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The following first problem is posed: to justify that the standing shock wave

S−(x) = −sign x = −
{

−1 for x < 0,

1 for x > 0

is a correct ‘entropy solution’ of the Cauchy problem for the fifth-order degenerate non-linear

dispersion equations (NDEs), same as for the classic Euler one ut + uux = 0,

ut = −(uux)xxxx and ut = −(uuxxxx)x in � × �+.

These two quasi-linear degenerate partial differential equations (PDEs) are chosen as typical

representatives; so other (2m + 1)th-order NDEs of non-divergent form admit such shocks

waves. As a related second problem, the opposite initial shock S+(x) = −S−(x) = sign x is

shown to be a non-entropy solution creating a rarefaction wave, which becomes C∞ for

any t > 0. Formation of shocks leads to non-uniqueness of any ‘entropy solutions’. Similar

phenomena are studied for a fifth-order in time NDE uttttt = (uux)xxxx in normal form.

On the other hand, related NDEs, such as

ut = −(|u|ux)xxxx + |u|ux in � × �+,

are shown to admit smooth compactons, as oscillatory travelling wave solutions with compact

support. The well-known non-negative compactons, which appeared in various applications

(first examples by Dey, 1998, Phys. Rev. E, vol. 57, pp. 4733–4738, and Rosenau and Levy,

1999, Phys. Lett. A, vol. 252, pp. 297–306), are non-existent in general and are not robust

relative to small perturbations of parameters of the PDE.

1 Introduction: Non-linear dispersion partial differential equations, Riemann problems

and the main directions of the study

1.1 Five main problems and layout: Shocks, rarefaction waves and compactons for

fifth-order non-linear dispersion equations

Let us introduce our basic models, which are five fifth-order non-linear dispersion equa-

tions (NDEs). These are ordered by numbers of derivatives inside and outside the
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2 V. A. Galaktionov

quadratic differential operators involved on the right-hand sides:

ut = −uuxxxxx (NDE–(5, 0)), (1.1)

ut = −(uuxxxx)x (NDE–(4, 1)), (1.2)

ut = −(uuxxx)xx (NDE–(3, 2)), (1.3)

ut = −(uuxx)xxx (NDE–(2, 3)), (1.4)

ut = −(uux)xxxx (NDE–(1, 4)). (1.5)

The only fully divergent operator is in the last NDE, namely NDE–(1, 4), which, being

written as

ut = −(uux)xxxx ≡ −1

2
(u2)xxxxx (NDE–(1, 4) = NDE–(0, 5)), (1.6)

furthermore becomes NDE–(0, 5), or simply NDE–5. This completes the list of such

quasi-linear degenerate partial differential equations (PDEs) under consideration.

The main feature of these degenerate odd-order PDEs is that they admit shock and

rarefaction waves, similar to the first-order conservation laws such as Euler’s equation

ut + uux = 0 in � × �+, u(x, 0) = u0(x) in �. (1.7)

Before explaining the physical significance of the NDEs and their role in general PDE

theory, we pose four main problems for the above NDEs (the same as for (1.7)):

(I) Problem ‘blow-up to S−’ (Section 2): to show that the shock of the shape −sign x can

be obtained by the blow-up limit from a smooth self-similar solution u−(x, t) of (1.1)–(1.5)

in � × (0, T ); i.e. the following holds:

u−(x, t) → S−(x) = −sign x =

{
1 for x < 0,

−1 for x > 0,
as t → T− in L1

loc(�). (1.8)

(II) The Riemann problem S+ (RP+) (Section 3): to show that the initial shock

S+(x) = sign x =

{
−1 for x < 0,

1 for x > 0
(1.9)

for NDEs (1.1)–(1.5) generates a ‘rarefaction wave’, which is C∞-smooth for t > 0.

(III) The Riemann problem S− (RP−) (Section 4): introducing a ‘δ-entropy test’ (smoothing

of discontinuous solutions at shocks via a ‘δ-deformation’), to show that

S−(x) is an ‘δ-entropy’ shock wave and S+(x) is not. (1.10)

(IV) Problem – non-uniqueness/entropy (Section 5): to show that a single-point ‘gradient

catastrophe’ for NDE (1.5) leads to the principal non-uniqueness of a shock wave extension

after singularity. This also suggests non-existence of any proper entropy mechanism for

choosing any ‘right’ solution after single-point blow-up.
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In Section 6, we discuss these problems in application to other NDEs including the

rather unusual

uttttt = (uux)xxxx, (1.11)

which indeed can be reduced to a first-order system that, nevertheless, is not hyperbolic,

so that modern advanced theory of 1D hyperbolic systems (see e.g. Bressan [1] or

Dafermos [10]) does not apply. The main convenient mathematical feature of (1.11)

is that it is in the normal form; so it obeys the Cauchy–Kovalevskaya theorem that

guarantees local existence of a unique analytic solution and makes easier the application

of our δ-entropy (smoothing) test. Regardless of this, (1.11) is shown to create in finite-

time shocks of the type S−(x) in (1.8) and rarefaction waves for other discontinuous data

∼S+(x) in (1.9).

Finally, we consider the last problem.

(V) Problem – ‘oscillatory smooth compactons’ (Section 7): to show that the perturbed ver-

sion of NDE (1.5), as a typical example,

ut = −(|u|ux)xxxx + |u|ux in � × �+, (1.12)

admits compactly supported travelling wave (TW) solutions of changing sign near finite

interfaces. Equation (1.12) is written for solutions with infinitely many sign changes, by

replacing u2 by the monotone function |u|u.
Non-negative compact structures have been known since the beginning of the 1990s

as compactons [46]. We show that non-negative compactons of fifth-order NDEs such as

(1.12) that are more standard in literature are non-existent in general. Moreover, these

are not robust (not ‘structurally stable’); i.e. they do not exhibit continuous dependence

upon the parameters of PDEs (say arbitrarily small perturbations of non-linearities).

1.2 A link to classic entropy shocks for conservation laws

Indeed, problems (I)–(III) given above are classic for the entropy theory of 1D con-

servation laws from the 1950s. It is well recognised that shock waves first appeared in

gas dynamics that led to the mathematical theory of entropy solutions of the first-order

conservation laws and Euler’s equation (1.7) as a key representative. The entropy the-

ory for PDEs such as (1.7), with arbitrary measurable initial data u0, was created by

Oleinik [35, 36] and Kruzhkov [30] (analogous scalar equations in �N) in the 1950s and

1960s; see the details on the history, main results and modern developments in the well-

known monographs [1, 10, 49]. Note that the first analysis of the formation of shocks for

(1.7) was performed by Riemann in 1858 [41]; see further details and the history in [3]. It

is worth mentioning that the implicitly given solution u = u(x, t) of the Cauchy problem

(1.7), via the characteristic formula

u = u0(x− u t),

containing the key wave ‘overturning’ effect, was obtained earlier by Poisson in 1808 [38]

(see [39]).
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According to the entropy theory for conservation laws such as (1.7), it is well known

that (1.10) holds. This means that

u−(x, t) ≡ S−(x) = −sign x (1.13)

is the unique entropy solution of PDE (1.7) with the same initial data S−(x). On the

contrary, taking S+-type initial data (1.9) in the Cauchy problem (1.7) yields the continuous

rarefaction wave with a simple similarity piece-wise linear structure,

u0(x) = S+(x) = sign x =⇒ u+(x, t) = g
(x
t

)
=

⎧⎪⎪⎨
⎪⎪⎩

−1 for x < −t,
x

t
for |x| < t,

1 for x > t.

(1.14)

Our first goal is to justify the same conclusions for the fifth-order NDEs, where, of

course, the rarefaction wave in the RP+ is supposed to be different from that in (1.14).

We now return to main applications of the NDEs.

1.3 NDEs from theory of integrable PDEs and water waves

Talking about odd-order PDEs under consideration, these naturally appear in the classic

theory of integrable PDEs from shallow-water applications, beginning with the Korteweg–

de Vries (KdV) equation

ut + uux = uxxx (1.15)

and the fifth-order KdV equation

ut + uxxxxx + 30 u2ux + 20 uxuxx + 10 uuxxx = 0,

among others. These are semilinear dispersion equations, which, being endowed with

smooth semigroups (groups), generate smooth flows; so discontinuous weak solutions are

unlikely, though strong oscillatory behaviour of solutions is typical (see the references

in [23, Chapter 4].

The situation is changed for the quasi-linear case. In particular, consider the quasi-linear

Harry Dym equation

ut = u3uxxx, (1.16)

which is one of the most exotic integrable soliton equations (for a survey, see

[23, Section 4.7] and the references therein). Here, (1.16) indeed belongs to the NDE

family, though it seems that proper semigroups of its discontinuous solutions (if any)

have never been examined. On the other hand, moving blow-up singularities and other

types of complex singularities of the modified Harry Dym equation

ut = u3uxxx − ux − 1

2
u3

have been described in [6] by delicate asymptotic expansion techniques.
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In addition, integrable equation theory produced various hierarchies of quasi-linear

higher-order NDEs, such as the fifth-order Kawamoto equation [29], as a typical example,

ut = u5uxxxxx + 5 u4uxuxxxx + 10 u5uxxuxxx. (1.17)

We can enlarge this list talking about possible quasi-linear extensions of the integrable

Lax’s seventh-order KdV equation

ut + [35u4 + 70(u2uxx + u(ux)
2) + 7(2uuxxxx + 3(uxx)

2 + 4uxuxxx) + uxxxxxx]x = 0

and the seventh-order Sawada–Kotara equation

ut + [63u4 + 63(2u2uxx + u(ux)
2) + 21(uuxxxx + (uxx)

2 + uxuxxx) + uxxxxxx]x = 0

(see the references in [23, p. 234]).

The modern mathematical theory of odd-order quasi-linear PDEs is partially originated

and continues to be strongly connected with the class of integrable equations. Special

advantages of integrability by using the inverse scattering transform method, Lax pairs,

Liouville transformations and other explicit algebraic manipulations have made it possible

to create a rather complete theory for some of these difficult quasi-linear PDEs. Nowadays,

well-developed theory and most of the rigorous results on existence, uniqueness and

various singularity and non-differentiability properties are associated with NDE-type

integrable models such as the Fuchssteiner–Fokas–Camassa–Holm (FFCH) equation

(I − D2
x)ut = −3uux + 2uxuxx + uuxxx ≡ −(I − D2

x)(uux) −
[
u2 +

1

2
(ux)

2

]
. (1.18)

Equation (1.18) is an asymptotic model describing the wave dynamics at the free surface

of fluids under gravity. It is derived from Euler equations for inviscid fluids under the

long-wave asymptotics of shallow-water behaviour (where the function u is the height of

the water above a flat bottom). Applying to (1.18) the integral operator (I − D2
x)

−1 with

the L2-kernel ω(s) = 1
2
e−|s| > 0 reduces it, for a class of solutions, to the conservation law

(1.7) with a compact first-order perturbation,

ut + uux = −
[
ω ∗
(
u2 +

1

2
(ux)

2

)]
x

. (1.19)

Almost all mathematical results (including entropy inequalities and Oleinik’s condition

(E)) have been obtained by using this integral representation of the FFCH equation (see

the references in [23, p. 232]).

There is another integrable PDE from the family with third-order quadratic operators,

ut − uxxt = αuux + βuxuxx + uuxxx (α, β ∈ �), (1.20)

where α = −3 and β = 2 yields the FFCH equation (1.18). This is the Degasperis–Procesi

(DP) equation for another choice, α = −4 and β = 3:

ut − uxxt = −4uux + 3uxuxx + uuxxx, or ut + uux = −
[
ω ∗
(

3

2
u2

)]
x

. (1.21)
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On the existence, uniqueness (of entropy solutions in L1 ∩BV ), parabolic ε-regularisation,

Oleinik’s entropy estimate and generalised PDEs, see [5].

Note that since the non-local term in the DP equation (1.21) does not contain ux, the

differential properties of its solutions are distinct from those for the FFCH one (1.19).

Namely, the solutions are less regular, and (1.21) admits shock waves, e.g., of the form

ushock(x, t) = −1

t
sign x e−|x|,

with the rather standard (induced by (1.7)) but more involved entropy theory (see [14,31]).

Besides (1.18) and (1.21), family (1.20) does not contain other integrable entries. A list

of more applied papers related to various NDEs is also available in [23, Chapter 4].

1.4 NDEs from compacton theory

Other important applications of odd-order PDEs are associated with compacton phenomena

for more general non-integrable models. For instance, the Rosenau–Hyman (RH) equation

ut = (u2)xxx + (u2)x (1.22)

has special important applications as a widely used model of the effects of non-linear

dispersion in the pattern formation in liquid drops [46]. It is the K(2, 2) equation from

the general K(m, n) family of the NDEs:

ut = (un)xxx + (um)x (u � 0) (1.23)

that describe the phenomena of compact pattern formation [42, 43]. Such PDEs also

appear in curve motion and shortening flows [45]. Similar to well-known parabolic

models of the porous medium type, the K(m, n) equation (1.23) with n > 1 is degenerate

at u = 0 and may therefore exhibit finite speed of propagation and admit solutions with

finite interfaces. The crucial advantage of the RH equation (1.22) is that it possesses

explicit moving compactly supported soliton-type solutions, called compactons [42, 46],

which are TW solutions to be discussed for the PDEs under consideration.

Various families of quasi-linear third-order KdV-type equations can be found in [4],

where further references concerning such PDEs and their exact solutions are given.

Higher-order generalised KdV equations are of increasing interest; see e.g. the quintic

KdV equation in [27]; see also [54], where the seventh-order PDEs are studied.

The more general B(m, k) equations,

ut + a(um)x = μ(uk)xxx,

which coincide with the K(m, k) after scaling, also admit simple semi-compacton solutions

[47]. The same is true for the Kq(m,ω) NDE (another non-linear extension of the

KdV) [42]

ut + (um)x + [u1−ω(uωux)x]x = 0.
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Setting m = 2 and ω = 1
2

yields a typical quadratic PDE,

B(u) ≡ ut + (u2)x + uuxxx + 2uxuxx = 0. (1.24)

It is curious that (1.24) admits an extended compacton-like dynamics on a standard

trigonometric-exponential subspaces, on which

u(x, t) = C0(t) + C1(t) cos λx+ C2(t) sin λx ∈ W3 = Span{1, cos λx, sin λx}, (1.25)

where λ =
√

2
3
. This subspace is invariant under the quadratic operator B in the usual

sense that B(W3) ⊆ W3. Therefore substituting (1.25) into PDE (1.24) yields for the

expansion coefficients on W3 {C0, C1, C2} a 3D non-linear dynamical system; see further

such examples of exact solutions of NDEs on invariant subspaces in [23, Chapter 4].

Combining the K(m, n) and B(m, k) equations gives the dispersive-dissipativity entity

DD(k, m, n) [44],

ut + a(um)x + (un)xxx = μ(uk)xx,

which can also admit solutions on invariant subspaces for some values of parameters.

For the fifth-order NDEs, such as

ut = α(u2)xxxxx + β(u2)xxx + γ(u2)x in � × �+, (1.26)

compacton solutions were first constructed in [12], where the more general K(m, n, p)

family of PDEs,

ut + β1(u
m)x + β2(u

n)xxx + β3D
5
x(u

p) = 0,

with m, n, p > 1, was introduced. Some of these equations will be treated later on. Equation

(1.26) is also associated with the family Q(l, m, n) of more general quintic evolution PDEs

with non-linear dispersion,

ut + a(um+1)x + ω
[
u(un)xx

]
x
+ δ
[
u(ul)xxxx

]
x

= 0, (1.27)

possessing multi-hump, compact solitary solutions [48].

Concerning quasi-linear PDEs that are higher-order in time, let us mention a general-

isation of the combined dissipative double-dispersive (CDDD) equation (see, e.g., [40]),

utt = αuxxxx + βuxxtt + γ(u2)xxxxt + δ(u2)xxt + ε(u2)t, (1.28)

and also the non-linear modified dispersive Klein–Gordon equation (mKG(1, n, k)),

utt + a(un)xx + b(uk)xxxx = 0, n, k > 1 (u � 0) (1.29)

(see some exact TW solutions in [28]). For b > 0, (1.29) is of hyperbolic (or Boussinesq)

type in the class of non-negative solutions. We also mention related 2D dispersive

Boussinesq equations denoted by B(m, n, k, p) [53],

(um)tt + α(un)xx + β(uk)xxxx + γ(up)yyyy = 0 in �2 × �.
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See [23, Chapters 4–6] for more references and examples of exact solutions on invariant

subspaces of NDEs of various types and orders.

1.5 On canonical third-order NDEs

Until recently, quite little was known about proper mathematics concerning discontinuous

solutions, rarefaction waves and ‘entropy-like’ approaches, even for the simplest third-

order NDEs such as (1.22) or (see [18, 22])

ut = (uux)xx. (1.30)

However, the smoothing results for sufficiently regular solutions of linear and non-linear

third-order PDEs are well know from the 1980s and the 1990s. For instance, infinite

smoothing results were proved in [7] (see also [26]) for the general linear equation

ut + a(x, t)uxxx = 0 (a(x, t) � c > 0) (1.31)

and in [8] for the corresponding fully non-linear PDE

ut + f(uxxx, uxx, ux, u, x, t) = 0
(
fuxxx � c > 0

)
(1.32)

(see also [2] for semilinear equations). Namely, for a class of such equations, it is shown

that for data with minimal regularity and sufficient (say exponential) decay at infinity,

there exists a unique solution u(x, t) ∈ C∞
x for small t > 0. Similar smoothing local-in-time

results for unique solutions are available for the equations in �2,

ut + f(D3u, D2u, Du, u, x, y, t) = 0 (1.33)

(see [32] and the references therein).

These smoothing results have been used in [18] for developing a kind of a δ-entropy

test for discontinuous solutions by using techniques of smooth deformations. We will

follow these ideas applied now to shock and compacton solutions of higher-order NDEs

and others.

2 (I) Problem ‘blow-up’: existence of shock S− similarity solutions

We now show that Problem (I) on blowing up to the shock S−(x) can be solved in

a unified manner by constructing self-similar solutions. As often happens in non-linear

evolution PDEs, the refined structure of such bounded and generic shocks is described in

a scaling-invariant manner.

2.1 Finite-time blow-up formation of the shock wave S−(x)

One can see that all five NDEs (1.1)–(1.5) admit the following similarity substitution:

u−(x, t) = g(z), z = x/(−t) 1
5 (t < 0), (2.1)
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where, by translation, the blow-up time reduces to T = 0. Substituting (2.1) into the

NDEs yields for g the following ODEs in �, respectively:

gg(5) = −1

5
g′z, (2.2)

(gg(4))′ = −1

5
g′z, (2.3)

(gg′′′)′′ = −1

5
g′z, (2.4)

(gg′′)′′′ = −1

5
g′z, (2.5)

(gg′)(4) = −1

5
g′z, (2.6)

with the conditions

g(∓∞) = ±1. (2.7)

at infinity for the shocks S−. In view of the symmetry of the ODEs,

g �→ −g,
z �→ −z,

}
(2.8)

it suffices to get odd solutions for z < 0 posing anti-symmetry conditions at the origin,

g(0) = g′′(0) = g(4)(0) = 0. (2.9)

2.2 Shock similarity profiles exist and are unique: numerical results

Before performing a rigorous approach to Problem (I), it is convenient and inspiring to

check whether the shock similarity profiles g(z) announced in (2.1) actually exist and are

unique for each of the ODEs (2.2)–(2.6). This is done by numerical methods that supply us

with positive and convincing conclusions. Moreover, these numerics clarify some crucial

properties of profiles, which will determine the actual strategy of rigorous study.

A typical structure of this shock similarity profile g(z) satisfying the problem (2.2), (2.9)

is shown in Figure 1. As a key feature, we observe a highly oscillatory behaviour of g(z)

about ±1 as z → ∓∞, which can essentially affect the metric of the announced convergence

in (1.8). Therefore, we will need to describe this oscillatory behaviour in detail. In Figure 2,

we show the same profile g(z) for smaller z. It is crucial that in all numerical experiments,

we obtained the same profile that indicates that it is the unique solution of (2.2), (2.9).

Figures 3(a)–(d) show the shock similarity profiles for the rest of the NDEs (1.2)–(1.5).

They differ from each other rather slightly.

Remark: on regularisation in numerical methods. For the fifth-order NDEs, this and further

numerical constructions are performed by MatLab by using the bvp4c solver. Typically,

we take the relative and absolute tolerances

Tols = 10−4. (2.10)
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0 50 100 150 200
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0.5

1

1.5

2

Shock similarity profile for NDE–(5,0): ut =– u uxxxxx

z

g(z)

gg =–g ′z/5
(5)

Figure 1. The shock similarity profile g(z) as the unique solution of the problem (2.2), (2.9);

z ∈ [−200, 200].

0 5 10 15 20

0

0.5

1

1.5

2

z

g(z)

g g
(5)

Shock similarity profile for NDE–(5,0): ut =– u uxxxxx

=–g ′z/5

Figure 2. The shock similarity profile g(z) as the unique solution of the problem (2.2), (2.9);

z ∈ [−20, 20].

Instead of the degenerate ODE (2.2) (or others), we solve the regularised equation

g(5) = − sign g√
ν2 + g2

(
1

5
g′z

)
, with the regularisation parameter ν = 10−4, (2.11)

where the choice of small ν is coherent with the tolerances in (2.10). Sometimes, we will

need to use the enhanced parameters Tols = ν = 10−7 or even ∼ 10−9.
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(a) Equation (2.3)
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(b) Equation(2.4)
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(c) Equation(2.5)
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(d) Equation(2.6)
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Shock similarity profile for NDE–(4,1): u
t
 =– (u u

xxxx
)
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Shock similarity profile for NDE–(3,2): u
t
 =– (u u

xxx
)
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Shock similarity profile for NDE–(2,3): u
t
 =– (u u

xx
)
xxx

Shock similarity profile for NDE–(1,4)=(0,5): u
t
 =– (u u

x
)
xxxx

Figure 3. The shock similarity profiles as solutions of (2.3)–(2.6) and (2.9) respectively. For

comparison, the dotted lines denote the profile from Figures 1 and 2.

2.3 Justification of oscillatory behaviour about equilibria ±1 and other asymptotics

Thus, the shock profiles g(z) are oscillatory about +1 as z → −∞. In order to describe these

oscillations in detail, we linearise all the ODEs (2.2)–(2.6) about the regular equilibrium

g(z) ≡ 1 by setting g = 1 + ĝ to get the linear ODE

B∗
5 ĝ ≡ −ĝ(5) − 1

5
ĝ′z = 0. (2.12)

Note that this equation reminds us of that for the rescaled kernel F(z) of the funda-

mental solution of the corresponding linear dispersion equation,

ut = −uxxxxx in � × �+. (2.13)

The fundamental solution of the corresponding linear operator ∂
∂t

+ D5
x in (2.13) has the

standard similarity form

b(x, t) = t−
1
5F(y), with y = x/t1/5, (2.14)
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where F(y) is a unique solution of the ODE problem

B5F ≡ −F (5) +
1

5
(Fy)′ = 0 in �,

∫
F = 1, or F (4) = 1

5
Fy on integration. (2.15)

However, the operator B5 in (2.15) is not identical to that in (2.12). Moreover, this B∗
5 is

adjoint to B5 in some indefinite metric, and both the operators possess countable families

of eigenfunctions, which particularly are generalised Hermite polynomials for B∗
5. We will

not use this Hermitian spectral theory later on; please therefore refer to [17, Section 9]

and [19, Section 8.2] for further results and applications.

Let us return to the linearised ODE (2.12). Looking for possible asymptotics as z → −∞
yields the following exponential ones with the characteristic equation:

ĝ(z) ∼ ea|z|5/4 =⇒ a4 =
44

55
. (2.16)

Finally, choosing the purely imaginary root of the algebraic equation in (2.16) with

Re a = 0 gives a refined WKBJ-type asymptotics of solutions of (2.2):

g(z) = 1 + |z|− 5
8

[
A sin

(
a0|z| 5

4

)
+ B cos

(
a0|z| 5

4

)]
+ . . . as z → −∞, (2.17)

where A and B are some real constants satisfying A2 + B2 � 0.

The asymptotic behaviour (2.17) implies two important conclusions, which are as

follows.

Proposition 2.1 The shock wave profiles g(z) solving (2.2)–(2.6) and (2.7) satisfy the follow-

ing: (i)

g(z) − 1 � L1(�−) and (2.18)

(ii) the total variation of g(z) (and hence of u−(x, t) for any t < 0) is infinite.

Proof. Setting |z| 5
4 = v in the integrals below yields by (2.17)

(i)

∫
−∞

|g(z) − 1| dz ∼
∫ ∞ | cos z

5
4 |

z5/8
dz ∼

∫ ∞ | cos v|
v7/10

dv = ∞ and

(ii) |g(·)|Tot.Var. =

∫ +∞

−∞
|g′(z)| dz ∼

∫ ∞ | cos z
5
4 |

z3/8
dz ∼

∫ ∞ | cos v|√
v

dv = ∞. �

(2.19)

This is in striking contrast with the case of conservation laws (1.7), where finite total

variation approaches and Helly’s second theorem (compact embedding of sets of bounded

functions of bounded total variations into L∞) used to be key (see Oleinik’s pioneering

approach [35]). In view of the presented properties of the similarity shock profile g(z),

the convergence in (1.8) takes place for any x ∈ �, uniformly in � \ (−μ, μ), μ > 0 small,

and in Lploc(�) for p ∈ [1,∞), which, for convenience, we fix in the following.

Proposition 2.2 For the shock similarity profile g(z) the convergence (1.8) with T = 0

(i) does not hold in L1(�) and
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(ii) does hold in L1
loc(�), and moreover, for any fixed finite l > 0,

‖u−(·, t) − S−(·)‖L1(−l,l) = O((−t) 1
8 ) → 0 as t → 0−. (2.20)

Proof of (2.20) is the same as in (2.19) with a finite interval of integration: for l = 1,

‖ · ‖L1(−1,1) ∼ (−t) 1
5

∫ (−t)−1/5

z− 5
8 | cos z

5
4 | dz ∼ (−t) 1

5

∫ (−t)−1/4

v− 7
10 | cos v| dv ∼ (−t) 1

8 . �

Finally, note that each g(z) has a regular asymptotic expansion near the origin. For

instance, for the first ODE (2.2), there exist solutions such that

g(z) = Cz + Dz3 − 1

600
z5 +

D

6300C
z7 + . . . , (2.21)

where C < 0 and D ∈ � are some constants. The local uniqueness of such asymptotics

is traced out by using Banach’s contraction principle applied to the equivalent integral

equation in the metric of C(−μ, μ), with μ > 0 small. Moreover, it can be shown that (2.21)

is the expansion of an analytic function. Other ODEs admit similar local representations

of solutions.

We now need the following scaling invariance of the ODEs (2.2)–(2.6): if g1(z) is a

solution, then

ga(z) = a5g1

(
z

a

)
is a solution for any a� 0. (2.22)

2.4 Existence of a shock similarity profile

Using the asymptotics derived above, we are now in a position to prove the following.

Proposition 2.3 The problem (2.7), (2.9) for ODEs (2.2)–(2.6) admits a solution g(z), which

is an odd analytic function.

Uniqueness for such higher-order ODEs is a more difficult problem, which is not studied

here, though it has been seen numerically. Moreover, there are some analogous results.

We refer to [24] (to be used later on), where uniqueness of a fourth-order semilinear ODE

was established by an improved shooting argument.

Notice another difficult aspect of the problem. Figures 1–3, which were obtained by

careful numerics, clearly convince that the positivity holds,

g(z) > 0 for z < 0, (2.23)

which is also difficult to prove rigorously (see further comments below). Actually, (2.23)

is not that important for the key convergence (1.8), since possible sign changes (if any)

disappear in the limit as t → T−. It seems that nothing prevents the existence of some

ODEs from family (2.2)–(2.6), with different non-linearities, for which the shock profiles

can change sign for z < 0.
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Proof. As above, we consider the first ODE (2.2) only. We use a shooting argument using

the 2D bundle of asymptotics (2.21). By scaling (2.22), we put C = −1; so, actually, we

deal with the one-parameter shooting problem with the 1D family of orbits satisfying

g(z;D) = −z + D z3 − 1

600
z5 − D

6300
z7 + . . . , D ∈ �. (2.24)

It is not hard to check that besides stabilisation to unstable constant equilibria,

g(z) → C− > 0 as z → −∞, (2.25)

ODE (2.3) admits an unbounded stable behaviour given by

g(z) ∼ g∗(z) = − 1

120
z5 → +∞ as z → −∞. (2.26)

The overall asymptotic bundle about the exact solution g∗(z) is obtained by linearisation:

as z → −∞,

g(z) = g∗(z) + Y (z) =⇒ g∗Y
(5) = −1

5
Y ′z + . . . or z5Y (5) = 24Y ′z + . . . . (2.27)

This is the Euler-type homogeneous equation with the characteristic equation

Y (z) = zm =⇒ m1 = 0 (Y2(z) ≡ 1) or (m− 1)(m− 2)(m− 3)(m− 4) = 24. (2.28)

This yields another m2 = 0 (hence there exists Y2(z) = ln |z|), m3 = 5 (not suitable) and a

proper single complex root with Rem = 5
2
< 5 yielding oscillatory Y3,4(z). Thus

as z → −∞, there exists a 4D asymptotic bundle about g∗(z) = − 1

120
z5. (2.29)

Therefore, at z = −∞, we are given a 2D bundle of proper solutions (2.17), as well as

4D fast-growing profiles from (2.29). This determines the strategy of the 1D shooting via

the D-family (2.24):

(i) obviously, for all D � −1, we have that g(z;D) > 0 is monotone decreasing and

approaches the stable behaviour (2.26), (2.29), and

(ii) on the contrary, for all D � 1, g(z;D) becomes non-monotone and has a zero

value at some finite z0 = z0(D) < 0, satisfying z0(D) → 0− as D → +∞, and eventually

approaches the bundle in (2.29) but in an essentially non-monotone way.

It follows from different and opposite ‘topologies’ of the behaviour announced in (i)

and (ii) that there exists a constant D0 such that g(z;D0) does not belong to those two

sets of orbits (both are open) and hence does not approach g∗(z) as z → −∞ at all. This

is precisely the necessary shock similarity profile. �

This 1D shooting approach is explained in Figure 4 obtained numerically, where

D0 = 0.069192424 . . . . (2.30)

It seems that as D → D+
0 , the zero of g(z;D) must disappear at infinity, i.e.

z0(D) → −∞ as D → D+
0 , (2.31)
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Figure 4. Shooting the shock similarity profile g(z) via family (2.24); D0 = 0.069192424 . . . .

and this actually happens as Figure 4 shows. Then this would justify the positivity (2.23).

Unfortunately, in general (i.e. for similar ODEs with different sufficiently arbitrary non-

linearities), this is not true; i.e. it cannot be guaranteed by a topological argument. The

actual operator structure of the ODEs should be involved in the study; so, theoretically,

the positivity is difficult to guarantee in general. Note again that if the shock similarity

profile g(z) had a few zeros for z < 0, this would not affect the crucial convergence

property such as (1.8).

2.5 Self-similar formation of other shocks

NDE–(1, 4). Let us first briefly consider the last ODE (2.6) for the fully divergent NDE

(1.5). Similarly, by the same arguments, we show that according to (2.1), there exist other

non-symmetric shocks as non-symmetric step-like functions, so that as t → 0−,

u−(x, t) →

⎧⎨
⎩
C− > 0 for x < 0,

C0 for x = 0,

C+ < 0 for x > 0,

(2.32)

where C− � −C+ and C0 � 0. Figure 5 shows a few of such similarity profiles g(z), where

three of these are strictly positive. The most interesting is the boldface one with

C− = 1.4 and C+ = 0,

which has the finite right-hand interface at z = z0 ≈ 5, with the expansion

g(z) = − z0

4200
(z0 − z)4+(1 + o(1)) → 0− as z → z0. (2.33)
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1
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2.5
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z

g(z)

(g g’)
(4)

= – g ′z/5

Shock similarity profile for NDE–(1,4)=(0,5): ut =– (u ux)xxxx

Figure 5. Various shock similarity profiles g(z) as solutions of the problem (2.6), (2.9).

It follows that this g(z) < 0 near the interface; so the function changes sign there, which

is also seen in Figure 5 by carefully checking the shape of profiles above the boldface one

with the finite interface, bearing in mind a natural continuous dependence on parameters.

NDE–(5, 0). Consider next the first ODE (2.2) for the fully non-divergent NDE–(5, 0) (1.1).

We can again describe formation of shocks (2.32) (see Figure 6). The boldface profile

with C− = 1.4 and C+ = 0 has finite right-hand interface at z = z0 ≈ 5, with a different

expansion,

g(z) =
6z0
5

(z0 − z)4| ln(z0 − z)|(1 + o(1)) → 0+ as z → z−
0 . (2.34)

2.6 Shock formation for a uniformly dispersive NDE: an example

Here, as a key example to be continued, we show shocks for uniform (non-degenerate)

NDEs, such as the fully divergent one,

ut = −((1 + u2)ux)xxxx, (2.35)

where the dispersion coefficient −(1 + u2) of the principal operator is an even function.

Recall that for all the previous ones (1.1)–(1.5), the dispersion coefficient is equal to −u
and is an odd function of u. Equation (2.35) is non-degenerate and represents a ‘uniformly

dispersive’ NDE. The ODE for self-similar solutions (2.1) then takes the form

((1 + g2)g′)(4) = −1

5
g′z. (2.36)
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z
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g g
(5)

Shock similarity profile for NDE–(5,0): ut =– u uxxxxx

= – g ′z/5

Figure 6. Various shock similarity profiles g(z) as solutions of the problem (2.2), (2.9).

The mathematics of such equations is similar to that in Section 2.4. In Figure 7, we present

a few shock similarity profiles for (2.36). Note that both shocks S±(x) are admissible, since

for ODE (2.36) (and for NDE (2.35)), we have, instead of symmetry (2.8), that

−g(z) is also a solution. (2.37)

3 (II) Riemann Problem S+: similarity rarefaction waves

Using the reflection symmetry of all the NDEs (1.1)–(1.5),

u �→ −u,
t �→ −t,

}
(3.1)

we conclude that these admit global similarity solutions defined for all t > 0,

u+(x, t) = g(z), with z = x/t
1
5 . (3.2)

Then g(z) solves ODEs (2.2)–(2.6) with the opposite terms

. . . =
1

5
g′z (3.3)

on the right-hand side. Conditions (2.7) also take the opposite form

f(±∞) = ±1. (3.4)
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((1 + g2)g’)(4)= –g ′z/5

Shock similarity profile for ut =– ((1+u2)ux)xxxx

Figure 7. Various shock similarity profiles g(z) satisfying ODE (2.36).

Thus, these profiles are obtained from the blow-up ones in (2.1) by reflection; i.e.

if g(z) is a shock profile in (2.1), then g(−z) is a rarefaction one in (3.2). (3.5)

These are sufficiently regular similarity solutions of NDEs that have the necessary

initial data: by Proposition 2.2(ii), in L1
loc,

u+(x, t) → S+(x) as t → 0+. (3.6)

Other profiles g(−z) from shock wave similarity patterns generate further rarefaction

solutions including those with finite left-hand interfaces.

4 (III) Riemann problem S−: towards δ-entropy test

4.1 Uniform NDEs

In this section, for definiteness, we consider the fully non-divergent NDE (1.1),

ut = A(u) ≡ −uuxxxxx in � × (0, T ), u(x, 0) = u0(x) ∈ C∞
0 (�). (4.1)

In order to concentrate on shocks and to avoid difficulties with finite interfaces or

transversal zeros at which u = 0 (these are weak discontinuities via non-uniformity of the

PDE), we deal with strictly positive solutions satisfying

1

C
� u � C, where C > 1 is a constant. (4.2)
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Shock similarity profile for ut =– ((1+u2)uxxxxx

Figure 8. Various shock similarity profiles g(z) satisfying ODE (4.4).

Remark: uniformly non-degenerate NDEs. Alternatively, in order to avoid assumptions

like (4.2), we can consider the uniform equations such as (cf. (2.35))

ut = −(1 + u2)uxxxxx, (4.3)

for which no finite interfaces are available. Of course, (4.3) admits analogous blow-up

similarity formation of shocks by (2.1). In Figure 8, we show a few profiles satisfying

(1 + g2)g(5) = −1

5
g′z, z ∈ �. (4.4)

Recall that for (4.4), (2.37) holds; so both S±(x) are admissible and entropy solutions (see

below).

4.2 On uniqueness, continuous dependence and a priori bounds for smooth solutions

Actually, in our δ-entropy construction, we will need just a local semigroup of smooth

solutions that is continuous as L1
loc. The fact that such results are true for fifth-order (or

other odd-order NDEs) is easily illustrated as follows: one can see that since (4.1) is a

dispersive equation, which contains no dissipative terms, the uniqueness follows as for

parabolic equations such as

ut = −uuxxxx or ut = uuxxxxxx

(
in the class

{
1

C
� u � C

})
.

Thus, we assume that u(x, t) solves (4.1) with initial data u0(x) ∈ H10(�), satisfies

(4.2) and is sufficiently smooth, u ∈ L∞([0, T ], H10(�)), ut ∈ L∞([0, T ], H5(�)) and so on.
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Assuming that v(x, t) is the second smooth solution, we subtract equations to obtain for

the difference w = u− v the PDE

wt = −uwxxxxx − vxxxxxw. (4.5)

We next divide by u � 1
C
> 0 and multiply by w in L2; so integrating by parts that vanish

the dispersive term wxxxxx yields∫
wwt

u
≡ 1

2

d

dt

∫
w2

u
+

1

2

∫
ut

u2
w2 = −

∫
vxxxxx

u
w2. (4.6)

Therefore, using (4.2) and the assumed regularity yields

1

2

d

dt

∫
w2

u
=

∫ (
− 1

2

ut

u2
− vxxxxx

u

)
w2 � C1

∫
w2

u
, (4.7)

where the derivatives ut(·, t) and vxxxxx(·, t) are from L∞([0, T ]). By Gronwall’s inequality,

(4.7) yields w(t) ≡ 0. Obviously, these estimates can be translated to the continuous

dependence result in L2 and hence in L1
loc.

Other a priori bounds on solutions can also be derived along the lines of the compu-

tations in [8, Section 2 and 3] that lead to rather technical manipulations. The principal

fact is the same as seen from (4.7): differentiating (4.1) α times in x equation and setting

v = Dαxu yields the equations with the same principal part as in (4.5):

vt = −uvxxxxx + . . . . (4.8)

Multiplying this by ζ v
u
, with ζ being a cut-off function, and using various interpolation

inequalities makes it possible to derive necessary a priori bounds and hence to observe

the corresponding smoothing phenomenon for exponentially decaying initial data.

4.3 On local semigroup of smooth solutions of uniform NDEs and linear

operator theory

We recall that local C∞-smoothing phenomena are known for third-order linear and

fully non-linear dispersive PDEs (see [7, 8, 26, 32] and the references therein). We claim

that having obtained a priori bounds, a smooth local solution can be constructed by

the iteration techniques as in [8, Section 3] by using a standard scheme of iteration

of the equivalent integral equation for spatial derivatives. We present further comments

concerning other approaches to local existence, where we return to integral equations.

We then need a detailed spectral theory of fifth-order operators such as

P5 = a(x)D5
x + b(x)D4

x + . . . , x ∈ (−L,L)

(
a(x) �

1

C
> 0

)
, (4.9)

with bounded coefficients. This theory can be found in, e.g., Naimark’s book [34, Chapter

2]. For regular boundary conditions (e.g. for periodic ones that are regular for any order,

which suits us well), operators (4.9) admit a discrete spectrum {λk}, where the eigenvalues

λk are all simple for all large k.
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It is crucial for further use of eigenfunction expansion techniques that the subset of

eigenfunctions {ψk} that is complete in L2 creates a Riesz basis; i.e. for any f ∈ L2,

∑
|〈f, ψk〉|2 < ∞, where 〈f, ψk〉 =

∫
f ψk, (4.10)

and for any {ck} ∈ l2
(
i.e.
∑

|ck|2 < ∞
)
, there exists a function f ∈ L2 such that

〈f, ψk〉 = ck. (4.11)

Then there exists a unique set of ‘adjoint’ generalised eigenfunctions {ψ∗
k} (attributed to

the‘adjoint’ operator P∗
5), which is also a Riesz basis that is bi-orthonormal to {ψk}:

〈ψk, ψ∗
l 〉 = δkl (Kronecker’s delta). (4.12)

Hence, for any f ∈ L2, in the sense of the mean convergence,

f =
∑

ckψk, with ck = 〈f, ψ∗
k〉 (4.13)

(see further details in [34, Section 5]).

The eigenvalues of (4.9) have the asymptotics

λk ∼ (±2ki)5 for all k � 1. (4.14)

In particular, it is known that P5 has compact resolvent, which makes it possible to use

it in the integral representation of the NDEs (cf. [8, Section 3], where integral equations

are used to construct a unique smooth solution of third-order NDEs).

On the other hand, this means that P5 − aI for any a � 1 is not a sectorial operator,

which makes suspicious the use of the advanced theory of analytic semigroups [9,15,33], as

is natural for even-order parabolic flows (see further discussion below). Analytic smoothing

effects for higher-order dispersive equations were studied in [50]. Concerning unique

continuation and continuous dependence properties for dispersive equations, see [11] and

the references therein and also [51] for various estimates.

4.4 Hermitian spectral theory and analytic semigroups

Let us continue to discuss related spectral issues for odd-order operators. For the linear

dispersion equation with constant coefficients (2.13), the Cauchy problem with integrable

data u0(x) admits the unique solution

u(x, t) = b(x− ·, t) ∗ u0(·), (4.15)

where b(x, t) is the fundamental solution (2.14). Analyticity of solutions in t (and x) can

be associated with the rescaled operator

B5 = −D5
z +

1

5
zDz +

1

5
I in L2

ρ(�), where ρ(z) =

{
ea|z|5/4 , z < 0,

e−az5/4

, z > 0,
(4.16)
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and a > 0 is a sufficiently small constant. Here, B5 in (4.16) is the operator in (2.15) that

generates the rescaled kernel F of the fundamental solution in (2.14).

Next, using in (2.13) the same rescaling as in (2.14), we set

u(x, t) = t−
1
5 v(y, τ), y = x/t

1
5 , τ = ln t, (4.17)

to get the rescaled PDE with operator (4.16),

vτ = B5v. (4.18)

Next, the Taylor expansion of the kernel in (4.15) yields

v(y, τ) =

∫
F(y − ze−τ/5) u0(z) dz =

∑
(k)

(−1)k√
k!

F (k)(y)e− k
5 τ

1√
k!

∫
zku0(z) dz, (4.19)

where the series converges uniformly on compact subsets, defining an analytic solution,

and also in the mean in L2
ρ. According to the eigenfunctions expansion (4.19) of the

semigroup, there is a proper definition of operator (4.16) with a real spectrum and

eigenfunctions (see the details in [17, Section 9] and [19, Section 8.2]),

σ(B5) =

{
− k

5
, k = 0, 1, 2, . . .

}
and ψk(y) =

(−1)k√
k!

F (k)(y), k � 0.

The basis of the ‘adjoint’ operator (cf. (2.12)), in a space with an indefinite metric,

B∗
5 = −D5

y − 1

5
yDy in L2

ρ∗(�), ρ∗(z) = e−a|z|5/4 in �,

has the same point spectrum and eigenfunctions {ψ∗
k}, which are generalised Hermite

polynomials (cf. a full ‘parabolic’ version of such a Hermitian spectral theory in [13,17]).

This implies that B5 − aI is sectorial for a � 0 (λ0 = 0 is simple), and this justifies the

fact that (4.15) is an analytic (in t) flow. Let us mention again that analytic smoothing

effects are well known for higher-order dispersive equations with operators of the principal

type [50].

Actually, this also suggests the treatment of (4.1) and (4.2) by a classic approach as in

Da Prato and Grisvard [9] by linearising about a sufficiently smooth u0 = u(t0), t0 � 0,

by setting u(t) = u0 + v(t) giving the linearised equation

vt = A′(u0)v + A(u0) + g(v), t > t0, v(t0) = 0, (4.20)

where g(v) is a quadratic perturbation. Using the good semigroup eA′(u0)t, this makes it

possible to study local regularity properties of the corresponding integral equation

v(t) =

∫ t

t0

eA′(u0)(t−s)(A(u0) + g(v(s))) ds. (4.21)

Note that this smoothing approach demands a fast exponential decay of solutions v(x, t)

as x → ∞, since one needs that v(·, t) ∈ L2
ρ (cf. [32], where C∞-smoothing for third-order

https://doi.org/10.1017/S0956792509990118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509990118


Shock waves and compactons for fifth-order NDEs 23

NDEs was also established under the exponential decay). Equation (4.21) can be used to

guarantee local existence of smooth solutions of a wide class of odd-order NDEs.

Thus, we state the following conclusion to be used later on:

any sufficiently smooth solution u(x, t) of (4.1), (4.2) at t = t0

can be uniquely extended to some interval t ∈ (t0, t0 + ν), ν > 0. (4.22)

4.5 Smooth deformations and δ-entropy test for solutions with shocks

The situation dramatically changes if we want to treat solutions with shocks. Namely,

it is known that even for NDE–3 (1.30), the similarity formation mechanism of shocks

immediately shows non-unique extensions of solutions after a typical ‘gradient’ catastrophe

[20]. Therefore, we do not have a chance to get, in such an easy (or any) manner, a

uniqueness/entropy result for more complicated NDEs such as (1.5) by using the δ-

deformation (evolutionary smoothing) approach. However, we will continue using these

ideas, which have turned out to be fruitful, in order to develop a much weaker ‘δ-entropy

test’ for distinguishing some simple shock and rarefaction waves.

Thus, given a small δ > 0 and a sufficiently small bounded continuous (and, possibly,

compactly supported) solution u(x, t) of the Cauchy problem (4.1), satisfying (4.2), we

construct its smooth δ-deformation, aiming for smoothing in a small neighbourhood of

bounded shocks, as follows. Note that we deal here with simple shock configurations

(mainly with one-shock structures) and do not aim to cover more general shock geometry,

which can be very complicated, especially since we do not know all types of simple

single-point moving shocks.

(i) We perform a smooth δ-deformation of the initial data u0(x) by introducing a

suitable C1 function u0δ(x) such that∫
|u0 − u0δ | < δ. (4.23)

If u0 is already sufficiently smooth, this step must be abandoned (now and always later

on). By u1δ(x, t), we denote the unique local smooth solution of the Cauchy problem with

the data u0δ , so that by (4.22), the continuous function u1δ(x, t) is defined on the maximal

interval t ∈ [t0, t1(δ)), where we denote t0 = 0 and t1(δ) = Δ1δ . At this step, we are able

to eliminate non-evolutionary (evolutionary unstable) initially posed shocks, which then

create corresponding smooth rarefaction waves.

(ii) At t = Δ1δ , a shock-type discontinuity (or possibly infinitely many shocks) is

supposed to occur, since otherwise we extend the continuous solution by (4.22); so we

perform another suitable δ-deformation of the ‘data’ u1δ(x,Δ1δ) to get a unique continuous

solution u2δ(x, t) on the maximal interval t ∈ [t1(δ), t2(δ)), with t2(δ) = Δ1δ + Δ2δ and the

like. Here and in what follows, we always mean a ‘δ-smoothing’ performed in a small

neighbourhood of occurring singularities only as discontinuous shocks.

. . .

We continue in this manner with suitable choices of each δ-deformations of ‘data’ at

the moments t = tj(δ); when ujδ(x, t) has a shock, there exists a tk(δ) > 1 for some finite
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k = k(δ), where k(δ) → +∞ as δ → 0. It is easy to see that for bounded solutions, k(δ) is

always finite. A contradiction is obtained by assuming that tj(δ) → t̄ < 1 as j → ∞ for

arbitrarily small δ > 0, meaning a kind of ‘complete blow-up’ that was excluded by the

assumption of smallness of the data.

This gives a global δ-deformation in � × [0, 1] of the solution u(x, t), which is the

discontinuous orbit denoted by

uδ(x, t) = {ujδ(x, t) for t ∈ [tj−1(δ), tj(δ)), j = 1, 2, . . . , k(δ)}. (4.24)

One can see that this δ-deformation construction aims at checking a kind of evolution

stability of possible shock wave singularities and therefore to exclude those that are not

entropy and evolutionarily generate smooth rarefaction waves.

Finally, by an arbitrary smooth δ-deformation, we will mean function (4.24) constructed

by any sufficiently refined finite partition {tj(δ)} of [0, 1], without reaching a shock of

S−-type at some or all intermediate points t = t−j (δ).

We next say that given a solution u(x, t), it is stable relative smooth deformations, or

simply δ-stable (δeformation-stable), if for any ε > 0, there exists δ = δ(ε) > 0 such that

for any finite δ-deformation of u given by (4.24),

∫∫
|u− uδ | < ε. (4.25)

Recall that (4.24) is an δ-orbit and, in general, is not and cannot be aimed to represent a

fixed solution in the limit δ → 0 (see below).

4.6 On δ-entropy solutions

Having checked that the local smooth solvability problem above is well posed, we now

present the corresponding definition that will be applied to particular weak solutions.

Recall that the metric of convergence, L1
loc under present consideration for (1.30) was

justified by a similarity analysis presented in Proposition 2.2. For other types of shocks

and/or NDEs, the metric may be different.

Thus, under the given hypotheses, a function u(x, t) is called a δ-entropy solution

of the Cauchy problem (4.1) if there exists a sequence of its smooth δ-deformations

{uδk , k = 1, 2, . . .}, where δk → 0, which converges in L1
loc to u as k → ∞.

This is slightly weaker than (but equivalent to) the condition of δ-stability.

Remark: δ-entropy solution is unique for 1D conservation law. Consider, as a typical

example, (1.7) for general measurable L1-data. The classical Oleinik–Kruzhkov entropy

theory for (1.7) defines the unique semigroup of contractions in L1 (see [49]), i.e. for an

arbitrary pair of entropy solutions u(·, t) and v(·, t), in the sense of distributions,

d
dt

‖u(t) − v(t)‖L1 � 0 for a.a. t � 0. (4.26)

Consider now the above δ-deformation construction of an orbit {uδ} in the case in which

the entropy solution u(x, t) is continuous a.e. for all t � 0, i.e. shocks have zero measure.

It means that uδ(x, t) for t � 0 is smooth and essentially differs from u(x, t) on a set

of arbitrarily small measure ∼δ → 0. Therefore, under these (possibly non-constructive)
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assumptions, (4.26) implies that any smooth δ-deformation in L1 inevitably leads to the

unique entropy solution of (1.7) as δ → 0. In other words,

for Euler’s equation (1.7), classic entropy solutions = δ-entropy ones. (4.27)

Of course, this is just the trivial consequence of the L1-contractivity (4.26), which, in

its turn, is induced by the ‘maximum principle’. It is also worth mentioning that, some-

how, (4.26) reflects the fact that the conservation laws such as (1.7) admit the direct

algebraic solution via characteristics. Indeed, the characteristic method guarantees the

unique solvability in the regularity domain, while the ‘shocks cut-off’ can be performed

at the necessary points by the corresponding Rankine–Hugoniot relations. Thus, the

entropy conditions just describe the correct evolution from initially posed singularities

(evolutionary, such ‘rarefaction waves’ cannot appear by characteristics).

Therefore, the absence of the maximum principle and absence of any characteristic-

based approach for higher-order NDEs recall that a result such as (4.27) cannot be

expected in principle here. The situation is even more terrible: we will show that any

uniqueness/entropy result for such NDEs fails always and anyway.

4.7 δ-entropy test and non-existent uniqueness

Since, for obvious reasons, the δ-deformation construction gets rid of non-evolutionary

shocks (leading to non-singular rarefaction waves), a first consequence of the construction

is that it defines the δ-entropy test for solutions, which allows one, at least, to distinguish

the true simple isolated shocks from smooth rarefaction waves.

In Section 5, we show that it is completely unrealistic to expect from this construction

something essentially stronger in the direction of uniqueness and/or entropy-like selection

of proper solutions. Though these expectations correspond well to previous classical PDE

entropy-like theories, these are excessive for higher-order models, where such a universal

property is not achievable at all any more. Even proving convergence for a fixed special

δ-deformation is not easy at all. Thus, for particular cases, we will use the above notions

with convergence along a subsequence of δ’s to classify and distinguish shocks and

rarefaction waves of simple geometric configurations:

4.8 First easy conclusions of δ-entropy test

As a first application, we have the following.

Proposition 4.1 Shocks of the type S−(x) are δ-entropy for (4.1).

The result follows from the properties of similarity solutions (2.1), with −t �→ Tt, which,

by varying the blow-up time T �→ T+δ, can be used as their local smooth δ-deformations

at any point t � 0.

Proposition 4.2 Shocks of the type S+(x) are not δ-entropy for (4.1).
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Indeed, taking initial data S+(x) and constructing its smooth δ-deformation via the

self-similar solution (3.2) with shifting t �→ t + δ, we obtain the global δ-deformation

{uδ = u+(x, t+ δ)}, which goes away from S+.

Thus, the idea of smooth δ-deformations allows us to distinguish basic δ-entropy

and non-entropy shocks without any use of mathematical manipulations associated with

standard entropy inequalities, which, indeed, are illusive for higher-order NDEs (cf. [20]).

We believe that successful applications of the δ-entropy test can be extended to any

configuration with a finite number of isolated shocks. However, it is completely illusive to

think that such a simple procedure could be applied to general solutions, especially since

the uniqueness after singularity formation cannot be achieved in principle, as we show next.

In other words, the δ-entropy test allows us to prohibit formation of non δ-deformation

stable shocks of type S+ and proposes a smooth rarefaction wave instead. However,

this approach cannot detect a unique shock of the opposite geometry S−, since such a

formation is principally non-unique.

5 (IV) Non-uniqueness after shock formation

Here we mainly follow the ideas from [20] applied there to NDE–3 (1.30); so we will

omit some technical data and present more convincing analytic and numerical results

concerning the non-uniqueness. For the hard 5D dynamical systems under consideration,

numerics becomes more and more essential and unavoidable for understanding the nature

of such non-unique extensions of solutions. Without loss of generality, we always deal

with NDE–5 (1.5) of the fully divergent form.

5.1 Main strategy towards non-unique continuation: pessimistic conclusions

We begin with the study of new shock patterns, which are induced by other (cf. (2.1))

similarity solutions of (1.5):

u−(x, t) = (−t)αf(y), y = x
(−t)β , β = 1+α

5
, where α ∈

(
0, 1

4

)
and (5.1)

−(ff′)(4) − βf′y + αf = 0 in �−, f(0) = f′′(0) = f(4)(0) = 0,

f(y) = C0|y|
α
β (1 + o(1)) as y → −∞, C0 > 0.

}
(5.2)

In this section, in order to match the key results in [20], in (2.1) and later on, we change

the variables {g, z} �→ {f, y}. In Section 6, we return to the original notation. The anti-

symmetry conditions in (5.2) allow us to extend the solution to the positive semi-axis

{y > 0} by the reflection −f(−y) to get a global pattern.

Obviously, solutions (2.1), which are suitable for Riemann problems, correspond to the

simple case α = 0 in (5.1). It is easy to see that for positive α, the asymptotics in (5.2)

ensures getting first gradient blow-up at x = 0 as t → 0−, as a weak discontinuity, where

the final time profile remains locally bounded and continuous:

u−(x, 0−) =

{
C0|x|

α
β for x < 0,

−C0|x|
α
β for x > 0,

(5.3)
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where C0 > 0 is an arbitrary constant. Note that the standard ‘gradient catastrophe’,

ux(0, 0
−) = −∞, then occurs in the range, which we will deal within,

α

β
< 1 provided that α <

1

4
. (5.4)

Thus, the wave braking (or ‘overturning’) begins at t = 0, and next we show that it is

performed again in a self-similar manner and is described by similarity solutions

u+(x, t) = tαF(y), y = x
tβ
, β = 1+α

5
, where (5.5)

−(FF ′)(4) + βF ′y − αF = 0 in �−,

F(0) = F0 > 0, F(y) = C0|y|
α
β (1 + o(1)) as y → −∞,

}
(5.6)

where the constant C0 > 0 is fixed by blow-up data (5.3). The asymptotic behaviour

as y → −∞ in (5.6) guarantees the continuity of the global discontinuous pattern (with

F(−y) ≡ −F(y)) at the singularity blow-up instant t = 0, so that

u−(x, 0−) = u+(x, 0+) in �. (5.7)

Then any suitable couple {f, F} defines a global solution u±(x, t), which is continuous

at t = 0, and then it is called an extension pair. It was shown in [20] that for the typical

NDE–3s, the pair is not uniquely determined, and there exist infinitely many shock-type

extensions of the solution after blow-up at t = 0. We are going to describe a similar

non-uniqueness phenomenon for the NDE–5s such as (1.5).

It is worth mentioning that for conservation laws such as (1.7), such an extension

pair {f, F} is always unique (see the similarity analysis in [20, Section 4]). Of course, this

is not surprising because of the existing Oleinik–Kruzhkov classic uniqueness–entropy

theory [30, 36]. Note again that any sufficient multiplicity of extension pairs {f, F},
obtained via small micro-scale blow-up analysis of the PDEs, would always lead to a

principle non-uniqueness; so this approach could be referred to as a ‘uniqueness test’.

A first immediate consequence of our similarity blow-up/extension analysis is as follows:

in the CP, formation of shocks for NDE (1.5) can lead to non-uniqueness. (5.8)

The second conclusion is subtler and is based on the fact that for some initial data at

t = 0 (i.e. created by single-point gradient blow-up as t → 0−), the whole admitted solution

set for t > 0 does not contain any ‘minimal’, ‘maximal’, ‘extremal’ in any reasonable

sense, or any isolated points, which might play a role of a unique ‘entropy’ one chosen by

introducing a hypothetical entropy inequalities, conditions or otherwise. If this is true for

the whole set of such weak solutions of (1.5) with initial data (5.3), then for the Cauchy

problem,

there exists no general ‘entropy mechanisms’ to choose a unique solution. (5.9)

Actually, overall, (5.8) and (5.9) show that the problem of uniqueness of weak solutions

for NDEs such as (1.5) cannot be solved in principal.
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Figure 9. Infinite shock similarity profiles as solutions of (5.2) for α < 0: α = −0.05 and α = −0.1.

On the other hand, in a free-boundary problem (FBP) setting by adding an extra suitable

condition on shock lines, the problem might be well posed with a unique solution, though

proofs can be very difficult. We refer again to a more detailed discussion of these issues

for NDE–3 (1.30) in [20]. Though we must admit that for NDE–5 (1.5), which induces

5D dynamical systems for the similarity profiles (and hence 5D phase spaces), those

non-uniqueness and non-entropy conclusions are more difficult and not that clear as

for NDE–3s; so some of their aspects do unavoidably remain questionable and even

open.

Hence, the non-uniqueness in the CP is a non-removable issue of PDE theory for higher-

order degenerate non-linear odd-order equations (and possibly not only for those). The

non-uniqueness of solutions of (1.5) has some pure dimensional natural features and,

more precisely, is associated with the dimensions of ‘good’ and ‘bad’ asymptotic bundles

of orbits in the 5D phase space of ODE (5.6).

5.2 Infinite shock similarity solutions for α < 0

Let us first note that the blow-up solutions (5.1) represent an effective way to describe

other types of singularities with infinite shocks. Namely, assuming that

α < 0 and α
β
< 0, (5.10)

we again obtain the same ‘data’ (5.3) but now u−(0, 0−) = ∞. We do not study in any

detail such interesting new singularity phenomena and present Figure 9, which shows that

such infinite shock similarity profiles do exist. For comparison, we indicate the standard

S−-type profile for α = 0, which coincides with that in Figure 3(d).

For NDE–3 such as (1.30), the infinite shock similarity solutions in the range (5.10)

were studied in [22, Section 4] in sufficient detail.
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5.3 Gradient blow-up similarity solutions

Consider the blow-up ODE problem (5.2), which is a difficult one, with a 5D phase space.

Note that by invariant scaling (2.22), it can be reduced to a fourth-order ODE with a also

even more complicated non-linear operator composed from too many polynomial terms;

so we do not rely on that and work in the original phase space. Therefore, some more

delicate issues on, say, uniqueness of certain orbits become very difficult or even remain

open, though some more robust properties can be detected rigorously. We will also use

numerical methods for illustrating and even justifying some of our conclusions. As before,

for the fifth-order equations such as (5.2), this and further numerical constructions are

performed by MatLab with the standard ode45 solver therein.

Let us describe the necessary properties of orbits {f(y)} we are interested in. Firstly, it

follows from the conditions in (5.2) that for y ≈ 0−,

the set of proper orbits is 2D parameterised by f1 = f′(0) < 0 and f3 = f′′′(0). (5.11)

Secondly, and on the other hand, the necessary behaviour at infinity is as follows:

f(y) = C0|y| 5α
1+α (1 + o(1)) as y → −∞

(
5α

1 + α
=
α

β

)
, (5.12)

where C0 > 0 is an arbitrary constant by scaling (2.22). It is key to derive the whole 4D

bundle of solutions satisfying (5.12). This is done by the linearisation as y → −∞:

f(y) = f0(y) + Y (y), where f0(y) = C0(−y)
α
β

=⇒ −C0((−y)
α
β Y )(5) + βY ′(−y) + αY + 1

2
(f2

0(y))
(5) + . . . = 0.

(5.13)

By WKBJ-type asymptotic techniques in the ODE theory, solutions of (5.13) have a

standard exponential form with the characteristic equation

Y (y) ∼ ea(−y)
γ

, γ = 1 + 1
4

(
1 − α

β

)
> 1 =⇒ C0(γa)

4 = β, (5.14)

which has three roots with non-positive real parts, Re ak � 0, where a1 < 0 is real and

conjugate a2,3 ∈ i�. Hence, we conclude that

as y → −∞, bundle (5.12) is 4D (including C0). (5.15)

The behaviour corresponding to bundle (5.15) gives the desired asymptotics. Indeed, by

(5.12), we have the gradient blow-up behaviour at a single point: for any fixed x < 0, as

t → 0−, where y = x/(−t)β → −∞, uniformly on compact subsets,

u−(x, t) = (−t)αf(y) = (−t)αC0| x
(−t)β |

α
β (1 + o(1)) → C0|x| 5α

1+α . (5.16)

Let us explain some other crucial properties of the phase space, now meaning ‘bad

bundles’ of orbits. First, these are the fast-growing solutions according to the explicit

solution

f∗(y) = − y5

15120
> 0 for y � −1. (5.17)
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Figure 10. The polynomial hα(m) in (5.19) for various α ∈
(
0, 1

4

)
: five negative roots.

Analogous to (5.13), we compute the whole bundle about (5.17):

f(y) = f∗(y) + Y (y) =⇒ 1
15120

(y5Y )(5) − βY ′y + αY + . . . = 0. (5.18)

This Euler equation has the following solutions with the characteristic polynomial:

Y (y) = ym =⇒ hα(m) ≡ (m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5)

15120
− βm+ α = 0. (5.19)

One root m = −5 is obvious, which gives the solution (5.17). It turns out that this algebraic

equation has precisely five negative real roots for α from range (5.4), as Figure 10 shows.

Actually, Figure 10(b) explains that the graphs are rather slightly dependent on α. Thus

the bundle about (5.17) is 5D. (5.20)

Second, there exists a bundle of positive solutions vanishing at some finite y → y+
0 < 0

with the behaviour (this bundle occurs from both sides, as y → y±
0 to be also used)

f1(y) = A
√

|y − y0| (1 + o(1)), A > 0, (5.21)

which is 4D, which also can be shown by linearisation about (5.21). Indeed, the linearised

operator contains the leading term

−A2(
√

|y − y0| Y )(5) + . . . = 0 =⇒ Y (y) ∼ |y − y0| 3
2 , |y − y0| 5

2 , |y − y0| 7
2 , (5.22)

which together with the parameter y0 < 0 yields that

the bundle about (5.21) is 4D. (5.23)

Thus, (5.11), (5.15), (5.20) and (5.23) prescribe key aspects of the 5D phase space we are

dealing with. To get a global orbit {f(y), y ∈ �−} as a connection of the proper bundles

(5.11) and (5.15), it is natural to follow the strategy of ‘shooting from below’ by avoiding
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Figure 11. (Color online) The shooting strategy of a blow-up similarity profile f(y) for α =
1
9
, with data f(0) = f′′(0) = f(4)(0) = 0 and f′(0) = 1; the shooting parameter is f′′′(0) =

0.0718040128557 . . . .

the bundle (5.21), (5.23), i.e. using the parameters f1,3 in (5.11), to obtain

y0 = −∞. (5.24)

It is not difficult to see that this profile f(y) will belong to bundle (5.15). The proof of

such a 2D shooting strategy can be done by standard arguments. By scaling (2.22), we

can always reduce the problem to a 1D shooting (recall that f0 = f2 = f4 = 0 already):

f1 ≡ f′(0) = −1 and f3 ≡ f′′′(0) is a parameter. (5.25)

By the above asymptotic analysis of the 5D phase space, it follows that

(I) for f3 � −1 the orbit belongs to the bundle about (5.17), and

(II) for f3 � 1 the orbit vanishes at finite y0 along (5.21).

Hence, by continuous dependence, we obtain a solution f(y) by the min–max principle

(plus some usual technical details that can be omitted). Before stating the result, for

convenience, in Figure 11, obtained by the ode45 solver, we explain how we are going to

justify existence of a proper blow-up shock profile f(y) (cf. Figure 4).

Thus, we fix the above speculations as follows.

Proposition 5.1 (i) In range (5.4), problem (5.2) admits a shock profile f(y).

We have the following expectation: (ii) f(y) is unique up to scaling (2.22) and is positive

for y < 0. This remains an open problem that was confirmed numerically. In [20], for the

NDE–3 (1.30), the phase space is 3D, and a full proof is available.

In fact, this is a rather typical result for higher-order dynamical systems. For example,

we refer to a similar and not less complicated study of a fourth-order ODE [24], where
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Figure 12. The odd blow-up similarity profiles f(y) in �− with α = 1
9
, 1

19
and 3

17
.

existence and uniqueness of a positive solution of the radial bi-harmonic equation with

source

Δ2
r u = up for r = |x| > 0, u(0) = 1, u′(0) = u′′′(0) = 0, u(∞) = 0 (5.26)

was proved in the supercritical Sobolev range p > pSob = N+4
N−4

, N > 4. Here, analogously,

there exists a single shooting parameter, which is the second derivative at the origin

u2 = u′′(0); the value u0 = u(0) = 1 is fixed by a scaling symmetry. Proving the uniqueness

of such a solution in [24] is not easy and leads to essential technicalities, which the

attentive reader can consult in case of necessity. Fortunately, we are not interested in any

uniqueness of such kind. Instead of the global behaviour such as (5.17), (5.26) admits the

blow-up one governed by the principal operator u(4) + . . . = up (u → +∞). The solutions

vanishing at finite point otherwise can be treated as in family (I).

More numerics by bvp4c. We next use more advanced and enhanced numerical methods

towards the existence (and uniqueness-positivity; see (ii)) of f(y). Figure 12 shows blow-

up profiles, with f(0) = 0, constructed by a different method (via the solver bvp4c) for

convenient values α = 1
9
, 1

19
and 3

17
. Note the clear oscillatory behaviour of such patterns

that is induced by the complex roots of the characteristic equation (5.14).

Collapse of shocks: ‘backward non-uniqueness’. This new phenomenon is presented

in Figure 13, which shows the shooting from y = 0− for

α = 1
9

=⇒ α
β

= 1
2
. (5.27)

This again illustrates the actual strategy in proving Proposition 5.1. However, though the

phase space looks similar, note that here, as an illustration of another important evolution
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Figure 13. (Color online) Shooting the blow-up profile f(y) for α = 1
9
: f(0) = 10,

f′′(0) = f(4)(0) = 0 and the shooting parameter is f′(0) = f′′′(0).

phenomenon, we solve the problem with f(0)� 0, so that there exists a non-zero jump of

u−(x, t) at x = 0 denoted by [·]:

f(0) = f0 = 10 =⇒ [u−(0, t)] = 2f0(−t)α → 0 as t → 0−. (5.28)

Therefore, this similarity solution describes collapse of a shock wave as t → 0−.

More numerical results of such types are presented in Figures 14 and 15, where we

use other boundary conditions at y = 0. Note that being extended for y > 0 in the

anti-symmetric way, by −f(−y), this will give a proper shock wave solution with the nil

speed of propagation (see the Rankine–Hugoniot condition (5.42) below).

As a whole, since all these blow-up profiles satisfy the necessary behaviour as y → −∞
as indicated in (5.2), these create as t → 0− the same initial data (5.3). This confirms

the following phenomenon of ‘backward non-uniqueness’: initial data (5.3) with gradient

blow-up at x = 0 can be created by an infinite number (in fact by a 2D subset parameterised,

say, by {f0, f1}) of various self-similar solutions (5.1).

Indeed, such a non-uniqueness is directly associated with the fact that because of (5.15),

the proper asymptotic bundle as y → −∞ is 3D (for a fixed C0 > 0, we have to subtract the

dimension via the scaling invariance (2.22)). Therefore, roughly speaking, shooting from

y = 0− with five parameters f0 = f(0), . . . , f4 = f(4)(0) allows a 2D (2 = 5 − 3) subset

of solutions f(y) with shocks at y = 0. A full justification of such a conclusion requires a

more careful analysis of the phase space including geometry of two ‘bad’ bundles, which

we do not perform here and concentrate on other more important solutions and true

non-uniqueness phenomena.
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f(4)(0) = 0 (b); f(0) is a parameter.
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Stationary solutions with a ‘weak shock’. The ODE in (5.2) and hence PDE (1.5)

admit a number of simple continuous ‘stationary’ solutions. For example, consider

α =
1

9
,
α

β
=

1

2
: f̂(y) =

√
|y| sign y and û(x, t) ≡ ±

√
|x| sign x. (5.29)

Note that these are not weak solutions of the stationary equation

1
2
(u2)xxxxx = 0 in D′. (5.30)

The classic stationary solution of (5.30) û(x, t) = ±x2 is smoother at x = 0.

We will show that such ‘weak stationary shocks’ as in (5.29) also lead to non-uniqueness.

Remark: an exact solution for a critical α. One can see that the quadratic operator

B(f) = (ff′)(4) in (5.2) admits the following polynomial invariant subspace:

W6 = Span{1, y, y2, y3, y4, y5} =⇒ B(W6) ⊆ W6.

Restricting ODE (5.2) to W6 yields an algebraic system, which admits an exact solution

for the following value of the critical αc:

α = αc = 17
84

= 0.202381 . . . =⇒ ∃ f(y) = Cy − 4!
9!
y5, C ∈ �. (5.31)

Since αc > 0, it does not deliver a ‘saw-type’ blow-up profile (having infinite number of

positive humps) as it used to be for NDE–3 (1.30) for αc = − 1
10

(see [22, Section 4]).

5.4 Non-uniqueness of similarity extensions beyond blow-up

As in [20] for NDEs–3, a discontinuous shock wave extension of blow-up similarity

solutions (5.1) and (5.2) is assumed to be done by using the global ones (5.5) and (5.6).

Actually, this leads to watching a whole 5D family of solutions parameterised by their

Cauchy values at the origin:

F(0) = F0 > 0, F ′(0) = F1 < 0, F ′′(0) = F2, F
′′′(0) = F3, F

(4)(0) = F4. (5.32)

Thus, unlike (5.11), the proper bundle in (5.32) is 5D. Note that at y = −∞, the solution

must have the form

F(y) = C0|y| 5α
1+α (1 + o(1)) as y → −∞ (C0 > 0). (5.33)

As above, the 5D phase space for the ODE in (5.6) has two stable ‘bad’ bundles:

(I) Positive solutions with ‘singular extinction’ in finite y, where F(y) → 0 as y → y+
0 < 0.

This is an unavoidable singularity following from the degeneracy of the equations with the

principal term FF (5) leading to the singular potential ∼ 1
F
. As in (5.22), this bundle is 4D.

(II) Negative solutions with the fast growth (cf. (5.17)),

F∗(y) = y5

15120
(1 + o(1)) → −∞ as y → −∞. (5.34)

The characteristic polynomial is the same as in (5.19), so that the bundle is 5D (cf. (5.20)).
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Figure 16. (Color online) Unsuccessful examples of 1D shooting of F(y) of (5.6) from y = 0−.

Both sets of such solutions are open by the standard continuous dependence of solutions

of ODEs on parameters. The whole bundle of solutions satisfying (5.12) is obtained by

linearisation as y → −∞ in (5.6):

f(y) = F0(y) + Y (y), where F0(y) = C0(−y)
α
β

=⇒ −C0((−y)
α
β Y )(5) − βY ′(−y) − αY + 1

2
(F2

0 (y))(5) + . . . = 0.
(5.35)

The WKBJ method now leads to a different characteristic equation:

Y (y) ∼ ea(−y)
γ

, γ = 1 + 1
4

(
1 − α

β

)
> 1 =⇒ C0(γa)

4 = −β, (5.36)

so that there exist just two complex conjugate roots with Re � 0, and hence, unlike (5.15),

the bundle (5.12) of global orbits {F(y)} is 3D. (5.37)

However, the geometry of the whole phase space and the structure of key asymptotic

bundles change dramatically in comparison with the blow-up cases, so that the standard

shooting of positive global profiles F(y) by the ode45 solver yields no encouraging results.

We refer to Figure 16, which illustrates typical negative results of a standard shooting.

Figure 17 looks better and presents shooting a kind of ‘separatrix’, which however does

not belong to the necessary family as in (5.6). Actually, this means that a 1D shooting is

not possible, and as we will see, there occurs a more complicated 2D one, i.e. using two

parameters.

Therefore, we now use the bvp4c solver, and this gives the following results for case

(5.27), with C0 = 1, as usual. Namely, we show that there are two parameters, say

F0 = F(0) and F1 = F ′(0), (5.38)

such that for their arbitrary values from some connected subset in �2, including all points

with F0 > 0 and F1 � 0, problem (5.6) admits a solution. This is confirmed in Figure 18
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F(0) = 1, F ′(0) = −1, F ′′(0) = F (4)(0) = 0 and with F ′′′(0) = −0.2000223777 . . . being a parameter.
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Figure 18. Global profiles F(y) of (5.6) for α = 1
9
, C0 = 1, F ′(0) = 0, with F(0) ∈ [1, 9] being a

parameter.

for the case F ′(0) = 0 and in Figure 19 for the cases (a) F ′(0) = +1 and (b) F ′(0) = −1.

Obviously, all these profiles are different and exhibit fast and ‘non-oscillatory’ convergence

as y → −∞ to the ‘good’ bundle as in (5.6) with C0 = 1.

Finally, carefully analysing the dimensions of all the ‘bad’ and ‘good’ asymptotic

bundles indicated in (i) and (ii) above, plus (5.37), unlike the result for blow-up profiles

in Proposition 5.1, we arrive at an even stronger non-uniqueness.
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Figure 19. Global profiles F(y) of (5.6) for α = 1
9
, C0 = 1 and F ′(0) = +1 (a), F ′(0) = −1 (b), with

F(0) ∈ [0, 10] being a parameter.

Proposition 5.2 In range (5.4) and any fixed C0 > 0, problem (5.6) admits a 2D family of

solutions, which can be parameterised by F0 and F1.

Recall again that for any hope of uniqueness, the extension pair {f, F} must be unique

(or at least its subset should contain some ‘minimal’ and/or isolated points as proper

candidates for unique entropy solutions) for any fixed constant C0 > 0, which defines

the ‘initial data’ (5.3) at the blow-up time t = 0−. This actually happens for the Euler

equation (1.7) (see [20, Section 4], where the similarity analysis is indeed easier and is

reduced to algebraic manipulations but is not that straightforward anyway even for such

a ‘first-order NDE’).

5.5 ‘Initial non-uniqueness’

A new ‘non-uniqueness’ phenomenon is achieved for the values of parameters

F(0) = F0 < 0 and F ′(0) = F1 � 0. (5.39)

Figures 20(a) and (b) shows such shock profiles leading to the non-uniqueness, obtained

by a standard 1D shooting via the ode45 solver. Here, two similarity profiles F(y) are

obtained via distinct types of shooting: relative to the parameter F ′(0) = F ′′′(0) in (a) and

relative to F ′′(0) in (b).

The proof of existence of such profiles F is based on the same geometric arguments

as that of Proposition 2.3 (with the evident change of the geometry of the phase space).

These two different profiles posed into the similarity solutions (5.5) show a non-unique

way to get solutions with initial data (C0 = 1 by scaling) at t = 0+,

u0(x) = |x|
α
β sign x in �, (5.40)

which already have a gradient blow-up singularity at x = 0. This is another potential

type of non-uniqueness in the Cauchy problem for (1.5), showing the non-unique way of

formation of shocks from weak discontinuities, including the stationary ones as in (5.29).
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Figure 21. Global rarefaction profile F(y) of (5.6) for α = 1
9
, C0 = −1; F(0) = F ′′(0) = F (4)(0) = 0.

However, bearing in mind that Proposition 4.2 says that the shocks of S+-type are not

δ-entropy (i.e. not stable relative small smooth deformations), one can expect that the

shocks as in (5.39) are also unstable. Indeed, smooth extensions of weak pointwise shocks

(5.40) via rarefaction self-similar waves given by (5.6) are δ-entropy. In Figure 21, we show

such a global rarefaction profile F(y) for α = 1
9
, which describes smooth collapse of the

‘weak equilibrium’ (5.29). One can see that such rarefaction profiles satisfy F(y) ≡ −f(y),
where f are the corresponding blow-up ones, as shown in Figure 12 for various α.
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Overall, it seems that the δ-entropy test rules out such an ‘initial non-uniqueness’ with

the data of type S+ as in (5.40), where a unique smooth rarefaction extension is available.

On the other hand, for other classes of data of S−-shape (according to Proposition 4.1),

such a non-uniqueness can take place (see Section 5.4).

5.6 More on the non-uniqueness and well-posedness of FBPs

The non-uniqueness (5.8) in the Cauchy problem (1.5), (5.3) is as follows: any F(y) yields

the self-similar continuation (5.5), with the behaviour of the jump at x = 0 (profiles F(y)

as in Figure 20)

−[u+(x, t)]|x=0 ≡ −
(
u+(0+, t) − u+(0−, t)) = 2F0t

α < 0 for t > 0. (5.41)

In the similarity ODE representation, this non-uniqueness has a pure geometric-

dimensional origin associated with the dimension and mutual geometry of the good

and bad asymptotic bundles of the 5D phase spaces of both blow-up and global equa-

tions. Since these shocks are stationary, the corresponding Rankine–Hugoniot condition

on the speed λ of the shock propagation

λ =
[(uux)xxx]

[u]
|x=0 ≡ [(u2)xxxx]

2[u]
|x=0 =

[(f2)(4)]

2[f]
|y=0 = 0, (5.42)

is valid by anti-symmetry. As usual, (5.42) is obtained by integration of (1.30) in a small

neighbourhood of the shock. The Rankine–Hugoniot condition does not assume any

novelty and is a corollary of integrating the PDE about the line of discontinuity.

Moreover, the Rankine–Hugoniot condition (5.42) also indicates another origin of non-

uniqueness: a symmetry breaking. Indeed, the solution for t > 0 is not obliged to be an

odd function of x; so the self-similar solution (5.5) for x < 0 and x > 0 can be defined

using 10 different parameters {F±
0 , . . . , F

±
4 }, and the only extra condition one needs is the

Rankine–Hugoniot one:

[(FF ′)′′′](0) = 0, i.e. F−
0 F

−
4 + 4F−

1 F
−
3 + 3(F−

2 )2 = F+
0 F

+
4 + 4F+

1 F
+
3 + 3(F+

2 )2. (5.43)

This algebraic equation with 10 unknowns admits many other solutions rather than the

obvious anti-symmetric one:

F−
0 = −F+

0 , F−
1 = F+

1 , F−
2 = −F+

2 , F−
3 = F+

3 and F−
4 = −F+

4 .

Finally, we note that the uniqueness can be restored by posing specially designed

conditions on moving shocks, which provide the overall guarantee of the unique solvability

of the algebraic equation in (5.43) and hence the unique continuation of the solution

beyond blow-up. This construction is analytically similar to that for NDEs–3 (1.30)

in [20].
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6 Shocks for an NDE obeying the Cauchy–Kovalevskaya theorem

In this short section, we touch on the problem of formation of shocks for NDEs that are

higher order in time. Instead of studying the PDEs such as (cf. [18, 22])

utt = −(uux)xxxx, uttt = −(uux)xxxx, (6.1)

we consider NDE (1.11) that is fifth order in time; it exhibits certain simple and, at the

same time, exceptional properties. Writing it for W = (u, v, w, g, h)T as

ut = vx,

vt = wx,

wt = gx,

gt = hx,

ht = uux,

or Wt = AWx, with the matrix A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

u 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (6.2)

(1.11) becomes a first-order system with the characteristic equation for eigenvalues

−λ5 + u = 0.

Hence, for any u� 0, there exist complex roots, so that advanced results on hyperbolic

systems [1, 10] cannot be applied.

6.1 Evolution formation of shocks

For (1.11), the blow-up similarity solution is

u−(x, t) = g(z), z = x/(−t), where (6.3)

(gg′)(4) = (z5g′)(4) ≡ 120g′z + 240g′′z2 + 120g′′′z3

+ 20g(4)z4 + g(5)z5 in �, f(∓∞) = ±1.
(6.4)

Integrating (6.4) four times yields

gg′ = z5g′ + Az + Bz3, with constants A = (g′(0))2 > 0, B = 2
3
g′(0)g′′′(0); (6.5)

so that the necessary similarity profile g(z) solves the first-order ODE

dg

dz
=
Az + Bz3

g − z5
. (6.6)

By the phase-plane analysis of (6.6) with A > 0 and B = 0, we easily get the following.

Proposition 6.1 Problem (6.4) admits a solution g(z) satisfying the anti-symmetry conditions

(2.9) that is positive for z < 0, is monotone decreasing and is real analytic.

Actually, involving the second parameter B > 0 yields that there exist infinitely many

shock similarity profiles. The boldface profile g(z) in Figure 22 (by (6.3), it gives S−(x) as
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Figure 22. The shock similarity profile satisfying (6.4).

t → 0−) is non-oscillatory about ±1, with the following algebraic rate of convergence to

the equilibrium as z → −∞:

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

1 +
A

3z5
+ . . . for B = 0,

1 +
B

z
+ . . . for B > 0.

Note that the fundamental solutions of the corresponding linear PDE

uttttt = uxxxxx (6.7)

is also not oscillatory as x → ±∞. This has the form

b(x, t) = t3F(y), y = x/t, so that b(x, 0) = . . . = bttt(x, 0) = 0, btttt(x, 0) = δ(x).

The linear equation (6.7) exhibits some features of finite propagation via TWs, since

u(x, t) = f(x− λt) =⇒ −λ5f(5) = f(5), i.e. λ = −1,

since the profile f(y) disappears from the ODE. This is similar to some canonical equations

of mathematical physics, such as

ut = ux (dispersion, λ = −1) and utt = uxx (wave equation, λ = ±1).

The blow-up solution (6.3) gives in the limit t → 0− the shock S−(x), and (1.8) holds.
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Since (1.11) has the same symmetry (3.1) as (1.30), similarity solutions (6.3), with −t �→ t

and g(z) �→ g(−z) according to (3.5), also give the rarefaction waves for S+(x) as well as

other types of collapse of initial non-entropy discontinuities.

6.2 Analytic δ-deformations by Cauchy–Kovalevskaya theorem

The great advantage of (1.11) is that it is in the normal form; so it obeys the Cauchy–

Kovalevskaya theorem [52, p. 387]. Hence, for any analytic initial data u(x, 0), ut(x, 0),

utt(x, 0), uttt(x, 0) and utttt(x, 0), there exists a unique local-in-time analytic solution u(x, t).

Thus, (1.11) generates a local semigroup of analytic solutions, and this makes it easier to

deal with smooth δ-deformations that are chosen to be analytic. This defines a special

analytic δ-entropy test for shock/rarefaction waves. On the other hand, such non-linear

PDEs can admit other (say, weak) solutions that are not analytic. Actually, Proposition

6.1 shows that the shock S−(x) is a δ-entropy solution of (1.11), which is obtained by

finite-time blow-up as t → 0− from the analytic similarity solution (6.3).

6.3 On the formation of single-point shocks and extension non-uniqueness

Similar to the analysis in Section 5, for model (1.11) (and (6.1)), these assume studying

extension similarity pairs {f, F} induced by the easily derived analogies of the blow-up

(5.2) and global (5.6) 5D dynamical systems, with

β =
5 + α

5
,

These are very difficult, so that checking three types (standard, backward and initial) of

possible non-uniqueness and non-entropy of such flows with strong and weak shocks be-

comes a hard open problem, though some auxiliary analytic steps towards non-uniqueness

are doable. Overall, in view of complicated multi-dimensional phase spaces involved, we

do not have any reason for having a unique continuation after singularity. In other words,

for such higher-order NDEs, uniqueness can occur accidentally only for very special phase

spaces and hence, at least, is not robust (in a natural ODE–PDE sense) anyway.

7 (V) Problem – ‘oscillatory smooth sompactons’ of fifth-order NDEs

We begin with an easier explicit example of non-negative compactons for a third-order

NDE.

7.1 Third-order NDEs: δ-entropy compactons

Compactons as compactly supported TW solutions of the K(2, 2) equation (1.22) were

introduced in 1993 [46] as

uc(x, t) = fc(y), y = x+ t =⇒ fc : f = (f2)′′ + f2. (7.1)

Integrating yields the following explicit compacton profile:

fc(y) =

⎧⎨
⎩

4

3
cos2

(y
4

)
for |y| � 2π,

0 for |y| � 2π.
(7.2)
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The corresponding compacton (7.1), (7.2) is G-admissible in the sense of Gel’fand1 (1959)

[25, Sections 2 and 8] and is a δ-entropy solution [18, Section 4], i.e. can be constructed

by smooth (and moreover analytic) approximation via strictly positive solutions of the

full third-order ODE for fc(y),

f′ = (f2)′′′ + (f2)′.

Since the PDE is not involved unlike in Section 4.5, the δ-entropy notion coincides with

the G-admissability.

It is curious that the same compactly supported blow-up patterns occur in the combus-

tion problem for the related reaction–diffusion parabolic equation

ut = (u2)xx + u2. (7.3)

Then the standing-wave blow-up (as t → T−) solution of S-regime leads to the same

ODE:

uS(x, t) = (T − t)−1f(x) =⇒ f = (f2)′′ + f2. (7.4)

This yields the Zmitrenko–Kurdyumov blow-up localised solution, which has been known

since 1975 (see more historical details in [23, Section 4.2]).

7.2 Examples of C3-smooth non-negative compacton for higher-order NDEs

Such an example was given in [12, p. 4734]. Following [23, p. 189], we construct this

explicit solution as follows. The operator F5(u) of the quintic NDE

ut = F5(u) ≡ (u2)xxxxx + 25(u2)xxx + 144(u2)x (7.5)

is shown to preserve the 5D invariant subspace

W5 = Span{1, cos x, sin x, cos 2x, sin 2x}, (7.6)

i.e. F5(W5) ⊆ W5. Therefore, (7.5) restricted to the invariant subspace W5 is a 5D

dynamical system for the expansion coefficients of the solution

u(x, t) = C1(t) + C2(t) cos x+ C3(t) sin x+ C4(t) cos 2x+ C5(t) sin 2x ∈ W5.

Solving this yields the explicit compacton TW,

uc(x, t) = fc(x+ t), where fc(y) =

⎧⎨
⎩

1

105
cos4
(y
2

)
for |y| � π,

0 for |y| � π.

(7.7)

This C3
x solution can be attributed to the Cauchy problem for (7.5), since smooth solutions

are not oscillatory near interfaces (see the discussion in [23, p. 184]).

The above invariant subspace analysis applies also to the seventh-order PDE

ut = F7(u) ≡ D7
x(u

2) + βD5
x(u

2) + γ(u2)xxx + ν(u2)x. (7.8)

1 I. M. Gel’fand, 2.09.1913–5.10.2009.
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Here F7 admits W5 if

β = 25, γ = 144 and ν = 0.

Moreover [23, p. 190], the only operator F7 in (7.8) preserving the 7D subspace

W7 = L{1, cos x, sin x, cos 2x, sin 2x, cos 3x, sin 3x} (7.9)

is in the following NDE, NDE–7:

ut = F7(u) ≡ D7
x(u

2) + 77D5
x(u

2) + 1876(u2)xxx + 14400(u2)x. (7.10)

This makes it possible to reduce (7.10) on W7 to a complicated dynamical system.

7.3 Why non-negative compactons for fifth-order NDEs are not robust:

a saddle–saddle homoclinic

Recall that as usual in dynamical system theory, by robustness of trajectories we mean that

these are stable with respect to small perturbations of the parameters entering the NDE or

the corresponding ODEs. In other words, the dynamical systems (ODEs) admitting such

non-negative ‘heteroclinic’ saddle-like orbits 0 → 0 are not structurally stable in a natural

sense. This reminds us of the classic Andronov–Pontriagin–Peixoto theorem, where one

of the four conditions for the structural stability of dynamical systems in �2 reads as

follows [37, p. 301]:

‘(ii) there are no trajectories connecting saddle points . . . .’ (7.11)

Actually, non-negative compactons, such as (7.7), are special homoclinics of the origin, and

we will show that the nature of their non-robustness is in the fact that these represent a

stable–unstable manifold of the origin consisting of a single orbit. Therefore, in consistency

with (7.11), the origin is indeed a saddle in �4 in the plane {f, f′, f′′, f′′′}, obtained after

integration once (see below).

In order to illustrate the lack of such a robustness in view of a sole heteroclinic involved,

consider NDE (7.5), for which, substituting the TW solution, on integration, we obtain

the ODE

uc(x, t) = fc(x+ t) =⇒ fc : 2f = (f2)(4) + . . . , (7.12)

where we omit the lower-order terms as f → 0. Looking for the compacton profile f � 0,

we set f2 = F to get

F (4) = 2
√
F + . . . for y > 0, F ′(0) = F ′′′(0) = 0. (7.13)

As usual, we look for a symmetric F(y) by putting two symmetry conditions at the origin.

Let y = y0 > 0 be the interface point of F(y). Then, looking for the expansion as

y → y−
0 in the form

F(y) =
1

8402
(y0 − y)8 + ε(y), with ε(y) = o((y0 − y)8), (7.14)
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we obtain Euler’s equation for the perturbation ε(y),

1
840

(y0 − y)4ε(4) − ε = 0. (7.15)

Hence, ε(y) = (y0 − y)m, with the characteristic equation

m(m− 1)(m− 2)(m− 3) − 840 = 0 =⇒ m1 = −4, m2,3 = 3±i
√

111
2

, m4 = 7. (7.16)

Hence, Remi < 8, and in other words, (7.15) does not admit any non-trivial solution

satisfying the condition in (7.14) (see further comments in [23, p. 142]). In fact, it is

easy to see that (7.15) with ε = 0 is the unique positive smooth solution of F (4) = 2
√
F .

Thus,

the asymptotic bundle of solutions (7.14) is 1D, (7.17)

where the only parameter is the position of the interface y0 > 0.

Obviously, as a typical property, this 1D bundle is not sufficient to satisfy (by shooting)

two conditions at the origin in (7.13); so such TW profiles F(y) � 0 are non-existent for

almost all NDEs like that. In other words, the condition of positivity of the solution,

to look for a non-trivial solution F � 0 for the ODE in (7.13), (7.18)

creates a free-boundary ‘obstacle’ problem that, in general, is inconsistent. Skipping the

obstacle condition (7.18) will return such ODEs (or elliptic equations), with a special

extension, into the consistent variety, as we will illustrate below.

Thus, non-negative TW compactons are not generic (robust) solutions of the (2m+1)th-

order quadratic NDEs with m = 2 and also for larger m’s, where some kind of (7.17), as

a ‘dimensional defect’ (the bundle dimension is smaller than the number of conditions at

y = 0 to shoot), remains valid.

7.4 Non-negative compactons are robust for third-order NDEs only

The third-order case m = 1, i.e. NDEs such as (1.22), is the only one in which propagation

of perturbations via non-negative TW compactons is structurally stable, i.e. with respect to

small perturbation of the parameters (and non-linearities) of equations. Mathematically

speaking, then the 1D bundle in (7.17) perfectly matches with the single symmetry

condition at the origin,

F ′′ = 2
√
F + · · · and F ′(0) = 0.

7.5 Robustness of the compactons of changing sign, which are δ-entropy for NDE–5s

As a typical example, we consider the perturbed version (1.12) of NDE–(1,4) (1.5). As

we have mentioned, this is written for solutions of changing sign, since non-negative

compactons do not exist in general. Looking for the TW compacton (7.12) yields the

ODE

f = − 1
2
(|f|f)(4) + 1

2
|f|f =⇒ F (4) = F − 2|F |− 1

2F for F = |f|f. (7.19)
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Figure 23. First two compacton TW profiles F(y) satisfying the ODE in (7.19).

Such ODEs with non-Lipschitz non-linearities are known to admit countable sets of com-

pactly supported solutions, which are studied by a combination of Lusternik–Schnirel’man

and Pohozaev’s fibring theory (see [21]).

In Figure 23, we present the first TW compacton patterns (the boldface line) and the

second one that is essentially non-monotone. These look like standard compacton profiles,

but careful analysis of the behaviour near the finite interface at y = y0 shows that F(y)

changes sign infinitely many times according to the asymptotics

F(y) = (y0 − y)8[ϕ(s+ s0) + o(1)], s = ln(y0 − y) as y → y−
0 . (7.20)

Here, the oscillatory component ϕ(s) is a periodic solution of a certain non-linear ODE

and s0 is an arbitrary phase shift (see [23, Section 4.3] and [21, Section 4] for further

details). Thus, unlike (7.17),

the asymptotic bundle of solutions (7.20) is 2D (the parameters are y0 and s0) (7.21)

and exhibits some features of a ‘non-linear focus’ (not a saddle as above) on some manifold.

Hence, this is enough to match also two symmetry boundary conditions given in (7.13).

Such a robust solvability is confirmed by variational techniques that apply to rather

arbitrary equations such as in (7.19) with similar singular non-Lipschitz non-linearities.

Let us also note that such oscillatory compactons are also δ-entropy in the sense that

can be approximated by analytic TW solutions of the same ODE but having finite number

of zeros (i.e. admit smooth analytic δ-deformations; see [18, Section 8.3] for a related

NDE–5).

Regardless of the existence of such sufficiently smooth compacton solutions, it is worth

recalling again that for NDE (1.12), as well as (2.35) and (4.3), both containing monotone

https://doi.org/10.1017/S0956792509990118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509990118


48 V. A. Galaktionov

non-linearities, the generic behaviour, for other initial data, can include formation of

shocks in finite time, with the local similarity mechanism as in Section 2 and in Section 5.1,

representing more generic single-point shock pattern formations.

8 Final conclusions

The fifth-order NDEs (1.1)–(1.5) (NDE–5s), which are associated with a number of im-

portant applications, are considered. The main achieved properties of such 1D degenerate

non-linear PDEs are as follows:

(i) Section 2. These NDEs admit blow-up self-similar formation from smooth solutions

of shock waves of a specific oscillatory structure, which correspond to initial data S−(x) =

−sign x, i.e. the same as for the first-order conservation law (1.30).

(ii) Section 3. As customary, self-similar rarefaction waves, which get smooth for any

t > 0, are created by the reversed data S+(x) = sign x.

(iii) Unlike the classical theory of first-order conservation laws developed in the 1950s and

the 1960s, the entropy-type techniques are no longer applied for distinguishing general

proper (unique) solutions. A δ-deformation test via smoothing the solutions is developed

in Section 4, which is able to separate shocks and rarefaction waves for particular classes

of initial data ∼ S±(x) with a simple geometry of initial shocks;

(iv) Section 5. By studying more general self-similar solutions of NDEs, it was shown

that uniqueness of the solutions after formation of a shock is principally impossible.

Namely, there exist single-point gradient blow-up similarity solutions, which admit an

infinite number of self-similar extensions beyond. This 2D set of shock wave extensions

after singularity does not have any distinguished solution (say, maximal, minimal and

isolated). This also suggests that any entropy-like mechanism for a unique continuation

does not exist either. However, using a proper free-boundary setting, i.e. posing special

conditions on shocks, can restore uniqueness.

(v) Section 7. Non-negative compacton solutions for some NDE–5s are shown to be non-

robust (not ‘structurally stable’); i.e. these disappear after a.a. arbitrarily small perturba-

tions of the parameters (non-linearities) of the equations. However, oscillatory compactons

of changing sign near finite interface are shown to exist and to be robust.
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