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Abstract Let Eλ be the Legendre family of elliptic curves. Given n points P1, . . . , Pn ∈ Eλ(Q(λ)), linearly
independent over Z, we prove that there are at most finitely many complex numbers λ0 such that Eλ0
has complex multiplication and P1(λ0), . . . , Pn(λ0) are linearly dependent over End(Eλ0 ). This implies
a positive answer to a question of Bertrand and, combined with a previous work in collaboration with

Capuano, proves the Zilber–Pink conjecture for a curve in a fibered power of an elliptic scheme when

everything is defined over Q.
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1. Introduction

Let Eλ denote the elliptic curve with equation

Y 2 Z = X (X − Z)(X − λZ). (1.1)

We see this as a family of elliptic curves Eλ→ S = A1
\ {0, 1} and consider the n-fold

fibered power Eλ×S · · · ×S Eλ, for some positive integer n. By abuse of notation we

indicate this fibered power by En
λ . This defines again a family En

λ → S.

Now, suppose we are given an irreducible curve C ⊆ En
λ , defined over the algebraic

numbers and not contained in a single fiber of the family. This defines n points P1, . . . , Pn
on Eλ(C(C)), which we suppose to be linearly independent over Z, i.e., there is no

generic non-trivial relation between them (recall that the ring of generic endomorphisms

End(Eλ/S) is reduced to Z). In other words, C is not contained in a proper subgroup

scheme of En
λ → S.

For any point c ∈ C(C) we have n specialized points P1(c), . . . , Pn(c) on the

specialized curve Eλ(c), which might become dependent over Z or over a possibly larger

endomorphism ring.
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In joint work with Capuano [2] we proved that there are at most finitely many c ∈
C(C) such that P1(c), . . . , Pn(c) satisfy two independent relations over Z (see [24] for the

case n = 2). The Zilber–Pink Conjecture predicts that finiteness holds as well when one

considers relations over the endomorphism rings of the fibers and, in the case of CM

fibers, one relation is enough.

The main result of this article is the following theorem.

Theorem 1.1. Let C ⊆ En
λ be an irreducible curve defined over Q, not contained in a fixed

fiber of En
λ and such that the n points P1, . . . , Pn defined by it are generically independent.

Then there are at most finitely many c ∈ C(C) such that Eλ(c) has complex multiplication

and there exists (a1, . . . , an) ∈ End(Eλ(c))n \ {0} with

a1 P1(c)+ · · ·+ an Pn(c) = O.

In case n = 1 we have one non-identically torsion point and the theorem says that there

are only finitely many specializations such that we have complex multiplication and the

point has finite order. This was proved by André [1] in unpublished notes and later by

Pila in [26].

The basic idea of André’s proof is the following: by a theorem of Silverman [29] the

height of the points c such that P1(c) is torsion is bounded while if there were infinitely

many c such that Eλ(c) has CM a result of Colmez [8] would imply that their height must

tend to infinity.

In our case Silverman’s theorem cannot be applied because it does not provide bounded

height for the c such that the coefficients of the relation between the Pi (c) are not all

in Z.

Pila did not use Silverman’s theorem and followed the general strategy, first introduced

by Pila and Zannier in [27], which has been very successful in proving several new

instances of the Zilber–Pink conjecture. We use the same strategy and give here a sketch

of the proof of Theorem 1.1. The elliptic curve Eλ is analytically isomorphic to C/3τ ,
where 3τ = Z+ τZ, for some τ in the complex upper-half plane. Let C′ be the subset of

C we want to prove to be finite, and may assume to be non-empty. Fix c0 in C′, let D0 be

the discriminant of the endomorphism ring of Eλ(c0) and let a1, . . . , an be the coefficients

of a non-trivial relation between the Pi (c0). By the theory of complex multiplication we

have that the corresponding τ0 is imaginary quadratic and has (multiplicative) height

� |D0|, while using works of Masser and David we can suppose that the ai have height

bounded by a positive power of |D0|, up to a constant. Moreover, all conjugates of c0
are in C′ with the same CM discriminant and coefficients of the relation between the

Pi . Again, the theory of complex multiplication tells us that there are at least |D0|
1/3

such conjugates. We consider the elliptic logarithms z1, . . . , zn of P1, . . . , Pn and the

uniformization map (τ, z1, . . . , zn) 7→ (λ, P1, . . . , Pn). This map, restricted to a suitably

chosen fundamental domain, is definable in the o-minimal structure Ran,exp by a work

of Peterzil and Starchenko. The preimage of C via this map is then a definable surface.

Our point c0 and all its conjugates will correspond to points on this surface lying in a

linear variety defined by equations whose coefficients are related to τ0 and the ai and so
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are forced to be quadratic numbers of height �|D0|
γ , for some positive γ . A theorem of

Habegger and Pila implies that there are at most �ε |D0|
γ ε points of that kind on the

surface, provided the functions z1, . . . , zn are algebraically independent over C(τ ). This

is ensured by a result of Bertrand. Finally, recalling that we have > |D0|
1/3 such points

coming from conjugating c0, if we choose a small enough ε we have a bound on |D0| and

the claim of the Theorem.

Let us see an example. Let

P1 =
(

2,
√

2(2− λ)
)
, P2 =

(
3,
√

6(3− λ)
)
.

These are generically linearly independent points on Eλ. Indeed, they are defined over

disjoint quadratic extensions of Q(λ) and therefore if they were linearly dependent over

Z, by conjugating, we see that they would be identically torsion. This is not the case.

For instance, P1(6) has infinite order on E6. In [22], Masser and Zannier proved that

there are at most finitely many values λ0 such that P1(λ0) and P2(λ0) are both torsion.

Our theorem implies that there are at most finitely many λ0 such that Eλ0 has complex

multiplication and the points P1(λ0) and P2(λ0) are linearly dependent over End(Eλ0).

As mentioned above, our Theorem 1.1 is a special case of the so-called Zilber–Pink

conjectures on unlikely intersections. In particular, combined with results in [2, 15, 31], it

settles the conjecture for a curve in a fibered power of an elliptic scheme, when everything

is defined over Q. For an account on these conjectures, see [28, 32] or [17].

Let E → S be a non-isotrivial elliptic scheme over an irreducible, smooth,

quasi-projective curve S, both defined over Q. Moreover, let A→ S be its n-fold fibered

power. An irreducible subvariety of A is called special if it is an irreducible component

of an algebraic subgroup of a CM fiber or an irreducible component of a flat subgroup

scheme of A. We define flat subgroup schemes in the next section, where we also see

how Theorem 1.1, combined with previous results from [2, 15, 31], implies the following

statement.

Theorem 1.2. Let A be as above and let C be an irreducible curve in A defined over Q
and not contained in a proper special subvariety of A. Then C intersects at most finitely

many special subvarieties of A of codimension at least 2.

Bertrand in [4] asked the following question, as one of the ingredients needed for proving

the Zilber–Pink Conjecture for curves in Poincaré biextensions of elliptic schemes.

Question [4, Question 1]. Let E be a non-isotrivial elliptic scheme over a curve S/Q, and

let p, q be two sections of E/S defined over Q. Assume that there are infinitely many

points λ ∈ S(Q) such that the fiber Eλ of E/S above λ admits complex multiplication

and such that the points p(λ) and q(λ) are linearly dependent over End(Eλ). Must the

sections p and q then be linearly dependent over Z?

The example above is clearly an instance of such problem. In the next section we see

how Theorem 1.2 implies a positive answer to Bertrand’s question.
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In this paper we use the � notation: we say f � g for two functions f and g with

values in R>0 if there exists a positive c such that f 6 cg. The constant c will usually

depend on C. Any further dependence will be specified with an index.

2. Proof of Theorem 1.2

Recall that we have a non-isotrivial elliptic scheme E → S over an irreducible, smooth,

quasi-projective curve S, both defined over Q. Non-isotrivial means that E cannot become

a constant family after a finite base change. We have its n-fold fibered power A and an

irreducible curve C defined over Q and not contained in a proper flat subgroup scheme or

in a fixed fiber. We call ϕ the structural morphism A→ S and (P1, . . . , Pn) will indicate

a point of A.

We recall the following definitions and results, as presented by Habegger in [16].

First, a subgroup scheme G of A is a closed, possibly reducible, subvariety of A which

contains the image of G×S G under the addition morphism and the image of the zero

section, and is mapped to itself by the inversion morphism. A subgroup scheme G is

called flat if ϕG : G → S is flat, i.e., all irreducible components of G dominate the base

curve S (see [18, Chapter III, Proposition 9.7]).

For every a = (a1, . . . , an) ∈ Zn we have a morphism a : A→ E defined by

a(P1, . . . , Pn) = a1 P1+ · · ·+ an Pn .

We identify the elements of Zn with the morphisms they define. The fibered product

α = a1×S · · · ×S ar , for a1, . . . , ar ∈ Zn defines a morphism A→ B over S where B is

the r -fold fibered power of E . The kernel of α, kerα indicates the fibered product of

α : A→ B with the zero section S→ B. We consider it as a closed subscheme of A.

Lemma 2.1. Let G be a flat subgroup scheme of A of codimension > r , with 1 6 r 6 n.

Then, there exist linearly independent a1, . . . , ar ∈ Zn such that G ⊆ ker(a1×S · · · ×S ar )

and ker(a1×S · · · ×S ar ) is a flat subgroup scheme of A of codimension r . Moreover, for

every s ∈ S(C) we have dim Gs = dim G− 1. Finally, the point (P1(s), . . . , Pn(s)) ∈ As is

contained in a proper algebraic subgroup of As if and only if there exists (a1, . . . , an) ∈

End(Es)
n
\ {0} with a1 P1(s)+ · · ·+ an Pn(s) = 0.

Proof. This follows from [16, Lemma 2.5] and its proof. The last claim is classical.

By this lemma it is then clear that Theorem 1.2 implies a positive answer to Bertrand

question. Indeed, the two sections p and q correspond to a curve in the fibered square of

a non-isotrivial elliptic scheme. If this curve intersects infinitely many special subvarieties

of codimension at least 2 then it must be contained in a proper special subvariety which

can only be a flat subgroup scheme because the curve is not contained in a fixed fiber.

Therefore, the two sections p and q are dependent over Z.

Consider now the Legendre family with equation (1.1). This gives an example of an

elliptic scheme, which we call EL , over the modular curve Y (2) = P1
\ {0, 1,∞}. We write

AL for the n-fold fibered power of EL .
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Lemma 2.2 [16, Lemma 5.4]. Let A be as above. After possibly replacing S by a Zariski

open non-empty subset there exists an irreducible non-singular quasi-projective curve S′

defined over Q such that the following is a commutative diagram

A f
←−−−− A′ e

−−−−→ ALy y y
S ←−−−−

l
S′ −−−−→

λ
Y (2)

where l is finite, λ is quasi-finite, A′ is the abelian scheme A×S S′, f is finite and flat

and e is quasi-finite and flat. Moreover, the restrictions of f and e to any fiber of A′→ S′

are isomorphisms of abelian varieties.

We also need the following technical lemma.

Lemma 2.3. If G is a flat subgroup scheme of A then e( f −1(G)) is a flat subgroup scheme

of AL of the same dimension. Moreover, let X be a subvariety of A dominating S and

not contained in a proper flat subgroup scheme of A, X ′′ an irreducible component of

f −1(X) and X ′ the Zariski closure of e(X ′′) in AL . Then X ′ has the same dimension of

X , dominates Y (2) and is not contained in a proper flat subgroup scheme of AL .

Proof. This follows from [16, proof of Lemma 5.5].

We can now see how Theorem 1.2 follows from our Theorem 1.1 in combination with

works of Viada, Galateau, and a previous work of the author with Capuano.

First, by hypothesis C is not contained in a fixed CM fiber. Moreover, the claim of

the theorem follows from [31, Theorem 1.6] and [15, Théorème 1.1] if C is contained in a

fixed non-CM fiber because, by Lemma 2.1, flat subgroup schemes specialize to algebraic

subgroups of the same codimension. Therefore, we can suppose C is not contained in a

fixed fiber.

Now, [2, Theorem 2.1] implies that C intersects at most finitely many irreducible
components of flat subgroup schemes of codimension at least 2. We then only have to

prove that C intersects at most finitely many irreducible components of proper algebraic

subgroups of CM fibers.

Suppose this is not the case and consider the diagram in Lemma 2.2. Then, using

Lemmas 2.2 and 2.3 one can see that the Zariski closure C′ of the image via e of some

irreducible component of f −1(C) would be a curve in AL , which is not contained in a

flat subgroup scheme nor in a fixed fiber. Since the restriction of f and e to any fiber of

A′→ S′ is an isomorphism and l is a finite map, we have that C′ would intersect infinitely

many components of proper algebraic subgroups of CM fibers. Therefore, we are reduced

to proving the claim for the Legendre family. This follows from Theorem 1.1 by the last

claim of Lemma 2.1.
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3. Preliminaries

In this section we introduce some notations and collect results needed later.

3.1. Heights

By h we indicate the logarithmic absolute Weil height on the projective space PN , as

defined in [6, p. 16], while ĥ denotes the Néron–Tate or canonical height defined for the

algebraic points of an elliptic curve defined over the algebraic numbers. For this see [30,

VIII.9].

Now, if α is an algebraic number, we set h(α) = h([1, α]) and define its multiplicative

height as H(α) = exp(h(α)).
We need a further definition of height. Set min∅ = +∞. The d-height of a complex

number α, for some integer d > 1, is defined as

Hd(α) = min{max{|c0|, . . . , |cd |}, c0, . . . , cd ∈ Z coprime,

not all zero and c0α
d
+ · · ·+ cd = 0}.

For an N -tuple (α1, . . . , αN ), we set Hd(α1, . . . , αN ) = max{Hd(α j )}. Note that an N -tuple

(α1, . . . , αN ) has finite d-height if and only if all the entries are algebraic numbers of degree

at most d over Q. Moreover, if α ∈ Q then Hd(α) = H(α) for all d.

By [6, Lemma 1.6.7] one can see that, if α is an algebraic number of degree at most d,

then

Hd(α) 6 2d H(α)d . (3.1)

Let α be an imaginary quadratic number with minimal polynomial aX2
+ bX + c ∈

Z[X ]. Then, we have

|α| =

∣∣∣∣−b±
√

b2− 4ac
2a

∣∣∣∣� H2(α), (3.2)

H2(Re(α)) 6 max{|b|, |2a|} 6 2H2(α), (3.3)

and

H2(Im(α)) 6 max{|b2
− 4ac|, |4a2

|} � H2(α)
2. (3.4)

We call A the quasi-projective variety in Y (2)× (P2)n with coordinates

(λ, [X1, Y1, Z1], . . . , [Xn, Yn, Zn])

and defined by the n equations

Y 2
i Zi = X i (X i − Zi )(X i − λZi ),

for i = 1, . . . , n. We set Pi = [X i , Yi , Zi ] and we have a curve C ⊆ A defined over a number

field k such that the projection of A to Y (2) restricts to a non-constant rational function

λ on C. Then, if c0 is an algebraic point of C, using standard properties of heights we

have that

h(Pi (c0))� h(λ(c0))+ 1, (3.5)

for all i = 1, . . . , n. Moreover, we have

[k(c0) : k] � [k(λ(c0)) : k]. (3.6)
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3.2. Uniformization

We want to define a uniformization map for A. For more details we refer to [14, Chapter

VII].

It is well known that an elliptic curve over the complex numbers is analytically

isomorphic to a complex torus C/3τ where τ is an element of the complex upper-half

plane H and 3τ is the lattice generated by 1 and τ . Moreover, let

Lτ = {z ∈ C : z = x + τ y, for x, y ∈ [0, 1)},

be a fundamental domain for such lattice.

The classical Weierstrass ℘-function ℘(z, 1, τ ) = ℘(z, τ ) is a 3τ -periodic function

satisfying a differential equation of the form

(℘ (z, τ )′)2 = 4℘(z, τ )3− g2(τ )℘ (z, τ )− g3(τ ), (3.7)

where ℘(z, τ )′ = d℘(z, τ )/dz. Consider the values of the ℘-function at the half-periods

e1(τ ) = ℘

(
1
2
, τ

)
, e2(τ ) = ℘

(
1+ τ

2
, τ

)
, e3(τ ) = ℘

(
τ

2
, τ

)
.

These are the zeroes of the cubic polynomial on the right hand side of (3.7), i.e.,

(℘ (z, τ )′)2 = 4(℘ (z, τ )− e1(τ ))(℘ (z, τ )− e2(τ ))(℘ (z, τ )− e3(τ )). (3.8)

Note that the ei (τ ) are distinct and e3(τ )− e1(τ ) has a regular square root for all τ ∈ H.

Therefore, we can define

ξ(z, τ ) =
℘(z, τ )− e1(τ )

e3(τ )− e1(τ )
,

and

η(z, τ ) =
℘(z, τ )′

2(e3(τ )− e1(τ ))3/2
.

By (3.8) we have

η(z, τ )2 = ξ(z, τ )(ξ(z, τ )− 1)(ξ(z, τ )− λ(τ)),

where

λ(τ) =
e2(τ )− e1(τ )

e3(τ )− e1(τ )
.

The map (z, τ ) 7→ (λ(τ ), P(z, τ )), where

P(z, τ ) =

 [ξ(z, τ ), η(z, τ ), 1], if z 6∈ 3τ ,

[0, 1, 0], otherwise,

gives a parameterization of the Legendre family. Define

π : H×Cn
→ A

(τ, z1, . . . , zn) 7→ (λ(τ ), P(z1, τ ), . . . , P(zn, τ )).
(3.9)

We would like to find a subset of H×Cn over which it is possible to define a univalued

inverse function of π .
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By [14, Chapter VII], there exists a finite index subgroup 0 of SL2(Z) such that λ(γ τ) =

λ(τ) for all γ ∈ 0. As a fundamental domain for the action of 0 on H one can take the

union of six suitably chosen fundamental domains for the action of SL2(Z) (see [14,

Figures 48 and 49 on p. 161]). We call this set B.

Now we set

FB = {(τ, z1, . . . , zn) : τ ∈ B, z1, . . . , zn ∈ Lτ }.

Then π has a univalued inverse A→ FB and we define

Z = π−1(C)∩FB. (3.10)

Finally, we consider a small open disc D on C and see τ, z1, . . . , zn as holomorphic

functions on D. The following is a consequence of [3, Théorème 5].

Lemma 3.1. Consider τ, z1, . . . , zn as functions on D. If 1, τ, z1, . . . , zn are Z-linearly

independent then τ, z1, . . . , zn are algebraically independent over C.

Proof. In order to apply [3, Théorème 5] we need to perform a change of variable. Namely,

set g2(λ) = (4/3)(λ2
− λ+ 1) and g3(λ) = (4/27)(λ− 2)(λ+ 1)(2λ− 1). Then, the elliptic

curve of equation Y 2
= 4X − g2(λ)X − g3(λ) is isomorphic to Eλ (see [23, (3.7), p. 1683]),

and it corresponds to a lattice 3 which must be homothetic to 3τ , i.e., there exist a

holomorphic ω(λ) with 3 = ω3τ = ωZ+ωτZ. We want to apply Bertrand’s Theorem to

ωz1, . . . , ωzn and for this we must show that ℘(ωzi ,3) is an algebraic function of λ for

all i = 1, . . . , n. Here ℘(·,3) is the Weierstrass ℘-function with respect to 3. Now, we

have

℘(ωzi ,3) = ω
−2℘(zi , τ ) = ω

−2
[(e3(τ )− e1(τ ))ξ(zi , τ )− e1(τ )]

for all i = 1, . . . , n. Recall that e1(τ ), e2(τ ) and e3(τ ) are nothing but ℘(·, τ ) evaluated

at the half-periods of 3τ . Therefore, ω−2e j (τ ) = e j (3) for j = 1, 2, 3 where the e j (3)

are ℘(·,3) evaluated at the same half-periods of 3. We then have

℘(ωzi ,3) = (e3(3)− e1(3))ξ(zi , τ )− e1(3)

for all i . Now, ξ(zi , τ ) is algebraic over C(λ) and the e j (3) are algebraic over Q(g2, g3), and

therefore the ℘(ωzi ,3) are algebraic over C(λ) as well. Finally our hypothesis implies that

ω,ωτ, ωz1, . . . , ωzn are Z-linearly independent and therefore, in view of [3], ωz1, . . . , ωzn
are algebraically independent over C(λ, ω, ωτ). This gives our claim.

3.3. Complex multiplication

Suppose now that Eλ0 has complex multiplication for some λ0. Then, the associated

τ0 ∈ B is a quadratic number with minimal polynomial aX2
+ bX + c and discriminant

D0 = b2
− 4ac. By [19, Theorem 1 on p. 90] we have End(Eλ0) = Oλ0 = Z[ρ], where

ρ = (D0+
√

D0)/2. Since the endomorphism ρ has degree (D2
0 − D0)/4, we have

h(ρP)� |D0|
2(h(P)+ 1), (3.11)

for any P ∈ Eλ0(Q).
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Now, by the general theory of complex multiplication we have that

[Q( j0) : Q] = cl(Oλ0), (3.12)

where j0 is the j-invariant of Eλ0 and cl denotes the class number. Moreover, a theorem

of Siegel in the form of [7, Theorem 1.2] gives us the estimate

|D0|
1
2−ε �ε cl(Oλ0)�ε |D0|

1
2+ε . (3.13)

We know that to λ0 we can associate a unique τ0 ∈ B and a τ ′0 in the usual fundamental

domain for the action of SL2(Z). These two have the same discriminant D0. There is a

finite set of elements of SL2(Z) that sends any τ ∈ B to the usual fundamental domain.

Therefore, we have H(τ0)� H(τ ′0). If a′X2
+ b′X + c′ is the minimal polynomial of τ ′0,

then τ ′0 = (−b′±
√

D0)/(2a′). Since |Re(τ ′0)| 6 1/2 and Im(τ ′0) > 1/2, we have |b′| 6 |a′| 6
|D0|

1/2. Therefore, by standard properties of heights we have

H(τ0)� H(τ ′0) 6 2H
(

b′

2a′

)
H
(√

D0

2a′

)
� |D0|

3
2 . (3.14)

Recall the q-expansion of the j invariant j (τ ) = q−1
+ 744+ 196884q + · · · where q =

e2π iτ . If τ is in the usual fundamental domain then Im(τ ) >
√

3/2 and therefore

|log | j (τ )| − 2πIm(τ )| � 1,

(see also [5, equation (1) on p. 146]). Now, let λ0, D0, τ
′

0 and j0 be as above. We have

that Im(τ ′0) 6 |D0|
1/2. Now, j0 is an algebraic integer and therefore only the archimedean

places contribute to its height. Moreover, all conjugates of j0 correspond to elliptic curves

with complex multiplication with the same discriminant. Therefore, we have

h( j0) =
1

[Q( j0) : Q]
∑

log+ | jσ0 | � |D0|
1/2

and, since j0 is a rational function of λ0, we have

h(λ0)� |D0|
1/2. (3.15)

4. O-minimality, definability and rational points

For the basic properties and examples of o-minimal structures we refer to [11, 13].

Definition 4.1. A structure is a sequence S = (SN ), N > 1, where each SN is a collection

of subsets of RN such that, for each N ,M > 1:

(1) SN is a boolean algebra (under the usual set-theoretic operations);

(2) SN contains every semi-algebraic subset of RN ;

(3) if A ∈ SN and B ∈ SM , then A× B ∈ SN+M ;

(4) if A ∈ SN+M , then π(A) ∈ SN , where π : RN+M
→ RN is the projection onto the

first N coordinates.
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If S is a structure and, in addition,

(5) S1 consists of all finite union of open intervals and points

then S is called an o-minimal structure.

Given a structure S, we say that S ⊆ RN is a definable set if S ∈ SN . Let S ⊆ RN and

f : S→ RM be a function. We call f a definable function if its graph {(x, y) ∈ S×RM
:

y = f (x)} is a definable set. It is not hard to see that images and preimages of definable

sets via definable functions are still definable.

There are many examples of o-minimal structures. In this article we deal with sets

definable in the structure Ran,exp. The o-minimality of this structure was proved by van

den Dries and Miller [12].

We now fix an o-minimal structure S. We are going to use a result from [17].

For a Z ⊆ RM+N , a positive integer d and a positive real number T we define

Z∼(d, T ) = {(y, z) ∈ Z : Hd(y) 6 T }.

By π1 and π2 we indicate the projections of Z to the first M and the last N coordinates,

respectively.

Proposition 4.2 [17, Corollary 7.2]. Let Z ⊆ RM+N be a definable set. For every ε >

0 there exists a positive constant c = c(Z , d, ε) with the following property. If T > 1
and |π2(Z∼(d, T ))| > cT ε, then there exists a continuous definable function δ : [0, 1] → Z
such that

(1) the composition π1 ◦ δ : [0, 1] → RM is semi-algebraic and its restriction to (0, 1) is

real analytic;

(2) the composition π2 ◦ δ : [0, 1] → RN is non-constant.

We now want to prove that the set Z defined in (3.10) is definable in Ran,exp. From

now on, by definable we mean definable in Ran,exp and complex sets and functions are

said to be definable if they are as real objects considering their real and imaginary parts.

In [25], Peterzil and Starchenko proved that, if D is the usual fundamental domain for

the action of SL2(Z) on H, then ℘(z, τ ) is a definable function when restricted to {(τ, z) :
τ ∈ D, z ∈ Lτ }, and therefore definable if restricted to {(τ, z) : τ ∈ γD, z ∈ Lτ }, where

γD is any fundamental domain for SL2(Z). Since B is the union of six suitably chosen

fundamental domains we have that ℘(z, τ ) is also definable when restricted to {(τ, z) :
τ ∈ B, z ∈ Lτ }. Therefore, the function π , defined in (3.9), is definable when restricted to

FB. Finally, since C is semi-algebraic we can conclude that Z is definable.

5. The main estimate

Recall the definition of Z in (3.10). Define, for T > 1,

Z(T ) =
{
(τ, z1, . . . , zn) ∈ Z :

∑
a j z j ∈ Z+Zτ, for some (a1, . . . , an) ∈ Cn

\ {0},

with H2(τ, a1, . . . , an) 6 T
}
.
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Note that, even if for each value of T this is a definable set, if we see Z(T ) as family

parameterized by T , it is not a definable family.

Proposition 5.1. Under the hypotheses of Theorem 1.1, for all ε > 0, we have |Z(T )| �ε

T ε, for all T > 1.

We indicate the imaginary unit by I and define

W =
{
(α1, β1, . . . , αn, βn, µ1, µ2, u, v; x1, y1, . . . , xn, yn) ∈ R2n+4

×R2n
:

(α1, β1, . . . , αn, βn) 6= 0, (u+ v I, x1+ y1 I, . . . , xn + yn I ) ∈ Z,
n∑

i=1

(αi +βi I )(xi + yi I ) = µ1+µ2(u+ v I )
}
,

which is a definable set.

We want to apply Proposition 4.2 to W with

W∼(2, T ) = {(α1, . . . , βn, µ1, µ2, u, v; x1, . . . , yn) ∈ W : H2(α1, . . . , βn, µ1, µ2, u, v) 6 T }.

We let π1 and π2 be the projections on the first 2n+ 4 and the last 2n coordinates,

respectively.

Lemma 5.2. For all ε > 0, we have |π2(W∼(2, T ))| �ε T ε, for all T > 1.

Proof. If |π2(W∼(2, T ))| > cT ε , for some positive constant c, then Proposition 4.2 implies

that there exists a continuous definable function δ : [0, 1] → W such that δ1 = π1 ◦ δ :

[0, 1] → R2n+4 is semi-algebraic and δ2 = π2 ◦ δ : [0, 1] → R2n is non-constant. This in

turn implies that there exists a connected J ⊆ [0, 1] such that δ1(J ) is an algebraic curve

segment and δ2(J ) has positive dimension.

We consider the coordinates α1, . . . , βn, µ1, µ2, u, v, x1, . . . , yn as functions on J and

set τ = u+ v I and zi = xi + yi I . Moreover, we consider

W = (τ, z1, . . . , zn)(J ) ⊆ Z.

On J the functions α1, . . . , βn, µ1, µ2, τ generate a field of transcendence degree at most

1 over C. Moreover, we have the relation∑
(αi +βi I )zi = µ1+µ2τ.

Therefore, since α1, . . . , βn cannot all be identically 0, z1, . . . , zn are algebraically

dependent over C(τ ) on J . Note that τ cannot be constant on J , otherwise there would

be an infinite subset of C on which τ attains the same value, contradicting the fact that

λ is non-constant of C.

Finally, we can consider τ, z1, . . . , zn as functions on π(W). They satisfy an algebraic

relation over C which can be analytically continued to an open disc in C. By

Lemma 3.1 this would imply that 1, τ, z1, . . . , zn are Z-linearly dependent contradicting

the hypothesis of generic independence of P1, . . . , Pn .
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Lemma 5.3. There exists a positive constant c′ = c′(Z) such that for all (z1, . . . , zn) ∈ Cn

and T there are at most c′ values of τ ∈ C with (τ, z1, . . . , zn) ∈ Z(T ).

Proof. Consider the projection map ϕ of Z to the last n coordinates. By o-minimality, if

ϕ−1(z1, . . . , zn) has dimension 0, then there is a uniform bound on its cardinality, which

only depends on Z. Therefore, we only need to prove that if (τ, z1, . . . , zn) ∈ Z(T ) for

some T , then ϕ−1(z1, . . . , zn) has dimension 0. Suppose V := ϕ−1(z1, . . . , zn) has positive

dimension. This would imply that there exists an infinite subset of C on which τ attains

the same value, which is not possible as noted in the proof of the previous lemma.

We are now in position to prove Proposition 5.1.

If (τ, z1, . . . , zn) ∈ Z(T ) then τ is imaginary quadratic and there are a1, . . . , an not

all zero and each of degree at most 2 over Q and integers an+1, an+2 with
∑

ai zi =

an+1+ an+2τ . Since H2(τ, a1, . . . , an) 6 T and zi ∈ Lτ and using (3.2), we have |
∑

ai zi | 6∑
|ai ||zi | � T max{1, |τ |} � T 2 and therefore, recalling that τ ∈ B, we can suppose that

an+1, an+2 have absolute value � T 2.

By these considerations and by (3.3) and (3.4), we have that

(Re(a1), Im(a1), . . . ,Re(an), Im(an), an+1, an+2,

Re(τ ), Im(τ ),Re(z1), Im(z1), . . . ,Re(zn), Im(zn)) ∈ W∼(2, γ T 2),

for some positive constant γ . By Lemma 5.3, any point of π2(W∼(2, γ T 2)) is associated

to at most c′ different elements of Z(T ). Therefore, Lemma 5.2 gives the claim of

Proposition 5.1.

6. Proof of Theorem 1.1

In this section γ1, γ2, . . . will be positive constants depending only on C. Recall that C is

defined over a number field k.

We call C′ the set of points c ∈ C(C) such that Eλ(c) has complex multiplication and

there exists (a1, . . . , an) ∈ End(Eλ(c))n \ {0} with

a1 P1(c)+ · · ·+ an Pn(c) = O,

i.e., the set we want to prove to be finite. Note that, if Eλ(c) has complex multiplication,

then λ(c) is algebraic and therefore C′ consists of algebraic points of C.

Fix c0 ∈ C′, call d0 its degree over k and D0 the discriminant of End(Eλ(c0)). Now, for

all σ ∈ Gal(k/k), we have that all conjugates cσ0 of c0 are in C′. Actually, all End(Eλ(cσ0 ))
are isomorphic and

aσ1 P1(cσ0 )+ · · ·+ aσn Pn(cσ0 ) = O, (6.1)

on Eλ(cσ0 ).

Lemma 6.1. For all c0 ∈ C′ there is (a1, . . . , an) ∈ End(Eλ(c0))
n
\ {0} satisfying (6.1) with

H2(a1, . . . , an)� |D0|
γ1 ,

for some positive γ1.
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Proof. We fix a c0 ∈ C′ and set λ0 = λ(c0), K0 = k(c0,
√

D0), κ0 = [K0 : Q] and

Pi = Pi (c0). Recall that, by (3.6), (3.12) and (3.13), we have that |D0|
1/3
� κ0 � |D0|.

Moreover, let ρ = D0+
√

D0
2 so that End(Eλ0) = Z+ ρZ.

Let E be the elliptic curve with Weierstrass equation

Y ′2 = 4X ′3− g2 X ′− g3,

where g2 =
4
3 (λ

2
0− λ0+ 1) and g3 =

4
27 (λ0− 2)(λ0+ 1)(2λ0− 1). Then Eλ0 and E are

isomorphic via the map φ given by

X ′ = X − 1
3 (λ0+ 1), Y ′ = 2Y,

(see [23, (3.7), p. 1683]), and E is defined over the same field Q(λ0).

We set Qi = φ(Pi ) and Q′i = φ(ρPi ). Then, Q1, . . . , Qn, Q′1, . . . , Q′n are 2n points in

E(K0) such that Qi and Pi have same Néron–Tate height and the same holds for Q′i and

ρPi . Moreover, Q1, . . . , Qn, Q′1, . . . , Q′n and P1, . . . , Pn, ρP1, . . . , ρPn satisfy the same

relation over Z.

Let w = max{1, h(g2), h(g3)}. Using the work of Zimmer [33] in the form of [9, Lemma

3.4] and by (3.5) and (3.15) we have, for all i ,

ĥ(Qi ) 6 h(Qi )+
3
4w+ 5 log(2)� h(Pi )+ h(λ0)+ 1� h(λ0)+ 1� |D0|

1/2.

Similarly, using (3.11), we have

ĥ(Q′i )� |D0|
2h(Pi )+ h(λ0)+ 1� |D0|

5/2.

Suppose Etors(K0) ( E(K0). We use a result of Masser. By [20, Theorem E] we can

suppose that Q1, . . . , Qn, Q′1, . . . , Q′n satisfy

b1 Q1+ · · ·+ bn Qn + b′1 Q′1+ · · ·+ b′n Q′n = O

on E , for some integers b1, . . . , bn, b′1, . . . , b′n , not all zero, with

max{|b1|, . . . , |bn|, |b′1|, . . . , |b
′
n|} 6 (2n)2n−1ω

(
q
η

) 1
2 (2n−1)

,

where ω = |Etors(K0)|, η = inf ĥ(Q) for Q ∈ E(K0) \ Etors(K0) and q > η is an upper

bound for ĥ(Qi ) and ĥ(Q′i ). By our previous considerations we can take q � |D0|
5/2. We

need to bound ω and η.

For the first we use a result of David [10]. By his Théorème 1.2(i) we have, after having

chosen an archimedean v and noting that hv(E) >
√

3
2 ,

ω � κ0t + κ0 log κ0,

where t = max{1, h( jE )} and we recall that κ0 = [K0 : Q]. Since E and Eλ0 are isomorphic

they have the same j-invariant and therefore, by (3.15), we can take t � |D0|
1/2.

Therefore we have ω � |D0|
γ2 .

The lower bound on η relies on a result of Masser. By [21, Corollary 1] we have

η � κ
−γ3
0 w−γ4 ,
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where we recall that w = max{1, h(g2), h(g3)}. Actually, in Masser’s bound a constant

depending on κ0 appears in the denominator but going through the proof one can see

that it depends polynomially on κ0, as noted by David [10, p. 109]. We have w � h(λ0)+ 1
which is in turn � |D0|

1/2. Therefore, we have η � |D0|
−γ5 . Combining the bounds on

q, ω and η we can suppose

max{|b1|, . . . , |bn|, |b′1|, . . . , |b
′
n|} � |D0|

γ6 .

In case Etors(K0) = E(K0) then all Pi are torsion and we can get the same estimate using

only the bound on ω.

Finally, by (3.1) we have H2(bi + ρb′i ) 6 4H(bi + ρb′i )
2 for all i , and using standard

properties of heights we have the claim.

Now, recall the definition (3.9) of the map π and consider π−1(cσ0 )∩FB which consists

of one point (τσ0 , zσ1 , . . . , zσn ) belonging to Z (of course, here, the upper index σ does not

denote a Galois conjugate). By (6.1) and Lemma 6.1, we have relations

a1zσ1 + · · ·+ anzσn ∈ Z+ τσ0 Z,

with H2(a1, . . . , an)� |D0|
γ1 .

Recall that, by (3.1) and (3.14), we have H2(τ
σ
0 )� |D0|

3. This implies π−1(cσ0 ) ∈
Z(|D0|

γ7), for some positive γ7. Now, as noted at the beginning of the proof of Lemma 6.1,

we have κ0 � |D0|
1/3, so d0 = [k(c0) : k] > (1/2[k : Q])κ0 � |D0|

1/3.

Thus, there are � |D0|
1
3 different (τσ0 , zσ1 , . . . , zσn ) in Z(|D0|

γ7). Applying

Proposition 5.1 with ε = 1/(4γ7) we get a contradiction if |D0| is large enough. Therefore,

|D0| is bounded giving us the claim of Theorem 1.1.

Acknowledgements. We would like to thank Gabriel Dill, Gareth Jones and Harry

Schmidt for many useful discussions; and Daniel Bertrand, Philipp Habegger and the

referee for several valuable comments and suggestions.

References
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Éc. Norm. Supér. (4) 49(4) (2016), 813–858.

18. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Volume 52,
(Springer, New York–Heidelberg, 1977).

19. S. Lang, Elliptic Functions (Addison-Wesley Publishing Co., Inc., Reading,
MA–London–Amsterdam, 1973). With an appendix by J. Tate.

20. D. Masser, Linear relations on algebraic groups, in New Advances in Transcendence
Theory (Durham, 1986), pp. 248–262 (Cambridge University Press, Cambridge, 1988).

21. D. Masser, Counting points of small height on elliptic curves, Bull. Soc. Math. France
117(2) (1989), 247–265.

22. D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves,
C. R. Math. Acad. Sci. Paris 346(9–10) (2008), 491–494.

23. D. Masser and U. Zannier, Torsion anomalous points and families of elliptic curves,
Amer. J. Math. 132(6) (2010), 1677–1691.

24. D. Masser and U. Zannier, Torsion points on families of squares of elliptic curves,
Math. Ann. 352(2) (2012), 453–484.

25. Y. Peterzil and S. Starchenko, Uniform definability of the Weierstrass ℘ functions
and generalized tori of dimension one, Selecta Math. (N.S.) 10(4) (2004), 525–550.

26. J. Pila, Rational points of definable sets and results of André–Oort–Manin–Mumford
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