0.48 0.77 0.58 0.43 0.75 0.56 0.40 0.72
φeπ B(0.50,0.20) 0.58 0.33 0.89 0.79 0.58 0.97 0.55 0.29 0.82 0.46 0.27 0.65
λ U(λmin, ∞) 0.80 0.65 0.95 0.81 0.66 0.96 0.80 0.65 0.95 0.80 0.65 0.94
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TABLE 2. Continued

Posterior distribution
Prior

distribution VAR AR HE Lab

Distribution Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

σd IG(0.30, 2.00) 1.71 0.66 2.67 1.60 0.67 2.52 2.03 0.88 3.17 2.02 0.72 3.33
σμ IG(0.30, 2.00) 0.19 0.16 0.22 0.19 0.16 0.22 0.19 0.16 0.22 0.19 0.16 0.21
σm IG(0.30, 2.00) 0.21 0.18 0.25 0.21 0.18 0.24 0.21 0.18 0.25 0.21 0.18 0.25
σex1 IG(0.30, 2.00) 0.64 0.54 0.74 0.64 0.55 0.74 0.41 0.26 0.56 0.39 0.25 0.52
σex2 IG(0.30, 2.00) 0.17 0.14 0.19 0.17 0.15 0.20 0.17 0.14 0.19 0.16 0.14 0.19
σeπ IG(0.30, 2.00) 0.11 0.09 0.12 0.11 0.09 0.13 0.10 0.08 0.11 0.09 0.08 0.11
ωVAR,x B(0.5, 0.2) 0.62 0.40 0.85
ωVAR,π B(0.5, 0.2) 0.86 0.76 0.96
ωTF,x B(0.167, 0.1) 0.20 0.03 0.36
ωAD,x B(0.167, 0.1) 0.27 0.10 0.44
ωAA,x B(0.167, 0.1) 0.13 0.03 0.22
ωTF,π B(0.167, 0.1) 0.13 0.02 0.24
ωAD,π B(0.167, 0.1) 0.60 0.48 0.73
ωAA,π B(0.167, 0.1) 0.06 0.01 0.11

logMargL −193.17 −189.46 −194.51 −195.33
λ̂opt − λmin 0.53 0.54 0.53 0.53

Notes: VAR corresponds to the DSGE-VAR(λ̂) model with expectations from a VAR that coincides with the MSV solution of the system; AR corresponds to the DSGE-VAR(λ̂)
model with expectations from a AR(1) model; HE corresponds to DSGE-VAR(λ̂) model with heterogeneous expectations; Lab corresponds to the DSGE-VAR(λ̂) model with
expectations from a laboratory setting. G: Gamma distribution, N: Normal distribution, B: Beta distribution, U: Uniform distribution, IG: Inverse-Gamma distribution.
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TABLE 3. Variance decomposition

Shock to: rn
t μt εt e

x1
t e

x2
t eπ

t ot

DGSE w/RE
gt 93.6 1 5.4 – – – –
πt 27.8 72.1 0.1 – – – –
it 50.1 15 34.9 – – – –
Etgt+1 61.5 2 3.4 – – – 33
Etπt+1 33.5 47.7 0.1 – – – 18.8

Best-fitting DGSE-VAR w/RE
gt 86.8 3.2 10 – – – –
πt 6.3 93.6 0.1 – – – –
it 54.7 10.2 35.2 – – – –
Etgt+1 61.7 3.5 6.5 – – – 28.3
Etπt+1 11.5 32.2 0.1 – – – 56.2

DGSE w/VAR exp.
gt 8.3 3.2 0.3 86 1.1 1.1 –
πt 1.9 51.6 0.1 28.1 0.7 17.7 –
it 2.8 10.6 38.2 41.7 1 5.8 –
Etgt+1 33.9 4 2.6 53.9 5.2 0.6 –
Etπt+1 3.1 11.7 0.2 46.8 1.1 37 –

DGSE w/VAR exp. and disturbances
gt 32.5 1.4 1.3 63.1 1.2 0.4 –
πt 8.8 40.6 2.1 35.4 1 12.1 –
it 6.8 10.2 36.5 42.1 1.2 3.1 –
Etgt+1 10.6 1.86 1.25 77.4 8.5 0.3 –
Etπt+1 13.3 6.1 3.2 53.3 1.5 22.6 –

Notes: The table shows the share of the forecast error variance in output growth, inflation, interest rate, expected
output growth, and expected inflation, due to each structural shock (natural rate, cost-push, and monetary policy),
expectational shock (to expected output, one- and two-quarters ahead, and expected inflation), and the respective
measurement error (ot ). The results are compared across the benchmark DSGE model with RE, the best-fitting
DSGE-VAR under RE (with λ = λ̂opt ), the DSGE-VAR models with expectations formed from a small-scale VAR
model and allowing for expectation shocks, and the same DSGE-VAR as the latter, but also including structural
disturbances in the agents’ PLM.

VAR-based expectations equal 0.62 for output growth and 0.86 for inflation;
rational expectations account only for the remaining part. In the alternative het-
erogeneous expectations model motivated by lab evidence, the posterior means
for backward-looking lab-based expectations sum to 0.60 for output growth and
to 0.79 for inflation.9

5.5. Variance Decomposition

We present the results of the forecast error variance decomposition in Table 3.
When allowing agents to form expectations from a small-scale VAR model, the
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expectational shocks seem to contribute a significant share to the forecast error
variance in output growth, inflation, interest rate, expected output growth, and
expected inflation. This result shows that the models with rational expectations
fail to incorporate key drivers of fluctuations. Under the standard DSGE model
with rational expectations, the main factor driving movements in output growth
is the demand shock. The demand shock contributes 93.6% of the forecast error
variance of output growth. When relaxing the DSGE restrictions in the DSGE-
VAR(λ = λ̂opt), the demand shock contributes slightly less to output growth. When
requiring expectations in the DSGE model to be formed according to a small-scale
VAR model, the resulting share is strikingly smaller. The demand shock accounts
for only 8.3% of variance in output growth, whereas an expectational shock to
one-period-ahead output growth accounts for 86%. Expectational shocks also
explain 46% of inflation fluctuations and 48% of interest rate fluctuations. Those
shares are, instead, captured by cost-push shocks (for the case of inflation) and
by demand shocks (for the case of interest rates) in the estimated model under
RE.

The shares due to expectational shocks, especially for output, may appear as
exceedingly large. It is, however, probably more realistic to allow expectations
in (9) to react not only to lagged observable variables, but also, to some ex-
tent, to the structural shocks that are hitting the economy (i.e., allowing agents
to use a PLM that mirrors more closely the minimum-state-variable solution
of the model). We can, therefore, assume that agents include the structural
disturbances rn

t and μt in their forecasting rules (as they would under ratio-
nal expectations), and re-estimate the DSGE-VAR model. The resulting shares
from the variance decomposition exercise are shown in the bottom panel of
Table 3. Expectational shocks remain important, but the shares are more rea-
sonable: Expectational shocks about output growth account for 63% of output
variance and 35% and 42% of inflation and interest rate variance, respectively,
with the inflation-pressure expectation shock explaining an additional 12% for
inflation. Regardless of the exact magnitude of the shares, the data undoubtedly
favor a significant role played by exogenous nonstructural shocks in expecta-
tions. Under rational expectations, those shocks would, instead, be ruled out
by construction, as forecast errors would arise only as a function of structural
innovations.

The large contribution of expectation shocks to the forecast error variance of
macroeconomic variables is in line with the findings of the previous related litera-
ture. Milani (2011, 2013) shows that expectation, or sentiment, shocks contribute to
between 40% and 60% of economic fluctuations in the United States, when added
to an otherwise standard DSGE model.10 The expectation shocks aim to capture
waves of excessive optimism and pessimism that characterize expectations and
that are unjustified based on existing fundamentals. The results in Milani (2011,
2013) reveal that there is indeed a strong positive correlation between identified
expectation shocks from the DSGE model and a variety of sentiment indicators
from consumer and business surveys.
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TABLE 4. Prior and posterior estimates over 1980–2007 subsample

Posterior distribution
Prior

distribution w/o Exp.(λ = λ̂opt) w/ Exp.(λ = λ̂opt)

Distribution Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.66 0.22 1.10 0.72 0.21 1.21
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.22 0.15 0.07 0.22
ω N(0.90,0.25) 0.90 0.49 1.30 0.89 0.49 1.30
η B(0.70,0.10) 0.74 0.61 0.88 0.62 0.45 0.80
ρ B(0.75,0.10) 0.70 0.61 0.79 0.71 0.60 0.83
χπ N(1.50,0.25) 1.33 0.96 1.68 1.40 1.00 1.79
χx N(0.125,0.05) 0.17 0.10 0.23 0.15 0.08 0.23
γ B(0.50,0.15) 0.40 0.18 0.62 0.29 0.11 0.47
φd B(0.50,0.20) 0.82 0.71 0.94 0.84 0.69 0.98
φμ B(0.50,0.20) 0.18 0.03 0.32 0.15 0.02 0.27
λopt U(λmin, ∞) 0.84 0.52 1.15 0.24 0.17 0.30
σd IG(0.30, 2.00) 0.48 0.16 0.83 0.27 0.09 0.50
σμ IG(0.30, 2.00) 0.10 0.08 0.13 0.10 0.07 0.13
σm IG(0.30, 2.00) 0.13 0.11 0.16 0.15 0.11 0.19
σ me

g1 G(0.30,0.30) – – – 0.15 0.11 0.19
σ me

g2 G(0.30,0.30) – – – 0.11 0.08 0.14
σ me

π G(0.30,0.30) – – – 0.09 0.07 0.12

logMargL (3 series) −58.49
logMargL (6 series) 47.03
λ̂opt − λmin 0.63 0.12

Notes: w/o Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model without expectation data; w/ Exp.(λ = λ̂opt)
corresponds to DSGE-VAR(λ = λ̂opt) model with expectation data. G: Gamma distribution, N: Normal distribution,
B: Beta distribution, U: Uniform distribution, IG: Inverse-Gamma distribution.

6. ROBUSTNESS

6.1. Stable Times

The main estimation implicitly assumes that the expectations formation process is
unchanged across the sample. The formation of expectations, however, may have
differed in unstable (i.e., the 1970s) and stable times (the post-1980 decades). It
is possible to imagine that although rational expectations fail to provide a good
characterization of expectations behavior in the 1970s, they are a better fit for their
behavior in stable times.

To investigate this possibility, we repeat Section 4’s exercise over the 1980–
2007 period, which spans “stable” times in the U.S. economy, and compare the
results to our baseline findings.

Table 4 shows that our main conclusions from Section 4 do not change when
using the 1980–2007 sample period. The posterior estimate of λopt − λmin for

https://doi.org/10.1017/S1365100517000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517000104


MISSPECIFICATION OF EXPECTATIONS IN NEW KEYNESIAN MODELS 997

the DSGE-VAR model without expectations data is 0.63. However, when ex-
pectations are required to match the co-movement observed in the data between
macroeconomic outcomes and expectations, the estimate of λopt − λmin drops to
0.12. Therefore, even during a stable time period in which survey data may be
expected to better conform to the REH, the results still indicate a rejection of the
DSGE model’s restrictions.

6.2. Potential Outliers and SPF Median

In the main estimations of this paper, we match model-implied expectations to
the corresponding means across forecasters from the SPF. In principle, such mean
forecasts may be sensitive to a few outlier observations. Therefore, in this section,
we assess the robustness of the main results to the use of median forecasts as
observable variables, instead. In Table 5, we present the posterior estimates for
the DSGE-VAR estimation under rational expectations and under the alternative
AR expectations (i.e., the best-fitting case obtained in Table 2).

The estimated λ′s tell a similar story as before: The posterior mean for λopt−λmin

is 0.08 when the model with rational expectations is required to match median
forecasts, and it rises to 0.46 when rational expectations are replaced with AR
expectations (the mean estimate is somewhat lower than under mean forecasts,
but the results are overall comparable).

Moreover, in Figure 5, we show the individual expectations data from the SPF
for inflation and one-period-ahead and two-period-ahead output growth, and we
compare them with the corresponding model-implied rational expectations from
the estimated DSGE model. In some episodes, rational expectations fall roughly
at the center of the distribution of survey forecasts. But, in many instances, and
for sustained periods, rational expectations fall in the tails of the distribution and,
even more strikingly, sometimes are outside of the distribution of SPF forecasts.
This happens, for example, in the 2000 and 2003–2005 periods for output-growth
expectations, when rational expectations fall below survey forecasts. In the same
periods, rational expectations for inflation exceed most survey measures. Such
discrepancies seem to arise from significantly different responses of rational and
survey expectations to a protracted sequence of supply shocks in those years. Fi-
nally, as documented before in the literature, the dispersion of individual forecasts
is clearly more pronounced in the 1970s than later on.

6.3. Subset of Observed Expectations

We also examine if the poor performance of the DSGE model with rational
expectations is driven by the DSGE model’s inability to match data on inflation
expectations or on real output growth expectations. Specifically, we estimate the
DSGE-VAR(λ̂opt) using restricted versions of the measurement equation (8). The
first alternative includes data for Etgt+1 and Etgt+2 in addition to the growth rate
of real output, inflation, and the interest rate. The second version contains data for

https://doi.org/10.1017/S1365100517000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100517000104


998 STEPHEN J. COLE AND FABIO MILANI

TABLE 5. Prior and posterior estimates with median forecasts

Posterior distribution
Prior

distribution RE w/ Exp.(λ = λ̂opt) AR

Distribution Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.71 0.22 1.18 0.71 0.26 1.13
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.22
ω N(0.90,0.25) 0.91 0.50 1.32 0.89 0.48 1.31
η B(0.70,0.10) 0.62 0.45 0.80 0.60 0.43 0.77
ρ B(0.75,0.10) 0.67 0.55 0.80 0.78 0.67 0.88
χπ N(1.50,0.25) 1.40 1.00 1.79 1.28 0.88 1.66
χx N(0.125,0.05) 0.16 0.08 0.23 0.14 0.07 0.21
γ B(0.50,0.15) 0.34 0.12 0.54 0.39 0.16 0.61
φd B(0.50,0.20) 0.82 0.67 0.97 0.24 0.08 0.39
φμ B(0.50,0.20) 0.17 0.03 0.31 0.15 0.03 0.27
φex1 B(0.50,0.20) – – – 0.51 0.31 0.71
φex2 B(0.50,0.20) – – – 0.63 0.47 0.78
φeπ B(0.50,0.20) – – – 0.72 0.47 0.97
λopt U(λmin, ∞) 0.17 0.12 0.22 0.73 0.60 0.86
σd IG(0.30, 2.00) 0.46 0.13 0.83 1.19 0.54 1.85
σμ IG(0.30, 2.00) 0.13 0.09 0.17 0.19 0.16 0.22
σm IG(0.30, 2.00) 0.23 0.17 0.30 0.20 0.17 0.23
σ me

g1 G(0.30,0.30) 0.20 0.15 0.25 0.15 0.11 0.19
σ me

g2 G(0.30,0.30) 0.15 0.11 0.19 0.11 0.08 0.14
σ me

π G(0.30,0.30) 0.12 0.09 0.15 0.09 0.07 0.12
σex1 IG(0.30, 2.00) – – – 0.61 0.51 0.70
σex2 IG(0.30, 2.00) – – – 0.17 0.14 0.19
σeπ IG(0.30, 2.00) – – – 0.11 0.09 0.13

logMargL (3 series)
logMargL (6 series) −240.37 −204.33
λ̂opt − λmin 0.08 0.46

Notes: RE w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with RE and use of expectation data; AR
to the DSGE-VAR with expectations formed from AR models. G: Gamma distribution, N: Normal distribution, B:
Beta distribution, U: Uniform distribution, IG: Inverse-Gamma distribution.

Etπt+1 in addition to the growth rate of real output, inflation, and interest rate. We
then compare the results to our baseline findings in Section 4.

Table 6 displays the results of this exercise. When adding observations for
Etgt+1 and Etgt+2 to the data set, the posterior estimate for λ equals 0.17 and
our relative indicator of misspecification (λopt − λmin) is 0.10. These results are
only slightly higher than in Section 4, indicating that the data still reject the
DSGE restrictions. When adding only observations for Etπt+1 to the data set, the
performance of the DSGE model with rational expectations deteriorates relative to
our baseline results. The right panel of Table 6 shows that the posterior estimates
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FIGURE 5. Model-implied rational expectations and distribution of individual SPF fore-
casts. The solid line denotes the expectations implied by the DSGE model under RE.
The green dots indicate each respondent’s expectations from the Survey of Professional
Forecasters.

for λ and (λopt−λmin) fall to 0.13 and 0.07, respectively. The results overall suggest
that the misspecification of expectations refers to both output growth and inflation
expectations.

6.4. Potential Output

In the main estimation, we have implicitly used a more empirical measure for the
output gap, by removing a linear trend from real output and the corresponding
expectations through the measurement equations. Here, we investigate the sensi-
tivity of the results to using the precise theoretical definition in the New Keynesian
model, which defines the output gap as the deviation between actual output and
the corresponding measure of output in the same economy, but under flexible
prices. Potential output will, therefore, be a function of the structural disturbances
in the model. The estimation results are shown in Table 7. Again, even under the
theoretical definition, the data provide clear evidence on misspecification of the
model under rational expectations (λopt −λmin = 0.06), alongside more promising
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TABLE 6. Prior and posterior estimates with subsets of observed expectations

Posterior distribution
Prior

distribution w/ Etgt+1 and Etgt+2 w/ Etπt+1

Distribution Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.47 0.12 0.83 0.86 0.28 1.43
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.22
ω N(0.90,0.25) 0.90 0.49 1.31 0.90 0.49 1.31
η B(0.70,0.10) 0.65 0.47 0.83 0.71 0.56 0.86
ρ B(0.75,0.10) 0.71 0.58 0.83 0.71 0.58 0.84
χπ N(1.50,0.25) 1.30 0.91 1.66 1.45 1.05 1.85
χx N(0.125,0.05) 0.16 0.08 0.24 0.14 0.06 0.22
γ B(0.50,0.15) 0.51 0.26 0.75 0.31 0.11 0.50
φd B(0.50,0.20) 0.80 0.64 0.96 0.83 0.65 0.98
φμ B(0.50,0.20) 0.35 0.13 0.56 0.16 0.02 0.29
λopt U(λmin, ∞) 0.17 0.11 0.23 0.13 0.07 0.19
σd IG(0.30, 2.00) 0.82 0.15 1.56 0.54 0.12 1.01
σμ IG(0.30, 2.00) 0.12 0.08 0.15 0.13 0.09 0.18
σm IG(0.30, 2.00) 0.25 0.18 0.32 0.25 0.16 0.33
σ me

g1 G(0.30,0.30) 0.20 0.14 0.25 – – –
σ me

g2 G(0.30,0.30) 0.14 0.10 0.18 – – –
σ me

π G(0.30,0.30) – – – 0.11 0.08 0.14

logMargL (5 series) −302.69
logMargL (4 series) −220.96
λ̂opt − λmin 0.10 0.07

Notes: w/ Etgt+1 and Etgt+2 correspond to a restricted version of equation (8) in which data for Etgt+1 and Etgt+2
are included in addition to the growth rate of real output, inflation, and interest rate; w/ Etπt+1 corresponds to
a restricted version of equation (8) in which data for Etπt+1 is included in addition to the growth rate of real
output, inflation, and interest rate; G: Gamma distribution, N: Normal distribution, B: Beta distribution, U: Uniform
distribution, IG: Inverse-Gamma distribution.

results when the REH is relaxed (λopt − λmin = 0.51, obtained for AR-based
expectations).

6.5. Microfoundations and Infinite-Horizon Expectations

There has been some debate in the adaptive learning literature on the microfoun-
dations of the New Keynesian model under nonrational expectations. The most
common approach, followed so far in the paper, is denoted the Euler-Equation
(EE) approach: The log-linearized model equations are the same as under rational
expectations, but the mathematical expectation operator is replaced by subjec-
tive expectations. In this case, inflation and output depend on one-period-ahead
(and, here, two-period-ahead) expectations. The alternative, studied for example
in Preston (2008), is to re-derive the model from its primitives, but imposing
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TABLE 7. Prior and posterior estimates with theoretical definition for output gap

Posterior distribution
Prior

distribution RE w/ Exp.(λ = λ̂opt) AR

Distribution Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.74 0.24 1.23 0.68 0.15 1.19
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.23
ω N(0.90,0.25) 0.91 0.50 1.32 0.89 0.48 1.30
η B(0.70,0.10) 0.68 0.53 0.83 0.73 0.56 0.89
ρ B(0.75,0.10) 0.69 0.57 0.82 0.79 0.70 0.89
χπ N(1.50,0.25) 1.45 1.04 1.84 1.34 0.96 1.71
χx N(0.125,0.05) 0.15 0.08 0.23 0.14 0.07 0.22
γ B(0.50,0.15) 0.33 0.12 0.54 0.36 0.15 0.58
φd B(0.50,0.20) 0.80 0.66 0.96 0.47 0.15 0.80
φμ B(0.50,0.20) 0.17 0.02 0.30 0.14 0.02 0.25
φex1 B(0.50,0.20) – – – 0.56 0.35 0.78
φex2 B(0.50,0.20) – – – 0.67 0.51 0.83
φeπ B(0.50,0.20) – – – 0.79 0.58 0.98
λopt U(λmin, ∞) 0.14 0.10 0.18 0.78 0.63 0.92
σd IG(0.30, 2.00) 0.51 0.12 0.92 0.39 0.07 0.86
σμ IG(0.30, 2.00) 0.13 0.08 0.17 0.19 0.16 0.21
σm IG(0.30, 2.00) 0.23 0.16 0.30 0.21 0.18 0.25
σ me

g1 G(0.30,0.30) 0.13 0.09 0.17 – – –
σ me

g2 G(0.30,0.30) – – – – – –
σ me

π G(0.30,0.30) 0.11 0.08 0.13 – – –
σex1 IG(0.30, 2.00) – – – 0.62 0.53 0.73
σex2 IG(0.30, 2.00) – – – 0.18 0.15 0.20
σeπ IG(0.30, 2.00) – – – 0.11 0.10 0.13

logMargL (3 series)
logMargL (6 series) −225.67 −203.12
λ̂opt − λmin 0.06 0.51

Notes: RE w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with RE and use of expectation data;
AR to the DSGE-VAR with expectations formed from AR models. G: Gamma distribution, N: Normal distribution,
B: Beta distribution, U: Uniform distribution, IG: Inverse-Gamma distribution.

the assumption of subjective, rather than rational, expectations, and assuming
that agents incorporate subjective expectations about their intertemporal budget
constraint in their decisions. Preston (2008) shows that inflation and the output gap
now depend on long-horizon expectations of the same variables, as well as of in-
terest rates, until the indefinite future; this approach is denoted as Infinite-Horizon
(IH). The microfoundations for both cases are studied in depth in Honkapohja
et al. (2012). They show that the EE approach, as used in this paper, is also valid
and model-consistent. The assumption that is required is that agents recognize, or
have quickly learned, that the market-clearing condition in this economy applies
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TABLE 8. Prior and posterior estimates with infinite-horizon expecta-
tions

Posterior distribution
Prior

distribution AR

Distribution Mean 5% 95%

σ G(1.00,0.50) 0.06 0.01 0.12
100 ∗ ξp G(0.15,0.05) 0.14 0.06 0.22
ω N(0.90,0.25) 0.88 0.47 1.30
η B(0.70,0.10) 0.87 0.78 0.96
ρ B(0.75,0.10) 0.79 0.68 0.90
χπ N(1.50,0.25) 1.37 0.96 1.77
χx N(0.125,0.05) 0.12 0.05 0.20
γ B(0.50,0.15) 0.33 0.14 0.51
φd B(0.50,0.20) 0.28 0.12 0.45
φμ B(0.50,0.20) 0.21 0.04 0.38
φex1 B(0.50,0.20) 0.30 0.12 0.47
φex2 B(0.50,0.20) 0.55 0.38 0.72
φeπ B(0.50,0.20) 0.55 0.36 0.74
λopt U(λmin, ∞) 0.71 0.59 0.83
σd IG(0.30, 2.00) 0.11 0.09 0.12
σμ IG(0.30, 2.00) 0.13 0.11 0.15
σm IG(0.30, 2.00) 0.21 0.18 0.24
σex1 IG(0.30, 2.00) 0.64 0.54 0.74
σex2 IG(0.30, 2.00) 0.16 0.13 0.18
σeπ IG(0.30, 2.00) 0.10 0.09 0.11

logMargL (6 series) −223.78
λ̂opt − λmin 0.44

Notes: The estimates correspond to the DSGE-VAR for a New Keynesian model with Infinite-Horizon
expectations and expectations formed from AR models. G: Gamma distribution, N: Normal distribu-
tion, B: Beta distribution, U: Uniform distribution, IG: Inverse-Gamma distribution.

(i.e., yt = ct ): In such a case, the IH approach simplifies and the two approaches
become equivalent (with log-linearized equations identical to those under rational
expectations).

In light of this debate, however, we test in our paper if the results are overturned
by the use of the IH approach. We re-estimate the DSGE-VAR model under
nonfully rational AR expectations, but now using the version of the New Keynesian
model with infinite-horizon expectations based on Preston (2008) and estimated
in Milani (2006). The estimates are shown in Table 8. The posterior estimate for
λopt equals 0.71, which yields a relative indicator of misspecification λopt − λmin

equal to 0.44. The value is lower than under the EE approach, but still much larger
than under rational expectations (0.08).11 The main conclusions of the paper are,
therefore, robust to the use of IH expectations.
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7. CONCLUSIONS

Monetary policy makers increasingly rely on their ability to influence private-
sector expectations, by exploiting the so-called expectations channel of monetary
policy, in their efforts to stabilize the economy.

We have shown, in this paper, that the leading model for the study of monetary
policy largely fails in matching the dynamic co-movements between macroeco-
nomic realizations and macroeconomic expectations that seem to exist in the data.
The failure appears in large part due to the assumption of rational expectations.
When we relax rational expectations to include, at least, shares of agents that
form nonfully rational expectations, based on VAR/AR models, on experimental
laboratory evidence, and which may be heterogeneous, the model’s performance
improves considerably. Another key feature in matching the data seems the inclu-
sion of sentiment or expectation shocks, as sources of aggregate fluctuations, in
addition to typical fundamental disturbances.

But even our specifications with alternative expectation formation schemes
remain far from fitting the joint evolution of macroeconomic variables and expec-
tations as well as the more flexible best-fitting DSGE-VAR’s. In our backward-
looking expectation formation models, we have assumed constant parameters.
Adding time-variation through learning may improve the ability of the model to
explain the expectations data. Understanding the directions in which to extend the
model to successfully capture the co-movement between macroeconomic variables
and expectations remains a priority for future research.

NOTES

1. Medium-scale and large-scale DSGE models expand on the current framework by adding cap-
ital accumulation, investment decisions, variable capacity utilization, imperfectly competitive labor
markets, and a variety of additional features.

2. Potential output in the New Keynesian model is defined as the equilibrium level of output
existing in the same economy, but under flexible, rather than sticky, prices. Later in the estimation,
we will show that the results remain unchanged independently of whether the output gap is as-
sumed to be approximated by linearly detrended output or whether the precise theoretical measure is
used.

3. As shown in Appendix A, the simulation is actually not necessary since the sample moments in
the extended artificial sample can be replaced by the corresponding population moments.

4. The acronyms for the series we use are GDPC1, GDPDEF, and FEDFUNDS, for real GDP,
GDP deflator, and Federal funds rate, from FRED, and RGDP, PGDP, to construct the implied one-
period-ahead and two-period-ahead forecasts for real GDP growth and one-period-ahead forecasts for
inflation, from the Survey of Professional Forecasters.

5. The lower bound λmin is given by λmin = (n+k)/T , where k = 1+pn, and where n denotes the
number of endogenous variables, p the number of lags, and T the number of time series observations.
As described in Adolfson et al. (2008), the requirement that λ be at least as large as λmin allows the
prior to be proper. This stipulation is a necessary condition to compare marginal likelihoods across
different DSGE-VAR models.

6. The resulting best-fitting specifications have two lags for the DSGE-VAR with rational expec-
tations and survey expectations as observables, and six lags for the other cases.

7. The data, however, are not very informative on the values of ξp and ω.
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8. The impulse response of inflation to a monetary policy shock in the DSGE-VAR analysis of Del
Negro et al. (2007) also displays large uncertainty. The error bands in their paper are at least as large
as the ones presented in Figure 4. The wide bands may be a function of the uncertainty in estimating
some of the Phillips curve coefficients, such as ω.

9. The posterior means for the a, b, c, coefficients in the lab expectations estimation (which are
not shown in Table 2 to save space) are as follows: 0.31 for ax and 0.20 for aπ , 0.55 for bx and 0.20
for bπ , 0.25 for both cx and ci ; the data are hence uninformative for cx and ci , but informative for the
other coefficients.

10. As shown in Milani (2011), the shares due to expectation shocks can be even higher if learning
is shut down (i.e., learning can rationalize some of the fluctuations that are otherwise attributed to
exogenous expectation shocks).

11. A difference of notice in the posterior estimates for the other parameters is the reduced value
for σ . The same result has also been found in Milani (2006).

12. We refer readers to Del Negro and Schorfheide (2004) for full details on the procedure.

REFERENCES

Adam, K. and M. Padula (2011) Inflation dynamics and subjective expectations in the United States.
Economic Inquiry 49(1), 13–25.
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APPENDIX A: DSGE-VAR METHODOLOGY

We describe the procedure here in more technical terms. The interested reader is referred
to Del Negro and Schorfheide (2004) for additional details.

Let us start from a typical VAR model with p lags12:

yt = φ0 +
p∑

i=1

φiyt−i + εt , (A.1)

where yt is an n×1 vector of endogenous variables and εt denotes the error term, distributed
as N(0, �ε). The VAR can be rewritten as

Y = X� + �, (A.2)

where Y is a T ×n matrix with rows given by y ′
t , t = 1, . . . , T , X is a T × k matrix, where

k = 1 + np, and with rows x ′
t = [1, y ′

t−1, . . . , y
′
t−p], � = [φ0, φ1, . . . , φp]′, and � is a

T × n matrix that has rows ε ′
t .
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The VAR likelihood function is, therefore, given by the familiar:

p(Y |�, �ε) ∝ |�ε | −T
2 exp

{
−

(
1

2

)
tr

[
�−1

ε (Y ′Y − �′X′Y − Y ′X� + �′X′X�)
]}

.

(A.3)

In a DSGE-VAR, the priors for the VAR coefficients � and �ε , conditional on the DSGE
parameter vector θ , are obtained as if a set of T ∗ = λT simulated data are generated from
the DSGE model and combined with the actual observations T in the estimation. There-
fore, the likelihood for the combined sample, including both the T ∗ artificially generated
observations from the DSGE model (Y ∗(θ),X∗(θ)), and the actual T sample observations,
can be computed by multiplying

p(Y ∗(θ)|�,�ε) ∝ |�ε | −λT
2

× exp

{
−

(
1

2

)
tr[�−1

ε (Y ∗′Y ∗ − �
′
X∗′Y ∗ − Y ∗′X∗� + �

′
X∗′X∗�)]

}
(A.4)

with p(Y |�, �ε) as given by expression (A.3).
Instead of actually generating the artificial data set (Y ∗, X∗) and using the sample

moments Y ∗′Y ∗, X∗′Y ∗, Y ∗′X∗, X∗′X∗, however, if yt is covariance stationary as implied
by the DSGE model, we can replace them with the scaled population moments λT �∗

yy(θ) =
Eθ [yty

′
t ], λT �∗

yx(θ) = Eθ [ytx
′
t ], λT �∗

xy(θ) = Eθ [xty
′
t ], and λT �∗

xx(θ) = Eθ [xtx
′
t ]. Con-

ditional on the DSGE parameter vector θ , such moments can be obtained analytically,
substantially reducing the computational effort.

Thus, with the inclusion of an initial improper prior p(�,�ε) ∝ |�ε |
−(n+1)

2 , equation
(A.4) becomes

p(�, �ε |θ) = c−1(θ) |�ε |
−(λT +n+1)

2 exp

{
−

(
1

2

)
tr[λT �−1

ε (�∗
yy(θ)

− �
′
�∗

xy(θ) − �∗
yx(θ)� + �

′
�∗

xx(θ)�)]

}
, (A.5)

where c−1(θ) is a normalizing constant, obtained so that the density in (A.5) integrates to
one. If λT ≥ k +n and �xx(θ) is invertible, equation (A.5) is proper, and c(θ) is defined as

c(θ) = (2π)
nk
2 |λT �∗

xx(θ)| −n
2 |λT �∗

ε (θ)| −(λT −k)
2 2

n(λT −k)
2 π

n(n−1)
4

n∏
i=1

�[(λT − k + 1 − i)/2],

(A.6)
where �(·) indicates the Gamma function. Conditioning on the DSGE parameters θ , the
prior distribution (A.5) for the VAR parameters belongs to the Normal-Inverse Wishart
class:

�|�ε, θ, λ ∼ N(�∗(θ),�ε ⊗ (λT �∗
xx(θ))−1), (A.7)

�ε |θ, λ ∼ IW(λT �∗
ε (θ), λT − k, n), (A.8)

where �∗(θ) = �xx
∗−1(θ)�∗

xy(θ) and �∗
ε (θ) = �∗

yy(θ) − �∗
yx(θ)�∗−1

xx (θ)�xy
∗(θ). In our

procedure, we also define λ as a parameter to be estimated. Thus, our DSGE-VAR model
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is modified to include a prior for λ. The new prior, which is independent from θ , takes the
form

p(�,�ε, θ, λ) = p(�,�|θ, λ)p(θ)p(λ). (A.9)

The posterior distribution can be rewritten as

p(�,�ε, θ |Y ) = p(�,�ε |Y, θ)p(θ, λ|Y ). (A.10)

We can find an expression for p(�,�ε |Y, θ). By noting that equations (A.7) and (A.8)
define a conjugate prior for p(�, �ε |Y, θ), we see that the VAR posterior distribution
p(�, �ε |Y, θ) is from the same family of distributions. Thus, the posterior distributions of
� and �ε are defined as

�|Y, �ε, θ ∼ N(�̃(θ),�ε ⊗ (λT �∗
xx(θ) + X′X)−1), (A.11)

�ε |Y, θ ∼ IW((λ + 1)T �̃ε(θ), (1 + λ)T − k, n), (A.12)

where
�̃(θ) = (λT �∗

xx(θ) + X′X)−1(λT �∗
xy + X′Y ) (A.13)

�̃ε(θ) = 1

(λ + 1)T
[(λT �∗

yy(θ) + Y ′Y ) − (λT �∗
yx(θ)

+ Y ′X)(λT �∗
xx(θ) + X′X)−1(λT �∗

xy(θ) + X′Y )] (A.14)

can be interpreted as Maximum Likelihood estimates of � and �ε . The last term in equation
(A.10), p(θ, λ|Y ), does not have a closed form solution, but we use a Random Walk
Metropolis–Hastings algorithm, similar to the one described in Del Negro and Schorfheide
(2004), to sample values of θ and λ from the posterior distribution.
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