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Abstract

Today, there exist many different probabilistic programming languages as well as more

inference mechanisms for these languages. Still, most logic programming-based languages

use backward reasoning based on Selective Linear Definite resolution for inference. While

these methods are typically computationally efficient, they often can neither handle infinite

and/or continuous distributions nor evidence. To overcome these limitations, we introduce

distributional clauses, a variation and extension of Sato’s distribution semantics. We also

contribute a novel approximate inference method that integrates forward reasoning with

importance sampling, a well-known technique for probabilistic inference. In order to achieve

efficiency, we integrate two logic programming techniques to direct forward sampling. Magic

sets are used to focus on relevant parts of the program, while the integration of backward

reasoning allows one to identify and avoid regions of the sample space that are inconsistent

with the evidence.

KEYWORDS: probabilistic logic, forward reasoning, sampling, continuous distributions

1 Introduction

The advent of statistical relational learning (De Raedt et al. 2008; Getoor and

Taskar 2007) and probabilistic programming (De Raedt et al. 2008) has resulted

in a vast number of different languages and systems such as PRISM (Sato and

Kameya 2001), ICL (Poole 2008), ProbLog (De Raedt et al. 2007), Dyna (Eisner

et al. 2005), BLPs (Kersting and De Raedt 2008), CLP(BN) (Santos Costa et al.

2008), BLOG (Milch et al. 2005), Church (Goodman et al. 2008), IBAL (Pfeffer 2001),

and MLNs (Richardson and Domingos 2006). While inference in these languages

generally involves evaluating the probability distribution defined by the model,

often conditioned on evidence in the form of known truth values for some atoms,

this diversity of systems has led to a variety of inference approaches. Languages

such as IBAL, BLPs, MLNs, and CLP(BN) combine knowledge-based model

construction to generate a graphical model with standard inference techniques

for such models. Some probabilistic programming languages, for instance, BLOG
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and Church, use sampling for approximate inference in generative models, that is,

they estimate probabilities from a large number of randomly generated program

traces. Finally, probabilistic logic programming frameworks, such as ICL, PRISM,

and ProbLog, combine Selective Linear Definite (SLD) resolution with probability

calculations.

So far, the second approach based on sampling has received little attention in

logic programming-based systems. In this paper, we investigate the integration of

sampling-based approaches into probabilistic logic programming frameworks to

broaden the applicability of these programming languages. Particularly relevant

in this regard are the ability of Church and BLOG to sample from continuous

distributions and to answer conditional queries of the form p(q|e), where e is the

evidence. In order to accommodate (continuous and discrete) distributions, we

introduce distributional clauses, which define random variables together with their

associated distributions, conditional upon logical predicates. Random variables can

be passed around in the logic program and the outcome of a random variable can

be compared with other values by means of special built-ins. In order to formally

establish the semantics of this new construct, we show that these random variables

define a basic distribution over facts (using the comparison built-ins) as required in

Sato’s (1995) distribution semantics, and thus induces a distribution over the least

Herbrand models of the program. This contrasts with previous instances of the

distribution semantics, as we no longer enumerate the probabilities of alternatives

but instead use arbitrary densities and distributions.

From a logic programming perspective, BLOG (Milch et al. 2005) and related

approaches perform forward reasoning, that is, the samples needed for probability

estimation are generated starting from known facts and deriving additional facts,

thus generating a possible world. PRISM and related approaches follow the opposite

approach of backward reasoning, where inference starts from a query and follows a

chain of rules backwards to the basic facts, thus generating proofs. This difference is

one of the reasons for using sampling in the first approach: Exact forward inference

would require that all possible worlds be generated, which is infeasible in most of

the cases. Based on this observation, we contribute a new inference method for

probabilistic logic programming that combines sampling-based inference techniques

with forward reasoning. On the probabilistic side, the approach uses rejection

sampling (Koller and Friedman 2009), a well-known sampling technique that rejects

samples that are inconsistent with the evidence. On the logic programming side,

we adapt the magic set technique (Bancilhon et al. 1986) toward the probabilistic

setting, thereby combining the advantages of forward and backward reasoning.

Furthermore, the inference algorithm is improved along the lines of the SampleSearch

algorithm (Gogate and Dechter 2011), which avoids choices leading to a sample

that cannot be used in the probability estimation due to inconsistency with the

evidence. We realize this using a heuristic based on backward reasoning with limited

proof length, the benefit of which is experimentally confirmed. This novel approach

to inference creates a number of new possibilities for applications of probabilis-

tic logic programming systems, including continuous distributions and Bayesian

inference.
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This paper is organized as follows. We start by reviewing the basic concepts

in Section 2. Section 3 introduces the new language and its semantics. Section 4

contains a novel forward sampling algorithm for probabilistic logic programs. Before

concluding, we evaluate our approach in Section 5.

2 Preliminaries

2.1 Probabilistic inference

A discrete probabilistic model defines a probability distribution p(·) over a set Ω

of basic outcomes, that is, value assignments to the model’s random variables. This

distribution can then be used to evaluate a conditional probability distribution

p(q|e) = p(q∧e)
p(e)

, also called target distribution. Here, q is a query involving random

variables, and e is the evidence, that is, a partial value assignment of the random

variables.1 Evaluating this target distribution is called probabilistic inference (Koller

and Friedman 2009) In probabilistic logic programming, random variables often

correspond to ground atoms, and p(·) thus defines a distribution over truth value

assignments, as we will see in more detail in Section 2.3 (but see also De Raedt et al.

2008). Probabilistic inference then asks for the probability of a logical query being

true given truth value assignments for a number of such ground atoms.

In general, the probability p(·) of query q is in the discrete case the sum over those

outcomes ω ∈ Ω that are consistent with the query. In the continuous case, the sum

is replaced by an (multidimensional) integral and the distribution p(·) by a (product

of) densities F(·) That is,

p(q) =
∑
ω∈Ω

p(ω)1q(ω), and p(q) =

∫
· · ·

∫
Ω

1q(ω)dF(ω), (1)

where 1q(ω) = 1 if ω |= q and 0 otherwise. As common (e.g., Wasserman 2003) we

will use for convenience the notation
∫
xdF(x) as unifying notation for both discrete

and continuous distributions.

As Ω is often very large or even infinite, exact inference based on the summation

in (1) quickly becomes infeasible, and inference has to resort to approximation

techniques based on samples, that is, randomly drawn outcomes ω ∈ Ω. Given a

large set of such samples {s1, . . . , sN} drawn from p(·), the probability p(q) can be

estimated as the fraction of samples where q is true. Instead, if samples are drawn

from the target distribution p(·|e), the latter can directly be estimated as

p̂(q|e) :=
1

N

N∑
i=1

1q(si).

However, sampling from p(·|e) is often highly inefficient or infeasible in practice,

as the evidence needs to be taken into account. For instance, if one would use

the standard definition of conditional probability to generate samples from p(·), all

1 If e contains assignments to continuous variables, then p(e) is zero. Hence, evidence on continuous
values has to be defined via a probability density function, also called sensor model.
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samples that are not consistent with the evidence do not contribute to the estimate

and would thus have to be discarded or, in sampling terminology, rejected.

More advanced sampling methods therefore often resort to the so-called pro-

posal distribution, which allows for easier sampling. The error introduced by this

simplification then needs to be accounted for when generating the estimate from

the set of samples. An example for such a method is importance sampling, where

each sample si has an associated weight wi. Samples are drawn from an importance

distribution π(·|e), and weights are defined as wi = p(si|e)
π(si|e) . The true target distribution

can then be estimated as

p̂(q|e) =
1

W

N∑
i=1

wi · 1q(si),

where W =
∑

i wi is a normalization constant. The simplest instance of this algorithm

is rejection sampling as already sketched above, where the samples are drawn from

the prior distribution p(·) and weights are 1 for those samples consistent with the

evidence, and 0 for others. Especially for evidence with low probability, rejection

sampling suffers from a very high rejection rate, that is, many samples are generated

but do not contribute to the final estimate. This is known as the rejection problem.

One way to address this problem is likelihood weighted sampling, which dynamically

adapts the proposal distribution during sampling to avoid choosing values for

random variables that cause the sample to become inconsistent with the evidence.

Again, this requires corresponding modifications of the associated weights in order

to produce correct estimates.

2.2 Logical inference

A (definite) clause is an expression of the form h :- b1, . . . , bn, where h is called

head and b1, . . . , bn is the body. A program consists of a set of clauses and its

semantics is given by its least Herbrand model. There are at least two ways of using

a definite clause in a logical derivation. First, there is backward chaining, which

states that to prove a goal h with the clause it suffices to prove b1, . . . , bn; second,

there is forward chaining, which starts from a set of known facts b1, . . . , bn and the

clause and concludes that h also holds (cf. Nilsson and Ma�liszyński 1996). Prolog

employs backward chaining (SLD-resolution) to answer queries. SLD-resolution is

very efficient both in terms of time and space. However, similar subgoals may be

derived for multiple times if the query contains recursive calls. Moreover, SLD-

resolution is not guaranteed to always terminate (when searching depth-first). Using

forward reasoning, one starts with what is known and employs the immediate

consequence operator TP until a fixpoint is reached. This fixpoint is identical to the

least Herbrand model.

Definition 1 (TP operator)

Let P be a logic program containing a set of definite clauses and ground(P ) is the

set of all ground instances of these clauses. Starting from a set of ground facts S ,
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the TP operator returns

TP (S) = {h | h :- b1, . . . , bn ∈ ground(P ) and {b1, . . . , bn} ⊆ S}.

2.3 Distribution semantics

Sato’s (1995) distribution semantics extends logic programming to the probabilistic

setting by randomly choosing truth values of basic facts. The core of this semantics

lies in splitting the logic program into a set F of facts and a set R of rules. Given a

probability distribution PF over the facts, the rules then allow one to extend PF into

a distribution over the least Herbrand models of logic program. Such a Herbrand

model is called a possible world.

More precisely, it is assumed that DB = F∪R is ground and denumerable, and that

no atom in F unifies with the head of a rule in R. Each truth value assignment to F

gives rise to a unique least Herbrand model of DB. Thus, a probability distribution

PF over F can directly be extended into a distribution PDB over these models.

Furthermore, Sato (1995) shows that, given an enumeration f1, f2, . . . of facts in F ,

PF can be constructed from a series of finite distributions P
(n)
F (f1 = x1, . . . , fn = xn)

provided that the series fulfills the so-called compatibility condition, that is,

P
(n)
F (f1 = x1, . . . , fn = xn) =

∑
xn+1

P
(n+1)
F (f1 = x1, . . . , fn+1 = xn+1). (2)

3 Syntax and semantics

Sato’s (1995) distribution semantics, as summarized in Section 2.3, provides the basis

for most of the probabilistic logic programming languages, including PRISM (Sato

and Kameya 2001), ICL (Poole 2008), CP-logic (Vennekens et al. 2009), and

ProbLog (De Raedt et al. 2007). The precise way of defining the basic distribution

PF differs among languages, though the theoretical foundations are essentially the

same. The most basic instance of the distribution semantics, employed by ProbLog,

uses the so-called probabilistic facts. Each ground instance of the probabilistic fact

directly corresponds to an independent random variable that takes either the value

“true” or “false.” These probabilistic facts can also be seen as binary switches

(cf. Sato 1995), which again can be extended to multi-ary switches or choices as used

by PRISM and ICL. For switches, at most one of the probabilistic facts belonging to

the switch is “true” according to the specified distribution. Finally, in CP-logic, such

choices are used in the head of rules leading to the so-called annotated disjunction.

Hybrid ProbLog (Gutmann et al. 2010) extends the distribution semantics with

continuous distributions. In order to allow for exact inference, Hybrid ProbLog

imposes severe restrictions on the distributions and their further use in the program.

Two sampled values, for instance, cannot be compared against each other. Only

comparisons that involve one sampled value and one number constant are allowed.

Sampled values may not be used in arithmetic expressions or as parameters for

other distributions; for instance, it is not possible to sample a value and use it as
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the mean of the Gaussian distribution. It is also not possible to reason over an

unknown number of objects as BLOG (Milch et al. 2005) does, though this case is

mainly for algorithmic reasons.

Here we alleviate these restrictions by defining the basic distribution PF over

probabilistic facts based on both discrete and continuous random variables. We

use a three-step approach to define this distribution. First, we introduce explicit

random variables and corresponding distributions over their domains, both denoted

by terms. Second, we use a mapping from these terms to terms denoting (sampled)

outcomes, which then are used to define the basic distribution PF on the level of

probabilistic facts. For instance, assume that an urn contains an unknown number

of balls, where the number is drawn from a Poisson distribution and we say that

this urn contains many balls if it contains at least 10 balls. We introduce a random

variable number, and define many :- dist gt(�(number), 9). Here, �(number) is the

Herbrand term denoting the sampled value of number, and dist gt(�(number), 9)

is a probabilistic fact whose probability of being true is the expectation that this

value is actually greater than 9. This probability then carries over to the derived

atom many as well. We will elaborate on the details in the following.

3.1 Syntax

In a logic program, following Sato (1995), we distinguish between probabilistic facts,

which are used to define the basic distribution, and rules, which are used to derive

additional atoms.2 Probabilistic facts are not allowed to unify with any rule head.

The distribution over facts is based on random variables whose distributions we

define through the so-called distributional clauses.

Definition 2 (Distributional clause)

A distributional clause is a definite clause with an atom h ∼ D in the head, where ∼
is a binary predicate used in infix notation.

For each ground instance (h ∼ D :- b1, . . . , bn)θ with θ being a substitution

over the Herbrand universe of the logic program, a distributional clause defines

a random variable hθ and an associated distribution Dθ. In fact, the distribution

is only defined when (b1, . . . , bn)θ is true in the semantics of the logic program.

These random variables are terms of the Herbrand universe and can be used as

any other term in the logic program. Furthermore, the term � (d) constructed

from the reserved functor � /1 represents the outcome of the random variable

d. These functors can be used inside calls to special predicates in dist rel =

{dist eq/2, dist lt/2, dist leq/2, dist gt/2, dist geq/2}. We assume that there is a fact

for each of the ground instances of these predicate calls. These facts are the

probabilistic facts of Sato’s (1995) distribution semantics. Note that the set of

probabilistic facts is enumerable as the Herbrand universe of the program is

enumerable. The term � (d) links the random variable d with its outcome. The

probabilistic facts compare the outcome of a random variable with a constant

2 A rule can have an empty body, in which case it represents a deterministic fact.
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or the outcome of another random variable and succeed or fail according to the

probability distribution(s) of the random variable(s).

Example 1 (Distributional clauses)

nballs ∼ poisson(6). (3)

color(B) ∼ [0.7 : b, 0.3 : g] :- between(1,�(nballs), B). (4)

diameter(B, MD) ∼ gamma(MD/20, 20) :- between(1,�(nballs), B),

mean diameter(�(color(B)), MD). (5)

The defined distributions depend on the following logical clauses:

mean diameter(C, 5) :- dist eq(C, b).

mean diameter(C, 10) :- dist eq(C, g).

between(I, J, I) :- dist leq(I, J).

between(I, J, K) :- dist lt(I, J), I1 is I + 1, between(I1, J, K).

The distributional clause (3) models the number of balls as a Poisson distribution

with mean 6. The distributional clause (4) models a discrete distribution for the

random variable color(B). With probability 0.7 the ball is blue and green otherwise.

Note that the distribution is defined only for the values B for which between(1,�
(nballs), B) succeeds. The execution of calls to the latter gives rise to calls to

probabilistic facts that are instances of dist leq(I,�(nballs)) and dist lt(I,�(nballs)).

Similarly, the distributional clause (5) defines a gamma distribution that is also

defined conditionally. Note that the conditions in the distribution depend on calls

of the form mean diameter(� (color(n)),MD) with n being a value returned by

between/3. Execution of this call finally leads to calls dist eq(� (color(n)), b) and

dist eq(�(color(n)), g).

It looks feasible to allow �(d) terms everywhere and to have a simple program

analysis insert special predicates at appropriate places by replacing < /2, > /2,

� /2, � /2 predicates by dist rel/2 facts. Though extending unification is a bit

harder, as long as a �(h) term is unified with a free variable, standard unification

can be performed only when the other term is bound and extension is required. In

this paper we assume that the special predicates dist eq/2, dist lt/2, dist leq/2,

dist gt/2, and dist geq/2 are used whenever the outcome of a random variable

needs to be compared with another value and that it is safe to use standard

unification whenever a �(h) term is used in another predicate.

For the basic distribution on facts to be well defined, a program has to fulfill a

set of validity criteria that has to be enforced by the programmer.

Definition 3 (Valid program)

A program P is called valid if following conditions are fulfilled:

(V1) In the relation h ∼ D that holds in the least fixpoint of a program, there is a

functional dependency from h to D, so there is a unique ground distribution D
for each ground random variable h.
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(V2) The program is distribution-stratified, that is, there exists a function rank(·) that

maps ground atoms to � and satisfies the following properties: (1) for each ground

instance of a distribution clause h ∼ D :- b1, . . . bn holds rank(h ∼ D > rank(bi)

(for all i). (2) for each ground instance of another program clause h :- b1, . . . bn
holds rank(h) � rank(bi) (for all i). (3) for each ground atom b that contains (the

name of) a random variable h, rank(b) � rank(h ∼ D) (with h ∼ D being the head

of the distribution clause defining h).

(V3) All ground probabilistic facts or, to be more precise, the corresponding

indicator functions are Lebesgue-measurable.

(V4) Each atom in the least fixpoint can be derived from a finite number of

probabilistic facts (finite support condition (Sato 1995)).

Together, (V1) and (V2) ensure that a single basic distribution PF over probabilistic

facts can be obtained from the distributions of individual random variables defined

in P . The (V3) requirement is crucial. It ensures that the series of distributions

P
(n)
F needed to construct this basic distribution is well defined. Finally, the number

of facts over which the basic distribution is defined needs to be countable. This is

true, as we have a finite number of constants and functors: those appearing in the

program.

3.2 Distribution semantics

We now define the series of distributions P (n)
F , where we fix an enumeration f1, f2, . . .

of probabilistic facts such that i < j =⇒ rank(fi) � rank(fj) where rank(·) is

a ranking function showing that the program is distribution stratified. For each

predicate rel/2 ∈ dist rel, we define an indicator function as follows:

I1
rel(X1, X2) =

{
1 if rel(X1, X2) is true,

0 if rel(X1, X2) is false.
(6)

Furthermore, we set I0
rel(X1, X2) = 1.0 − I1

rel(X1, X2). We then use the expected

value of the indicator function to define probability distributions P
(n)
F over finite

sets of ground facts f1, . . . , fn. Let {rv1, . . . rvm} be the set of random variables

these n facts depend upon, ordered such that if rank(rvi) < rank(rvj), then i < j

(cf. (V2) in Definition 3). Furthermore, let fi = reli(ti1, ti2), xj ∈ {1, 0}, and

θ−1 = {� (rv1)/V1, . . . ,� (rvm)/Vm}. The latter replaces all evaluations of random

variables on which the fi depends by variables for integration.

P
(n)
F (f1 = x1, . . . , fn = xn) = �[Ix1

rel1
(t11, t12), . . . , Ixnreln(tn1, tn2)]

=

∫
· · ·

∫ (
Ix1

rel1
(t11θ

−1, t12θ
−1) · · · Ixnreln(tn1θ

−1, tn2)θ−1
)
dDrv1

(V1) · · · dDrvm(Vm).

(7)

Example 2 (Basic distribution)

Let f1, f2, . . . = dist lt(�(b1), 3), dist lt(�(b2),�(b1)), . . . Then the second distribution

in the series is
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P
(2)
F (dist lt(�(b1), 3) = x1, dist lt(�(b2),�(b1)) = x2)

= �[Ix1
dist lt(�(b1), 3), Ix2

dist lt(�(b2),�(b1))]

=

∫ ∫ (
Ix1
dist lt(V1, 3), Ix2

dist lt(V2, V1)
)
dDb1(V1)dDb2(V2).

By now we are able to prove the following proposition.

Proposition 1

Let P be a valid program. P defines a probability measure PP over the set of

fixpoints of operator TP . Hence, P also defines for an arbitrary formula q over

atoms in its Herbrand base the probability that q is true.

Proof sketch

It suffices to show that the series of distributions P
(n)
F over facts (cf. (7)) is of

the form that is required in the distribution semantics, that is, these are well-

defined probability distributions that satisfy the compatibility condition, cf. (2). This

is a direct consequence of the definition in terms of indicator functions and the

measurability of the underlying facts required for valid programs. �

3.3 TP semantics

In the following, we give a procedural view onto the semantics by extending TP

operator of Definition 1 to deal with probabilistic facts dist rel(t1, t2). To do so, we

introduce a function ReadTable(·) that keeps track of the sampled values of random

variables to evaluate probabilistic facts. This is required because interpretations of

a program only contain such probabilistic facts, but not the underlying outcomes of

random variables. Given a probabilistic fact dist rel(t1, t2), ReadTable returns

the truth value of the fact based on the values of random variables h in the

arguments, which are either retrieved from the table or sampled according to their

definition h ∼ D as included in the interpretation and stored in case they are not

yet available.

Definition 4 (Stochastic TP operator)

Let P be a valid program and ground(P ) be the set of all ground instances of clauses

in P . Starting from a set of ground facts S , the STP operator returns

STP (S) :=
{
h

∣∣∣ h :- b1, . . . , bn ∈ ground(P ) and ∀ bi : either bi ∈ S or(
bi = dist rel(t1, t2) ∧ (tj =�(h) → (h ∼ D) ∈ S)∧

ReadTable(bi) = true
)}

.

ReadTable ensures that the basic facts are sampled from their joint distribution

as defined in Section 3.2 during the construction of a standard fixpoint of logic

program. Thus, each fixpoint of the STP operator corresponds to a possible world

whose probability is given by the distribution semantics.
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4 Forward sampling using magic sets and backward reasoning

In this section we introduce our new method for probabilistic forward inference.

To this aim, we first extend the magic set transformation to distributional clauses.

Then we develop a rejection sampling scheme using this transformation. This scheme

also incorporates backward reasoning to check for consistency with evidence during

sampling and thus to reduce the rejection rate.

4.1 Probabilistic magic set transformation

The disadvantage of forward reasoning in logic programming is that the search

is not goal-driven, which might generate irrelevant atoms. The magic set trans-

formation (Bancilhon et al. 1986; Nilsson and Ma�liszyński 1996) focuses forward

reasoning in logic programs toward a goal to avoid the generation of uninteresting

facts. It thus combines the advantages of both reasoning directions.

Definition 5 (Magic set transformation)

If P is a logic program, then we use Magic(P ) to denote the smallest program such

that if A0 :- A1, . . . , An ∈ P , then

• A0 :- c(A0), A1, . . . , An ∈ Magic(P ) and

• for each 1 � i � n: c(Ai) :- c(A0), A1, . . . , Ai−1 ∈ Magic(P ).

The meaning of the additional c/1 atoms (c=call) is that they “switch on” clauses

when they are needed to prove a particular goal. If the corresponding switch for the

head atom is not true, the body is not true and thus cannot be proven. The magic

transformation is both sound and complete. Furthermore, if the SLD-tree of a goal

is finite, forward reasoning in the transformed program terminates. The same holds

if forward reasoning on the original program terminates.

We now extend this transformation to distributional clauses. The idea is that the

distributional clause for a random variable h is activated when there is a call to a

probabilistic fact dist rel(t1, t2) depending on h.

Definition 6 (Probabilistic magic set transformation)

For program P , let PL be P without distributional clauses. M(P ) is the smallest

program s.t. Magic(PL) ⊆ M(P ) and for each h ∼ D :- b1, . . . , bn ∈ P and rel ∈
{eq, lt, leq, gt, geq}:

• h ∼ D :- (c(dist rel(�(h), X)); c(dist rel(X,�(h))), b1, . . . , bn. ∈ M(P ).

• c(bi) :- (c(dist rel(�(h), X)); c(dist rel(X,�(h))), b1, . . . , bi−1. ∈ M(P ).

Then PMagic(P ) consists of the following:

• A clause a p(t1, . . . , tn) :- c(p(t1, . . . , tn)), p(t1, . . . , tn) for each built-in predi-

cate (including dist rel/2 for rel ∈ {eq, lt, leq, gt, geq}) used in M(P ).

• A clause h :- b′
1, . . . , b

′
n for each clause h :- b1, . . . , bn ∈ M(P ), where b′

i = a bi
if bi uses a built-in predicate and else b′

i = bi.
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Algorithm 1 Main loop for sampling-based inference to calculate the conditional

probability p(q|e) for query q, evidence e, and program L.

1: function Evaluate(L, q, e, Depth)

2: L∗ :=PMagic(L) ∪ {c(a)|a ∈ e ∪ q}
3: n+ := 0 n− := 0

4: while Not converged do

5: (I, w) :=STPMagic(L∗, L, e, Depth)

6: if q ∈ I then n+ := n+ + w else n− := n− + w

7: return n+/(n+ + n−)

Note that every call to a built-in b is replaced by a call to a b; the latter predicate is

defined by a clause that is activated when there is a call to the built-in (c(b)) and that

effectively calls the built-in. The transformed program computes the distributions

only for random variables whose value is relevant to the query. These distributions

are the same as those obtained in a forward computation of the original program.

Hence, we can show the following.

Lemma 1

Let P be a program and PMagic(P ) its probabilistic magic set transformation

extended with a seed c(q). The distribution over q defined by P and PMagic(P ) is

the same.

Proof sketch

In both programs, the distribution over q is determined by the distributions of

the atoms dist eq(t1, t2), dist leq(t1, t2), dist lt(t1, t2), dist geq(t1, t2), and dist gt(t1, t2)

on which q depends in a forward computation of program P . The magic set

transformation ensures that these atoms are called in the forward execution of

PMagic(P ). In PMagic(P ), a call to such an atom activates the distributional clause

for the involved random variable. As this distributional clause is a logic program

clause, soundness and completeness of the magic set transformation ensures that

the distribution obtained for that random variable is the same as in P . Hence, the

distribution over q is same for both programs. �

4.2 Rejection sampling with heuristic lookahead

As discussed in Section 2.1, sampling-based approaches to probabilistic inference

estimate the conditional probability p(q|e) of a query q, given evidence e by

randomly generating a large number of samples or possible worlds (cf. Algorithm 1).

The algorithm starts by preparing the program L for sampling by applying the

PMagic transformation. In the following we discuss our choice of subroutine

STPMagic (cf. Algorithm 2), which realizes likelihood weighted sampling. It is

used in Algorithm 1, line 5, to generate individual samples. It iterates the stochastic

consequence operator of Definition 4 until either a fixpoint is reached or the current

sample is inconsistent with the evidence. Finally, if the sample is inconsistent with

the evidence, it receives weight 0.
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Algorithm 2 Sampling one interpretation; used in Algorithm 1.

1: function STPMagic(L∗, L, e, Depth)

2: Tpf := �, Tdis := �, w := 1, Iold := �, Inew := �
3: repeat

4: Iold := Inew

5: for all (h :- body) ∈ L∗ do

6: split body in BPF (prob. facts) and BL (the rest)

7: for all grounding substitution θ such that BLθ ⊆ Iold do

8: s := true, wd := 1

9: while s ∧ BPF �= � do

10: select and remove pf from BPF

11: (bpf, wpf) :=ReadTable(pfθ, Iold, Tpf, Tdis, L, e, Depth)

12: s := s ∧ bpf wd := wd · wpf

13: if s then

14: if hθ ∈ e− then return (Inew, 0) � check negative evidence

15: Inew := Inew ∪ {hθ} w := w · wd

16: until Inew = Iold ∨ w = 0 � Fixpoint or impossible evidence

17: if e+ ⊆ Inew then return (Inew, w) � check positive evidence

18: else return (Inew, 0)

Algorithm 3 details the procedure used in line 11 of Algorithm 2 to sample from

a given distributional clause. The function ReadTable returns the truth value of

the probabilistic fact, together with its weight. If the outcome is not yet tabled,

it is computed. Note that false is returned when the outcome is not consistent

with the evidence. Involved distributions, if not yet tabled, are sampled in line 5.

In the infinite case, Sample simply returns the sampled value. In the finite case, it

is directed toward generating samples that are consistent with the evidence. Firstly,

all possible choices that are inconsistent with the negative evidence are removed.

Secondly, when there is positive evidence for a particular value, only that value is left

in the distribution. Thirdly, it is checked whether each left value is consistent with

all other evidence. This consistency check is performed by a simple depth-bounded

meta-interpreter. For positive evidence, it attempts a top-down proof of the evidence

atom in the original program using the function MaybeProof. Subgoals for which

the depth-bound is reached, as well as probabilistic facts that are not yet tabled

are assumed to succeed. If this results in a proof, the value is consistent, otherwise

it is removed. Similarly, for negative evidence: in MaybeFail, subgoals for which

the depth-bound is reached, as well as probabilistic facts that are not yet tabled

are assumed to fail. If this results in failure, the value is consistent, otherwise it is

removed. The Depth parameter allows one to trade the computational cost associated

with this consistency check for a reduced rejection rate.

Note that the modified distribution is normalized and the weight is adjusted in

each of these three cases. The weight adjustment takes into account the removed

elements that cannot be sampled and it is necessary because it can depend on

the distributions sampled so far and the elements removed from the distribution
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Algorithm 3 Evaluating a probabilistic fact pf used in Algorithm 2. Com-

putePF(pf, Tdis) computes the truth value and the probability of pf according to the

information in Tdis.

1: function ReadTable(pf, I, Tpf, Tdis, L, e, Depth)

2: if pf /∈ Tpf then

3: for all random variable h occurring in pf where h /∈ Tdis do

4: if h ∼ D /∈ I then return (false, 0)

5: if not Sample(h, D, Tdis, I, L, e, Depth) then return (false, 0)

6: (b, w) := ComputePF(pf,Tdis)

7: if (b ∧ (pf ∈ e−)) ∨ (¬b ∧ (pf ∈ e+)) then

8: return (false, 0) � inconsistent with evidence

9: extend Tpf with (pf, b, w)

10: return (b, w) as stored in Tpf for pf

11: procedure Sample(h,D, Tdis, I, L, e, Depth)

12: wh := 1, D′ := D � Initial weight, temp. distribution

13: if D′ = [p1 : a1, . . . , pn : an] then � finite distribution

14: for pj : aj ∈ D′ where dist eq(h, aj) ∈ e− do � remove neg. evidence

15: D′ := Norm(D′ \ {pj : aj}), wh := wh × (1 − pj)

16: if ∃v : dist eq(�(h), v) ∈ e+ and p : v ∈ D′ then

17: D′ := [1 : v], wh := wh × p

18: for pj : aj ∈ D′ do � remove choices that make e+ impossible

19: if ∃b ∈ e+: not MaybeProof(b, Depth, I ∪ {dist eq(h, aj)}, L) or

20: ∃b ∈ e−: not MaybeFail(b, Depth, I ∪ {dist eq(h, aj)}, L) then

21: D′ := Norm(D′ \ {pj : aj}), wh := wh × (1 − pj)

22: if D′ = � return false

23: Sample x according to D′, extend Tdis with (h, x) and return true

sampled in Sample (the clause bodies of the distribution clause are instantiating the

distribution).

5 Experiments

We implemented our algorithm in YAP Prolog and set up experiments to answer

the following questions:

Q 1. Does the look ahead-based sampling improve the performance?

Q 2. How do rejection sampling and likelihood weighting compare?

To answer the first question, we used the distributional program in Figure 1,

which models an urn containing a random number of balls. The number of balls

is uniformly distributed from 1 to 10 and each ball is either red or green with

equal probability. We draw a ball with replacement from the urn for 8 times

and observe its color. We also define the atom nogreen(D) to be true if and

only if we did not draw any green ball in draw 1 to D. We evaluated the query
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numballs ∼ uniform([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

ball(M) :- between(1, numballs, M).

color(B) ∼ uniform([red, green]) :- ball(B).

draw(N) :- between(1, 8, N).

nogreen(0).
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nogreen(D) :- dist eq(� (color(� (drawnball(D)))), red), D2 is D− 1, nogreen(D2).

drawnball(D) ∼ uniform(L) :- draw(D),findall(B, ball(B), L).

Fig. 1. The program modeling the urn (left); rate of accepted samples (right) for evaluating

the query P (dist eq(� (color(� (drawnball(1)))), red) | nogreen(D)) for D = 1, 2, . . . , 10

and for Depth = 1, 2, . . . , 8 using Algorithm 1. The acceptance rate is calculated by generating

200 samples using our algorithm and counting the number of samples with weight larger

than 0.

P (dist eq(� (color(� (drawnball(1)))), red) |nogreen(D)) for D = 1, 2, . . . , 8. Note

that the evidence implies that the first drawn ball is red, hence the probability of

the query is 1; however, the number of steps required to prove that the evidence

is inconsistent with drawing a green first ball increases with D, so as D becomes

larger, larger Depth is required to reach a 100% acceptance rate for the sample as

illustrated in Figure 1. It is clear that by increasing the Depth limit, each sample

will take longer to be generated. Thus, the Depth parameter allows one to trade off

convergence speed of the sampling and the time each sample needs to be generated.

Depending on the program, the query, and the evidence there is an optimal depth

for the lookahead.

To answer the second question, we used the standard example for BLOG (Milch

et al. 2005). An urn contains an unknown number of balls where every ball can be

either green or blue with p = 0.5. When drawing a ball from the urn, we observe its

color but do not know which ball it is. When we observe the color of a particular

ball, there are 20% chances to observe the wrong color, e.g., green instead of blue.

We have some prior belief over the number of balls in the urn. If 10 balls are

drawn with replacement from the urn and we saw 10 times the color green, what

is the probability that there are n balls in the urn? We consider two different prior

distributions: in the first case, the number of balls is uniformly distributed between

1 and 8, in the second case, it is Poisson-distributed with mean λ = 6.

One run of the experiment corresponds to sampling the number N of balls in the

urn, the color for each of the N balls, and for each of the 10 draws for which the

ball is drawn and whether or not the color is observed correctly in this draw. Once

these values are fixed, the sequence of observed colors is determined. This implies

that for a fixed number N of balls, there are 2N × N10 possible proofs. In case of

uniform distribution, exact PRISM inference can be used to calculate the probability

for the given number of balls, with a total runtime of 0.16 seconds for all eight

cases. In the case of the Poisson distribution, this is only possible up to 13 balls,
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Fig. 2. Results of the urn experiment with forward reasoning. Ten balls with replacement

were drawn and each time green was observed. Left: Uniform prior over number of balls;

right: Poisson prior (λ = 6).

as with more balls PRISM runs out of memory. For inference using sampling, we

generate 20,000 samples with the uniform prior, and 100,000 with the Poisson prior.

We report average results over five repetitions. For these priors, PRISM generates

8,015 and 7,507 samples per second, ProbLog backward sampling generates 708

and 510 samples, BLOG generates 3,008 and 2,900 samples, and our new forward

sampling (with rejection sampling) generates 760 and 731 samples per second. The

results using our algorithm for both rejection sampling and likelihood weighting

with Depth = 0 are shown in Figure 2. As the graphs show, the standard deviation

for rejection sampling is much larger than for likelihood weighting.

6 Conclusions and related work

We have contributed a novel construct for probabilistic logic programming, the

distributional clauses, and defined its semantics. Distributional clauses allow one

to represent continuous variables and to reason about an unknown number of

objects. In this regard, this construct is similar in spirit to languages such as BLOG

and Church, but it is strongly embedded in a logic programming context. This

embedding allowed us to propose a novel inference method based on a combination

of importance sampling and forward reasoning. This contrasts with the majority of

probabilistic logic programming languages, which are based on backward reasoning

(possibly enhanced with tabling (Sato and Kameya 2001; Mantadelis and Janssens

2010)). Furthermore, only few of these techniques employ sampling, but see Kimmig

et al. (2011) for the Monte Carlo approach using backward reasoning. Another

key difference with the existing probabilistic logic programming approaches is that

the described inference method can handle evidence. This is due to the magic set

transformation that targets the generative process toward the query and evidence

and instantiates only relevant random variables.

P-log (Baral et al. 2009) is a probabilistic language based on Answer Set Prolog

(ASP). It uses a standard ASP solver for inference and is thus based on forward

reasoning, but without use of sampling. Magic sets are also used in probabilistic

Datalog (Fuhr 2000) as well as in Dyna, a probabilistic logic programming language
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(Eisner et al. 2005) based on rewrite rules that uses forward reasoning. However,

neither of them uses sampling. Furthermore, Dyna and PRISM require the exclusive-

explanation assumption. This assumption states that no two different proofs for the

same goal can be true simultaneously, that is, they have to rely on at least one

basic random variable with different outcomes. Distributional clauses (and the

ProbLog language) do not impose such a restriction. Other related work includes

MCMC-based sampling algorithms, such as the approach for SLP (Angelopoulos

and Cussens 2003). Church’s inference algorithm is also based on MCMC, and

BLOG is also able to employ MCMC. At least for BLOG it seems to be required to

define the domain-specific proposal distribution for fast convergence. With regard to

future work, it would be interesting to consider evidence on continuous distributions,

as it is currently restricted to finite distribution. Program analysis and transformation

techniques to further optimize the program with respect to the evidence and query

could be used to increase the sampling speed. Finally, the implementation could be

optimized by memoizing some information from previous runs and use it to more

rapidly prune as well as sample.
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