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We propose in this paper a method to enhance the performance of a coupled global posi-

tioning/inertial navigation system (GPS/INS) for land navigation applications during GPS
signal loss. Our method is based on the use of an artificial neural network (ANN) to intel-
ligently aid the GPS/INS coupled navigation system in the absence of GPS signals. The

proposed enhanced GPS/INS is tested in the dynamic environment of a land vehicle navi-
gating around a closed path on the METU campus and we provide the results. Our GPS/
INS+ANN system performance is thus demonstrated with a land trial.
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1. INTRODUCTION. Inertial Navigation (INS) and Global Positioning
System (GPS) integrated navigation systems have been implemented in military
applications for more than 20 years (Kaygisiz and Gokpinar, 2003). With the intro-
duction of mass production capabilities and low cost sensors GPS/INS systems
have begun to be used in civil applications such as automotive, robotics and un-
manned autonomous vehicles (Kelly, 1994; Kaygisiz and Erkmen, 2003). With the
impetus of technological trends and the low cost of new generation inertial sensors,
one of the leading application areas of these integrated systems is land vehicle navi-
gation. Modern autonomous and non-autonomous land vehicles designed to func-
tion in complex missions use GPS integrated with low cost INS for their navigation
purposes.

The integrated navigation system yields very accurate navigation solutions pro-
vided that there is a continuous access to GPS signals (Titterton and Weston, 1997).
However, a land vehicle entering a tunnel, a downtown area with high buildings, a
canyon or a forest may frequently be incapable of receiving the GPS signals that are
critical for the accuracy of navigation (Brown and Hwang, 1992). In the absence of
GPS signals, the vehicle begins to depend solely on the low cost sensor equipped INS
and will drift swiftly out of its planned trajectory so that the vehicle can be lost in
the most critical part of a mission. In order to circumvent this problem, one may
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employ higher-grade inertial sensors or additional aiding sensors other than GPS
(Lewantowicz and Paschall, 1995). These approaches clearly lead to an expensive
solution, which may not always be possible or desirable.

In order to handle such a problem in a cost effective manner, we propose to gen-
erate intelligent estimates of position difference based on learnt GPS/INS behaviour
patterns and provide an effective intelligent support to the INS throughout GPS
signal loss conditions. During the ‘GPS on’ periods, our system performs navigation
based on the integration of GPS/INS over a filter that creates the necessary correc-
tions for good performance. Meanwhile, the generated navigation data are used to
learn the experience of the integrated navigation system. When the GPS is off, we use
the previously learnt pattern to generate and supply the estimated position difference
data to the INS using the same filter. This approach effectively prevents the drift of
vehicle out of its path. We prove that our approach decreases the uncertainty in the
navigation system caused by GPS signal loss and helps to achieve efficient navigation
with the use of the low cost sensors.

Section 2 introduces the general system architecture having an optimum neural
network structure with an efficient learning algorithm and Section 3 outlines the
design of the neural network. The resulting system performance is analysed with
examples in Section 4 and the paper concludes in Section 5.

2. ARTIFICIAL NEURAL NETWORK (ANN) ENHANCED
GPS/INS. A detailed block diagram of our enhanced GPS/INS+ANN system for
the training phase with integrated GPS/INS navigation system running is shown in
Figure 1, whilst the prediction phase, used when the GPS signal is lost, is shown in
Figure 2.
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Figure 1. System block diagram (training phase).
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2.1. Basic navigation system architecture (GPS/INS).
2.1.1. The inertial measurement unit. The inertial measurement unit (IMU) uses

a LITEF B-290 triad of silicon accelerometers and three LITEF mFORS-6 fibre optic
gyros mounted orthogonally inside a cubical case to measure the specific force and
rotation of the body with respect to the inertial frame. The gyros have bias values of
6x/hr and a scale factor of 2000 ppm, while the accelerometer biases are around 10 mg
and scale factors are 3000 ppm. The accelerometer and gyroscopes provide tem-
perature compensated data to the IMU processing card. Inertial sensor data are
calibrated for scale factor, bias and misalignment. IMU data are sampled at 100 Hz
for the land vehicle test where the sampling rate is directly related to the highest
dynamic frequency in the vehicle. The sampled data are then sent to the navigation
computer in order to generate the navigation output.

2.1.2. GPS and INS integration. GPS generates position and velocity outputs
every second with a bounded errors of less than 15 m for position and 0.05 m/s for
velocity in the land vehicle (LV) tests. The Kalman update is triggered at every GPS
measurement (1 Hz) using the difference between GPS and INS solutions as the in-
put. Hence, the Kalman filter (KF) generates the corrections for diminishing the INS
and IMU errors and the overall GPS/INS output has thus a bounded uncertainty.

The navigation system implemented works in local level mechanization such that it
calculates attitude and body velocity with respect to North-East-Down (NED) frame.
In this type of mechanization, the rate of change of the vehicle speed with respect to
earth is expressed as:
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Figure 2. System block diagram with Dp aiding (prediction phase).
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where vie is the earth rotation rate with respect to the inertial frame andven is the rate
of the navigation frame with respect to the earth.

Substuting v̇e
i=fxviexve+g into (1), we have

d

dt
vejn=fx(2vie+ven)xve+g (2)

where f is the specific force and g is the gravity vector.
Expressing (2) in the navigation frame:

_vvne =Cn
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Using the direction cosine matrix (DCM) method, the transformation matrix
between the navigation and body frames propagates as
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where Vnb
b is the skew symmetric matrix representation of the body angular speed
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Using these equations, the INS computes the navigation output at a rate of 100 Hz
for the land vehicle included as an example in this paper. The GPS supplies position
and velocity data at 1 Hz rate computed using the satellite position and time data
coming from the satellites (SVs).

One can benefit from the bounded error characteristics of the GPS and high fre-
quency characteristics of the INS at the same time by integrating them via a Kalman
filter. In the current application a 15-state Kalman filter is designed in order to inte-
grate INS and GPS systems. The filter uses a perturbation error model which can be
expressed in vector form as:
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inxe+dvn
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(6)

where e is tilt angle vector, dvn the velocity error in navigation frame, dL̇, d _ll and dḣ
the north, east and height position errors, respectively. In addition to these 9 error
states standing for inertial equation errors, another 6 states are used in order to model
the accelerometer and gyro bias errors, as a first-order Markov process :

d _ff b=x
1

ta
df b+w, d _vv=x

1

tg
dv+w (7)

where w is white noise. Based on experimental observations of the inertial sensors, the
Markov process time constants, ta and tg, are set to 360 seconds. Using the differ-
ential equations given, one can create the continuous state transition matrix, F, for
the error states, which is then discretised for the Kalman filter using the first order
Taylor series approximation to yield, W=I+FDt where Dt is chosen as 0.5 seconds
and Kalman propagation of the covariance

Px=WP+WT+Q (8)

300 BURAK H. KAYGISIZ AND OTHERS VOL. 57

https://doi.org/10.1017/S037346330400267X Published online by Cambridge University Press

https://doi.org/10.1017/S037346330400267X


is done at 2 Hz for our application. At this stage, there is no state propagation since
the state is fed back into the integrated system at every update time in order to correct
the inertial system and sensor errors.

The Kalman update is triggered at every GPS measurement (1 Hz) using:

K=PxHT(HPxHT+R)x1

dx=Ky

P+=(IxKH)Px

(9)

where dx is the estimated error states, y the difference between GPS measurements
(position and velocity) and INS measurements, K the Kalman gain matrix, P the state
covariance matrix, R the measurement covariance matrix, Q the input covariance
matrix and H the measurement matrix: H=[I6r6 06r9] where the position and
velocity errors are observed. R matrix is a constant matrix. R=diag ([15 15
15 0.1 0.1 0.1]2) is chosen based on the GPS output uncertainties. At initial P,
the diagonal matrix has diagonal entities of state variances, standard deviations of
position, velocity and attitude as 5 m, 0.1 m/s and 1 mrad, respectively. The stand-
ard deviations of the accelerometers are taken as 10 mg and 6x/hr. The Q matrix is
created using the bias values.

2.1.3. GPS and INS general performance.
2.1.3.1. Test setup. The basic integrated navigation system is mounted on a van

and tested on a 10-minute route. The vehicle contains the inertial navigation system,
power system, GPS and two computers. A laptop computer is used to store GPS and
IMU data and a desktop computer is employed for system health monitoring. The
vehicle began the test from a standing start and experienced velocities exceeding
70 km/h. The hardware contains a GPS/INS integrated navigation system employing
a tactical grade IMU, navigation computer and a GPS receiver. The IMU contains
three 6x/hr gyroscopes and one 10 mg three-axis accelerometer in an orthogonal
arrangement. A GPS/INS system containing a TMS320C31 microprocessor for
navigation computation and a Novatel 3151R OEM receiver is mounted on the test
vehicle for navigation purposes.

The test system also contains two computers. A laptop computer is employed for
data collection purposes. Raw IMU data was logged at 100 Hz while the GPS data
was logged at 1 Hz. Both GPS and IMU data were stored through a serial port on the
laptop computer. During the test, GPS/INS navigation solutions were also recorded
to analyse the performance of the integrated navigation system. The desktop com-
puter is used to monitor real time navigation solutions and the health status of the
overall system.

The land vehicle test was carried out in the campus of Middle East Technical
University populated with trees and the buildings and an open field with minimal
buildings and no trees around. A 600 second test was conducted on the campus site.
The campus site test trajectory is shown in Figure 3. The campus path circles around
a 1500 mr400 m area and generates a closed path of nearly 5 kilometres long.
2.1.3.2. Performance analysis. During the vehicle test the GPS position, velocity,

heading, INS position, velocity, attitude and GPS/INS position, velocity and attitude
data are recorded for 600 seconds. Figure 4a shows the GPS/INS and INS-only
horizontal position solutions. As seen in the figure, the INS-only solution wanders
out of the scope due to the sensor errors at the first 100 second of the 600-second test.
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Figure 4b presents the vertical positions provided by the inertial and the integrated
systems. During the test the inertial system alone gives the position estimation with
an error again drifting away into very high values. The GPS/INS system on the other
hand has an uncertainty in the position estimation that is not more than a few metres.
However, when GPS turns off for a long period of time, leaving the INS alone, the

(a) (b)

Figure 4. (a) Horizontal navigation using INS only and using integrated INS/GPS.

(b) Vertical profile of the test route output by GPS/INS and by INS only.

Figure 3. The campus site test trajectory.
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initial alignment errors of INS propagate with an uncertainty that grows with time.
Bounding off INS errors during GPS signal loss is the motivation of Section 2.2 and
will be investigated thoroughly in the following sections.

2.2. GPS/INS enhanced by an intelligent architecture, the ANN. The enhance-
ment provided to the GPS/INS integration through an intelligent architecture
operates in two different phases:

’ learning the behaviour as GPS signals integrated to the navigation (training
phase),

’ acting as an intelligent compensator in case of GPS signal losses (prediction
phase).

2.2.1. Training phase. The block diagram of GPS/INS+ANN in training phase
is shown in Figure 1. In this figure, the position difference Dpk which is a three
dimensional vector with north position, east position and height as components, is
a function of velocity v and attitude w states of the navigation system and the integral
of acceleration (a) and rotation rates (v) which appears as the summation of angle
and velocity increments :

Dpk=

DL

Dl

Dh

2
64

3
75=pkxpkx1=f vkx1,Wkx1,

Z tk

tkx1

a,

Z tk

tkx1

v

� �
(10)

The GPS/INS states given in (10) are the inputs to the ANN of the navigation system.
After every update triggered by GPS measurements, the database created for ANN
training phase records the previous updated states of GPS/INS (velocity and attitude)
and summation of IMU velocity and angle increments of the last second as input. The
position difference between the current and the previous position, Dpk is recorded as
the output until the loss of GPS signal. During the training phase, the forward and
backward computations are iteratively repeated by injecting recorded data recur-
sively to the network until the performance criteria are met.

2.2.2. Prediction phase. Whenever the GPS signal is absent, ANN leaves its train-
ing phase and estimates every second the position difference, Dpk. This calculated
position difference is then used in the place of the non-existing GPS position as input
to the Kalman filter (Figure 2). Our approach helps the system to drift much more
slowly than the classical GPS/INS integration and its performance is demonstrated in
Section 4.

3. ARTIFICIAL NEURAL NETWORK (ANN) DESIGN. The ANN is
a multilayer perceptron (MLP)-based intelligent structure and is composed of three
main layers. These are the pre-processing, neural networks layers and post-proces-
sing layers. The internal structure of the system is shown in Figure 5.

The neural network is made more efficient, reliable and stable when pre-processing
is applied on the network inputs. ANN inputs are scaled so as to normalize the mean
and standard deviation of the training set in a manner that shift them to zero mean
and unity standard deviation.
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The second layer of the structure is composed of three separate multilayer per-
ceptrons, each of which predicts the position differences in orthogonal directions.
Instead of having a single architecture that outputs a vector of direction estimates, the
three-MLP architecture is used to avoid coupled learning during training where
degradation of one output may occur while the others improve. This approach also
increases the speed of convergence of the overall system by decreasing the number of
neurons in each MLP because, instead of one MLP with three outputs and a high
number of hidden layer neurons, the proposed structure exploits three MLPs with
relatively low numbers of neurons.

The MLP outputs are sent to the last layer of for post-processing where they are
rescaled in the same manner as pre-processing. This scaling is also applied to the
outputs that are generated by the network in the prediction phase.

3.1. Training algorithm. A critical and effective issue determining ANN ef-
ficiency is the learning algorithm of the training phase as shown in Haykin, 1997;
Cichocki and Unbehauen, 1992; Simpson, 1990. There are various learning algor-
ithms with different efficiency and computational load. The difficulty in choosing one
for a defined problem stems from fact that one algorithm is not optimum for every
single problem. In order to determine the most effective algorithm for GPS/INS
enhancement, we ran a through comparative analysis based on the results of different
algorithms. The back-propagation algorithms compared were:

’ gradient descent with adaptive step size,
’ conjugate gradient,
’ Levenberg-Marquardt (LM).

The results of the comparison are given in Section 3.3.
3.2. Neural network topology. The artificial neural network based on the multi-

layer perceptron is a feedforward network with one or more layers between its input
and output layers acting as a universal approximator. The number of layers and the
number of nodes existing in each layer depends mainly on the complexity of the target
function. If an insufficient number of neurons is assigned to each layer, the neural
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Figure 5. MLP based intelligent estimator.
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network may fail to express the input/output relationship accurately. On the other
hand, a neural network with an excessive number of neurons may show instability
and tend to memorize the training set instead of learning the input/output relation.
The topology study conducted seeks an optimum number of hidden layers and
optimum number of neurons in each layer. The details and results of this study are
given in Section 3.3.

3.3. Optimum neural network structure. The candidate neural networks and
training algorithms were compared with the input data set composed of the first 360
seconds of the land test given in Section 2, and the desired output is the height
difference given in Figure 6 without loss of generality. Moreover, each candidate
network was run to estimate the height for the remaining 240 seconds of the test and
the resulting height errors compared in order to choose the optimum topology and
training algorithm. The structure selected for height estimation was also accepted to
be optimum for north and east position networks without loss of generality.

The candidate networks were run in the training phase with different training al-
gorithms until their convergence rates fell below 2.5r10x2 ; their resulting perform-
ance characteristics are given as the run time (with Pentium IV-2.0 GHz) and root
mean square error in Table 1. Each network was run five times in order to eliminate
the random effects stemming from network initialisation and the mean of five runs
are given in the table.

As seen in the table, based on the efficiency in mean square error and time of
convergence, the 12r6r3r1 topology trained by the Levenberg-Marquardt learn-
ing algorithm is the most reliable structure. Consequently, the 12r6r3r1 topology

Figure 6. The height difference data employed as ANN output in order to compare different

training algorithms and ANN topologies.
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with Levenberg-Marquardt learning algorithm was implemented for the ANN
enhancement of the GPS/INS integration. The height error results for each topology
trained with LM algorithm are also given in Figure 7.

3.4. ANN predicted position difference aiding to GPS/INS. During GPS signal
loss periods, the intelligent navigation system architecture provides ANN based
prediction of position differences that are input to the Kalman filter for an intelligent
information support. These inputs are the position difference estimates from the
ANN and INS calculated position differences. Within the Kalman algorithm, these
error inputs should be related to the filter states through an observation matrix.

These measurement residuals formed by differencing ANN and INS solutions are

zk=dDpk=DpI, kxDpN, k=pI, kxpI, kx1x(pN, kxpN, kx1)+wk (11)

where I stands for INS, N stands for ANN, and wk is the noise on ANN predictions.
(11) may be rearranged as

zk=dDpk=pI, kxpN, kx(pI, kx1xpN, kx1)+wk =dpkxdpkx1+wk (12)

and

dpkx1=dpkxDtdvnk+
1
2Dt

2Cn
bdf

b
k (13)

Thus, substituting (13) into (12) and taking measurement interval Dt=1 second, the
Kalman measurement is expressed as

zk=dDpk=dvnkx
1
2C

n
bdf

k
b+wk (14)

Table 1. Comparison of different neural network architectures.

Topology Transfer functions Algorithm Time (s) RMS (cm)

12r3r1 tansig-linear gd with adaptive step size 1.797 8.26

12r3r1 tansig-linear Conjugate gradient 0.577 8.27

12r3r1 tansig-linear Levenberg-Marquardt 0.248 8.23

12r6r1 tansig-linear gd with adaptive step size 1.630 5.36

12r6r1 tansig-linear Conjugate gradient 0.523 5.41

12r6r1 tansig-linear Levenberg-Marquardt 0.225 5.33

12r9r1 tansig-linear gd with adaptive step size 1.911 5.17

12r9r1 tansig-linear Conjugate gradient 0.615 5.19

12r9r1 tansig-linear Levenberg-Marquardt 0.265 5.14

12r6r3r1 logsig-tansig-linear gd with adaptive step size 1.768 5.44

12r6r3r1 logsig-tansig-linear Conjugate gradient 0.567 5.53

12r6r3r1 logsig-tansig-linear Levenberg-Marquardt 0.244 5.41

12r6r6r1 logsig-tansig-linear gd with adaptive step size 2.543 3.78

12r6r6r1 logsig-tansig-linear Conjugate gradient 0.761 3.87

12r6r6r1 logsig-tansig-linear Levenberg-Marquardt 0.646 3.63

12r6r9r1 logsig-tansig-linear gd with adaptive step size 3.675 2.91

12r6r9r1 logsig-tansig-linear Conjugate gradient 1.108 3.01

12r6r9r1 logsig-tansig-linear Levenberg-Marquardt 0.917 2.74
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Exploiting (14), the Kalman measurement matrix H takes the following form

H=[ 03r3 I3r3 03r3 x 1
2C

n
b 03x3 ] (15)

where the 15-state Kalman filter state vector is

[dL dl dh dnn dne dvd ex ey ez dfx dfy dfz dvx dvy dvz]
T

(16)

Modelling the uncertainty in measurement noise covariance matrix as 10 times of the
training values of sh,n,effi 0.15 m, R3r3 may be expressed as

R=2:25I3r3 (17)

4. EXPERIMENTAL RESULTS.
4.1. Test set-up. The land vehicle set-up employed in the ANN enhanced inte-

grated navigation system is exactly the same as the one given in Section 2.1.3.1.
This test was conducted again in Middle East Technical University campus for 500
seconds and raw IMU data, GPS data and GPS/INS data were collected throughout
the test. INS-only data and ANN aided navigation data was obtained by post-
processing of the raw IMU data. ANN was trained using the test data collected

Figure 7. Performance of candidate ANN networks trained by Levenberg-Marquardt algorithm.
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within the first 230 seconds of the route in which the GPS signal was available ;
afterwards it estimates the position difference for the remaining 270 seconds of the
test when the GPS/INS system behaves as INS-only because of GPS signal loss.

4.2. Test results. In this section the GPS/INS computed navigation solution is
employed as reference and the intelligent navigation system and inertial system is
compared to this reference in order to determine the performances. Figure 8 presents
the north position, east position and height solutions of GPS/INS, INS-only and
ANN/INS structures. The position errors of INS-only, and ANN/INS systems are
given in Figure 9. It is seen from the figures that both of the ANN aided intelligent
navigation systems achieve the proposed suppression of the INS-only structure
errors. The ANN aided systems height solutions are within a few metres throughout
the navigation due to the fact that ANN training set in this channel covers more

Figure 8. (a) North (b) East (c) Height solution.

Figure 9. (a) North (b) East (c) Height error.
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information than the other channels. Both sets of Figures show that ANN/INS
provides the better navigation solutions during the GPS loss period. This structure
forces the errors down to zero for a long time and presents high performance. The
proposed system shows that with enough training, it can decrease a 3 km error to 200
metres (Figure 10). It provides accurate position solutions beyond a GPS signal loss
of 270 seconds.

5. CONCLUSION. The GPS/INS system provides very accurate, reliable and
robust navigation results. GPS aiding to correct position, velocity, attitude, acceler-
ometer bias and gyroscope drift yields accurate navigation data. The INS-only sys-
tem is insufficiently accurate for navigation purposes during the test runs. Therefore,
an alternative structure employing the artificial neural network predictions was
presented and it was shown that this approach diminished the errors and allowed
the inertial system to navigate more accurately without any external aid. Compar-
isons showed that the proposed system provides more accurate results in the ab-
sence of GPS signal. The proposed structure is found to perform extremely well in
land vehicle test since GPS/INS+ANN system learns the navigation behaviour
patterns by experience when the GPS signals are available to aid to the system
accuracy. The intelligent navigation system is shown to be capable of decreasing
the system position error to less than 1/10th of INS-only error in the case of GPS
signal loss.

Figure 10. 3-dimensional position error during 270 seconds of GPS loss.
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