
Math. Struct. in Comp. Science (2005), vol. 15, pp. 323–342. c© 2005 Cambridge University Press

doi:10.1017/S0960129504004621 Printed in the United Kingdom

Classical linear logic of implications

MASAHITO HASEGAWA

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan

and

PRESTO, Japan Science and Technology Agency

Email: hassei@kurims.kyoto-u.ac.jp

Received 16 December 2003; revised 30 June 2004

We give a simple term calculus for the multiplicative exponential fragment of Classical

Linear Logic, by extending Barber and Plotkin’s dual-context system for the intuitionistic

case. The calculus has the non-linear and linear implications as the basic constructs, and this

design choice allows a technically manageable axiomatisation without commuting

conversions. Despite this simplicity, the calculus is shown to be sound and complete for

category-theoretic models given by ∗-autonomous categories with linear exponential

comonads.

1. Introduction

We propose a simply typed linear lambda calculus called Dual Classical Linear Logic

(DCLL) for the multiplicative exponential fragment of Classical Linear Logic (Girard

1987), which is often called MELL in the literature. It may be regarded as an extension of

the Dual Intuitionistic Linear Logic (DILL) of Barber and Plotkin (Barber 1997; Barber

and Plotkin 1997), which is a system for the multiplicative exponential fragment of

Intuitionistic Linear Logic (IMELL).

The main feature of DCLL is its simplicity and expressiveness: just three logical

connectives (intuitionistic implication →, linear implication �, and the bottom type ⊥)

and six axioms for the equational theory on terms (proofs), which are just the familiar

β and η axioms of the lambda calculus (one of each for → and �) plus two axioms

saying that the type (σ � ⊥) � ⊥ is canonically isomorphic to σ. In particular, we can

avoid axioms for commuting conversions (equalities for identifying terms representing the

same proof modulo trivial proof permutations), which have always been troublesome on

term calculi for Linear Logic. Other logical connectives and their proof expressions

of MELL are easily derived in DCLL; for instance the exponential ! is given by

!σ ≡ (σ → ⊥) � ⊥. All the desired equalities between terms, including the commuting

conversions, are provable from the simple axioms of DCLL.

Thus DCLL can be used as a compact linear syntax for reasoning about MELL, to

complement the drawbacks of conventional proof nets-based presentations, which are

often tiresome to formulate and deal with. For instance, it is much easier to describe

and analyse the translations between type systems if we use term calculi like DCLL

instead of graph-based systems. Also, techniques of logical relations (see, for example,

Hasegawa (1999), Streicher (1999) and Hyland and Schalk (2003)) seem to work more

smoothly on term-based systems. As future work, we plan to study the compilations of

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 324

call-by-value programming languages into linearly typed intermediate languages (Berdine

et al. 2001; Berdine et al. 2002; Hasegawa 2002a) using DCLL as a target calculus. In

fact, our choice of the logical connectives has been motivated by this research direction –

see the discussion in Section 7.

Despite its simplicity, we show that DCLL is sound and complete for categorical

models of MELL given by ∗-autonomous categories with symmetric monoidal comonads

satisfying some coherence conditions (called linear exponential comonads (Hyland and

Schalk 2003)). It turns out that our simple axioms are sufficient to give such a categorical

structure for the term model. Although this may not be a great surprise, there do not seem

to be many systems for Linear Logic supported by this sort of semantic completeness at

the level of proofs, and we think that this completeness result gives a justification for our

design of DCLL.

This paper is organised as follows. We introduce the system DCLL in Section 2, with

some basic results, which will be used in later sections. Section 3 gives a comparison

between DCLL and its precursor DILL. Section 4 then states the completeness result for

DCLL with respect to the categorical models for MELL. In Section 5, an extension with

additives is discussed. Section 6 is devoted to a variant of DCLL based on the λµ-calculus,

called µDCLL. We conclude the paper with some discussions in Section 7. Appendix A

gives a summary of DILL, and Appendix B describes an alternative axiomatisation of

DCLL with no base type.

This is a revised and expanded version of the work presented at the Computer Science

Logic (CSL’02) conference (Hasegawa 2002b).

2. DCLL

2.1. The system DCLL

In this paper we employ a ‘dual-context’† formulation of the linear lambda calculus as

developed in Barber and Plotkin (1997) (similar systems are proposed, for example, in

Wadler (1993) and Blute et al. (1997) – see Barber (1997) for a more comprehensive

survey). In this formulation of the linear lambda calculus, a typing judgement takes the

form Γ; ∆ � M : τ, where Γ represents an intuitionistic (or additive) context, while ∆ is a

linear (multiplicative) context. We assume that all variables in Γ and ∆ are distinct. While

the variables in Γ can be used in the term M as many times as we like, those in ∆ must

be used exactly once. A typing judgement x1 : σ1, . . . , xm : σm; y1 : τ1, . . . , yn : τn � M : σ

can be considered as the proof of the sequent !σ1, . . . , !σm, τ1, . . . , τn � σ, or the proposition

!σ1 ⊗ . . .⊗!σm ⊗ τ1 ⊗ . . . ⊗ τn � σ.

As we mentioned in the introduction, the system features both intuitionistic (non-linear)

arrow type → and linear arrow type �. We use λxσ.M and M @N for the non-linear

lambda abstraction and application, respectively, and λxσ.M and MN for the linear ones.

† As noted in Barber and Plotkin (1997), the word ‘dual’ in DILL (and DCLL) comes from this dual-context

typing, and has nothing to do with the duality of Classical Linear Logic.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 325

In order to express the duality of Classical Linear Logic, there is also a special combinator

Cσ , which serves as the isomorphism from (σ � ⊥) � ⊥ to σ (which, however, can be

eliminated when we have no base type – see the discussion at the end of this section).

For those familar with the theory of functional programming languages with first-class

control primitives, C can be understood as a linear analogue of Felleisen’s C-operator

(Felleisen et al. 1987)†.

Types and terms

σ ::= b | σ → σ | σ � σ | ⊥
M ::= x | λxσ.M | M @M | λxσ.M | MM | Cσ

where b ranges over a set of base types. We will sometimes omit the type subscripts for

ease of presentation.

Typing

Γ1, x : σ,Γ2; ∅ � x : σ
(Int-Ax)

Γ; x : σ � x : σ
(Lin-Ax)

Γ, x : σ1; ∆ � M : σ2

Γ; ∆ � λxσ1 .M : σ1 → σ2
(→ I)

Γ; ∆ � M : σ1 → σ2 Γ; ∅ � N : σ1

Γ; ∆ � M @N : σ2
(→ E)

Γ; ∆, x : σ1 � M : σ2

Γ; ∆ � λxσ1 .M : σ1 � σ2
(� I)

Γ; ∆1 � M : σ1 � σ2 Γ; ∆2 � N : σ1

Γ; ∆1�∆2 � MN : σ2
(� E)

Γ; ∅ � Cσ : ((σ � ⊥) � ⊥) � σ
(C)

where ∅ is the empty context, and ∆1�∆2 is a merge of ∆1 and ∆2 (Barber 1997; Barber

and Plotkin 1997). Thus, ∆1�∆2 represents one of the possible merges of ∆1 and ∆2

as finite lists. More explicitly, we can define the relation ‘∆ is a merge of ∆1 and ∆2’

inductively as follows (Barber 1997):

— ∆ is a merge of ∅ and ∆

— ∆ is a merge of ∆ and ∅
— if ∆ is a merge of ∆1 and ∆2, then x : σ,∆ is a merge of x : σ,∆1 and ∆2

— if ∆ is a merge of ∆1 and ∆2, then x : σ,∆ is a merge of ∆1 and x : σ,∆2.

We assume that, when we introduce ∆1�∆2, there is no variable occurring both in ∆1

and in ∆2. We note that any typing judgement has a unique derivation (hence a typing

judgement can be identified with its derivation).

† In fact, in a recent work by Führmann and Thielecke (Führmann and Thielecke 2004), it is observed that

Felleisen’s C can also be axiomatised as the canonical isomorphism from the values of type (σ → 0) → 0 to

the computations of σ in the typed call-by-value seting.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 326

Axioms

(β→) (λx.M) @N =M[N/x]

(η→) λx.M @ x =M (x 	∈ FV (M))

(β�) (λx.M)N =M[N/x]

(η�) λx.M x =M

(C1) L (Cσ M) =ML (L : σ � ⊥)

(C2) Cσ (λkσ�⊥.k M) =M

where M[N/x] denotes the capture-free substitution. Note that there is no side condition

x 	∈ FV (M) for the axiom η� (or C2), as linearity prevents x from occuring in M. The

equality judgement Γ; ∆ � M = N : σ for Γ; ∆ � M : σ and Γ; ∆ � N : σ is defined as

usual.

We note that the axiom C1 is equivalent to λkσ�⊥.k (Cσ M) = M; thus the last two

axioms say that Cσ is the inverse of λxσ.λkσ�⊥.k x : σ � (σ � ⊥) � ⊥. As a consequence,

we obtain the ‘naturality’ of C for free, as shown by the following lemma.

Lemma 2.1. The following equation is provable in DCLL:

Lσ�τ (Cσ M
(σ�⊥)�⊥) = Cτ (λkτ�⊥.M (λxσ.k (Lx))) : τ.

(σ � ⊥) � ⊥ (τ � ⊥) � ⊥

σ τ

�(L�⊥)�⊥

�
Cσ

�
Cτ

�
L

Proof.

L (CM)
C2= C (λk.k (L (CM)))
β�
= C (λk.(λx.k (Lx)) (CM))
C1= C (λk.M (λx.k (Lx))).

2.2. Some basic results for DCLL

In DCLL, the equations in the following lemma are provable.

Lemma 2.2.

1 C⊥ = λm(⊥�⊥)�⊥.m (λx⊥.x).

2 Cσ→τ = λm((σ→τ)�⊥)�⊥.λxσ.Cτ (λkτ�⊥.m (λfσ→τ.k (f @ x))).

3 Cσ�τ = λm((σ�τ)�⊥)�⊥.λxσ.Cτ (λkτ�⊥.m (λfσ�τ.k (f x))).

Proof.

1 C⊥ m= (λx⊥.x) (C⊥ m)

=m (λx⊥.x).

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 327

2 Cσ→τ m @ x= Cτ (λk.k (Cσ→τ m @ x))

= Cτ (λk.(λf.k (f @ x)) (Cσ→τ m))

= Cτ (λk.m (λf.k (f @ x))).

3 Cσ�τ m x= Cτ (λk.k (Cσ�τ m x))

= Cτ (λk.(λf.k (f x)) (Cσ�τ m))

= Cτ (λk.m (λf.k (f x))).

By induction we can show the following proposition.

Proposition 2.1. For σ = σ1 ⇒1 . . . σn ⇒n ⊥ (where ⇒i is either → or �)

Cσ M �1 N1 . . . �n Nn = M (λfσ.f �1 N1 . . . �n Nn) : ⊥

is provable in DCLL, where M : (σ � ⊥) � ⊥, Ni : σi, and �i is a non-linear application

if ⇒i is →, or a linear application if ⇒i is �.

We can now give an interesting implication of these results. If we do not have base

types, all DCLL terms can be expressed as just (non-linear and linear) lambda terms,

without using the combinator C; we can define C’s as lambda terms by the equations of

Lemma 2.2 or Proposition 2.1. Note that, if we do so, the axiom C2 follows just from the

βη-axioms for → and �. Therefore it is possible to axiomatise DCLL with no base type

as a quotient of the {→,�}-calculus on the single base type ⊥ obtained by adding the

axiom C1 for these defined C’s. In fact, all of them are derivable from the following single

instance and the βη-axioms for → and �:

L (λxσ.M (λfσ�⊥.f x)) = ML

where L : (σ � ⊥) � ⊥ and M : ((σ � ⊥) � ⊥) � ⊥. So it suffices to have just the

standard βη-axioms and this equation: Appendix B describes the resulting system.

Remark 2.1. The last equation, if one replaces ⊥ by I , in fact amounts to the infamous

(in)equality known as the ‘triple unit problem’, which asks if two canonical endomorphisms

on ((A � I) � I) � I are the same in a symmetric monoidal closed category (Murawski

and Ong 1999; Kelly and Mac Lane 1971).

3. DILL in DCLL

The primitive constructs of DILL (summarised in Appendix A) can be defined in DCLL

as follows:

I ≡ ⊥ � ⊥
σ1 ⊗ σ2 ≡ (σ1 � σ2 � ⊥) � ⊥
! σ ≡ (σ → ⊥) � ⊥

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 328

∗ ≡ λx⊥.x

let ∗ be MI in Nτ ≡ Cτ (λkτ�⊥.M (k N))

Mσ1 ⊗ Nσ2 ≡ λkσ1�σ2�⊥.k M N

let xσ1 ⊗ yσ2 be Mσ1⊗σ2 in Nτ ≡ Cτ (λkτ�⊥.M (λxσ1 .λyσ2 .k N))

!Mσ ≡ λhσ→⊥.h @M

let !xσ be M!σ in Nτ ≡ Cτ (λkτ�⊥.M (λxσ.k N)).

We can also introduce connectives ? and

&

, by ?σ ≡ (σ � ⊥) → ⊥ and σ1

&

σ2 ≡ (σ1 �
⊥) � (σ2 � ⊥) � ⊥ (or (σ1 � ⊥) � σ2, if we prefer a less symmetric but shorter

encoding). However, giving the term expressions associated to these connectives seems

less obvious – there seems to be no agreed syntax for them in the literature.

We shall see below that this encoding is sound for both the typing and equational

theory.

3.1. Type soundness

Lemma 3.1. The derivation rules of typing judgements in DILL are derivable in DCLL.

Proof. We shall spell out the cases of introduction and elimination rules for !

Γ; ∅ � M : σ

Γ; ∅ � !M : !σ
(! I)

Γ; ∆1 � M : !σ Γ, x : σ; ∆2 � N : τ

Γ; ∆1�∆2 � let !xσ be M in N : τ
(! E) ,

which are derivable in DCLL as follows.

Γ; h : σ → ⊥ � h : σ → ⊥ Lin-Ax
Γ; ∅ � M : σ

Γ; h : σ → ⊥ � h @M : ⊥ →E

Γ; ∅ � !M ≡ λhσ→⊥ .h @M : (σ → ⊥) � ⊥ ≡ !σ
�I

Γ; ∅ � Cτ : ((τ�⊥)�⊥)�τ
C

Γ; ∆1 � M : !σ ≡ (σ→⊥)�⊥

Γ, x : σ; k : τ�⊥ � k : τ�⊥ Lin-Ax
Γ, x : σ; ∆2 � N : τ

Γ, x : σ; ∆2 , k : τ�⊥ � k N : ⊥ �E

Γ; ∆2 , k : τ�⊥ � λxσ.k N : σ→⊥ →I

Γ; ∆1�∆2 , k : τ�⊥ � M (λxσ.k N) : ⊥ �E

Γ; ∆1�∆2 � λkτ�⊥ .M (λxσ.k N) : (τ�⊥)�⊥
�I

Γ; ∆1�∆2 � let !xσ be M in N ≡ Cτ (λkτ�⊥ .M (λxσ.k N)) : τ
�E

The rules for I and ⊗ are derived similarly.

3.2. A reduced axiomatisation of DILL

Before showing the equational soundness of the encoding, we shall give an alternative

simple axiomatisation of DILL, in which the η-axioms other than η� and all commuting

conversions are replaced by just three simple equations.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 329

Proposition 3.1. The equational theory of DILL can be axiomatised by the following set

of axioms:

(βI) let ∗ be ∗ in M = M

(β⊗) let x ⊗ y be M ⊗ N in L = L[M/x,N/y]

(β�) (λx.M)N = M[N/x]

(β!) let !x be !M in N = N[M/x]

(η�) λx.M x = M

(comI) let ∗ be M in L ∗ = LM

(com⊗) let x ⊗ y be M in L (x ⊗ y) = LM

(com!) let !x be M in L (!x) = LM (x 	∈ FV (L)).

Proof. The η-axioms for I , ⊗ and ! follow from the (com)-axioms and (β�) by just

letting L’s be the identities. Commuting conversions are derived as follows:

C[let ∗ be M in N] = (λuI .C[let ∗ be u in N])M (β�)

= let ∗ be M in (λuI .C[let ∗ be u in N]) ∗ (comI)

= let ∗ be M in C[let ∗ be ∗ in N] (β�)

= let ∗ be M in C[N] (βI)

C[let xσ1 ⊗ yσ2 be M in N] = (λwσ1⊗σ2 .C[let xσ1 ⊗ yσ2 be w in N])M (β�)

= let x′σ1 ⊗ y′σ2 be M in

(λwσ1⊗σ2 .C[let xσ1 ⊗ yσ2 be w in N]) (x′ ⊗ y′) (com⊗)

= let x′σ1 ⊗ y′σ2 be M in

C[let xσ1 ⊗ yσ2 be x′ ⊗ y′ in N] (β�)

= let x ⊗ y be M in C[N] (β⊗)

C[let !xσ be M in N] = (λv!σ.C[let !xσ be v in N])M (β�)

= let x′σ be M in (λv!σ.C[let !xσ be v in N]) (!x′) (com!)

= let x′σ be M in C[let !xσ be !x′ in N] (β�)

= let !x be M in C[N] (β!)

Remark 3.1. The (com)-axioms are equations ensuring, respectively, the following canon-

ical isomorphisms:

I � τ τ

(σ1 ⊗ σ2) � τ σ1 � σ2 � τ

!σ � τ σ → τ.

3.3. Equational soundness

Theorem 3.1. All equations derivable in DILL are derivable in DCLL via the encoding.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 330

Proof. We shall check the each axiom of the reduced axiomatisation given above. The

β-axioms are easy:

let ∗ be ∗ in N ≡ C (λk.(λx.x) (k N))

= C (λk.k N)

= N.

let x ⊗ y be M1 ⊗ M2 in N ≡ C (λk.(λh.hM1 M2) (λx.λy.k N))

= C (λk.(λx.λy.k N)M1 M2)

= C (λk.k N[M1/x,M2/y])

= N[M1/x,M2/y].

let !x be !M in N ≡ C (λk.(λh.h @M) (λx.k N))

= C (λk.(λx.k N) @M)

= C (λk.k N[M/x])

= N[M/x].

The η� axiom is included in the axioms of DCLL. There remain three com-axioms:

let ∗ be M in LI�τ ∗ ≡ Cτ (λk.M (k (L (λx.x))))

= Cτ (λk.(λh.M (h (λx.x))) (λu.k (Lu)))

= L (CI (λh.M (h (λx.x)))) (Lem.2.1)

= L (λy.(λh.M (h (λx.x))) (λf.f y)) (Prop.2.1)

= L (λy.M ((λf.f y) (λx.x)))

= L (λy.M ((λx.x) y))

= L (λy.M y)

= LM.

let xσ1 ⊗ yσ2 be M in

Lσ1⊗σ2�τ (x ⊗ y) ≡ Cτ (λk.M (λxy.k (L (λn.n x y))))

= Cτ (λk.(λh.M (λxy.h (λn.n x y))) (λu.k (Lu)))

= L (Cσ1⊗σ2
(λh.M (λxy.h (λn.n x y)))) (Lem.2.1)

= L (λz.(λh.M (λxy.h (λn.n x y))) (λf.f z)) (Prop.2.1)

= L (λz.M (λxy.(λf.f z) (λn.n x y)))

= L (λz.M (λxy.(λn.n x y) z))

= L (λz.M (λxy.z x y))

= L (λz.M z)

= LM.

let !x be M in L!σ�τ (!x) ≡ Cτ (λk.M (λx.k (L (λh.h @ x))))

= Cτ (λk.(λm.M (λx.m (λh.h @ x))) (λu.k (Lu)))

= L (C!σ (λm.M (λx.m (λh.h @ x)))) (Lem.2.1)

= L (λy.(λm.M (λx.m (λh.h @ x))) (λf.f y)) (Prop.2.1)

= L (λy.M (λx.(λf.f y) (λh.h @ x)))

= L (λy.M (λx.(λh.h @ x) y))

= L (λy.M (λx.y x))

= L (λy.M y)

= LM.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 331

4. Completeness for categorical models

An important implication of Theorem 3.1, when taken together with the result in Barber

and Plotkin (1997) (completeness via the term model construction), is that the term

model of DCLL forms a model of DILL, that is, a symmetric monoidal closed category

equipped with a symmetric monoidal comonad satisfying certain coherence conditions (see,

for example, Seely (1989) and Bierman (1995)), which we shall call a ‘linear exponential

comonad’, following Hyland and Schalk (2003).

Definition 4.1 (Linear exponential comonad). A symmetric monoidal comonad ! =

(!, ε, δ, mA,B, mI) on a symmetric monoidal category C is called a linear exponential comonad

when the category of its coalgebras is a category of commutative comonoids – that is:

— there are specified monoidal natural transformations eA :!A → I and dA :!A →!A⊗!A

that form a commutative comonoid (!A, eA, dA) in C and are also coalgebra morphisms

from (!A, δA) to (I, mI) and (!A⊗!A,m!A,!A ◦ (δA ⊗ δA)), respectively; and

— any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid morphism from

(!A, eA, dA) to (!B, eB, dB).

Remark 4.1. In Barber and Plotkin (1997), a model of DILL is described as a symmetric

monoidal adjunction between a cartesian closed category and a symmetric monoidal closed

category (Benton’s LNL model (Benton 1995)). It is known that such an ‘adjunction model’

gives rise to a linear exponential comonad on the symmetric monoidal closed category

part. Conversely, a symmetric monoidal closed category with a linear exponential comonad

has at least one symmetric monoidal adjunction from a cartesian closed category so that

it induces the linear exponential comonad (however, such an adjunction is not, in general,

unique). Therefore, for our purposes (the completeness result as stated here), it does not

matter which class of structures we choose as models. (However, we must be careful when

we talk about the morphisms between models, for example, to use the term model of

DILL (or DCLL) as a classifying category of such structures. In particular, although we

have the completeness result below, the term model of DCLL is not isomorphic to the

free ∗-autonomous category with a linear exponential comonad – it is only equivalent to

such a free structure via a suitable structure-preserving equivalence.)

Moreover, the symmetric monoidal closed category given by the term model of DCLL

is a ∗-autonomous category (Barr 1979; Barr 1991) if we take ⊥ as the dualising object.

Recall that a ∗-autonomous category can be characterised as a symmetric monoidal closed

category with an object ⊥ such that the canonical morphism from σ to (σ � ⊥) � ⊥ is

an isomorphism – in the term model of DCLL, the inverse is given by the combinator Cσ .

On the other hand, all the axioms of DCLL are sound with respect to interpretations

in such categorical models, where a typing judgement

x1 : σ1, . . . , xm : σm; y1 : τ1, . . . , yn : τn � M : σ

is inductively interpreted as a morphism [[x1 : σ1, . . .; y1 : τ1, . . . � M : σ]] from

![[σ1]] ⊗ . . .⊗![[σm]] ⊗ [[τ1]] ⊗ . . . ⊗ [[τn]] to [[σ]] in the ∗-autonomous category with the

linear exponential comonad !. Thus we have the following theorem.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 332

Theorem 4.1 (Categorical completeness). The equational theory of DCLL is sound and

complete for categorical models given by ∗-autonomous categories with linear exponential

comonads: Γ; ∆ � M = N : σ is provable if and only if [[Γ; ∆ � M : σ]] = [[Γ; ∆ � N : σ]]

holds for every such model.

5. Additives

It is fairly routine to enrich DCLL with additives. We add the cartesian product & and

its unit �, and terms

Γ; ∆ � 〈 〉 : � (� I)
Γ; ∆ � M : σ Γ; ∆ � N : τ

Γ; ∆ � 〈M,N〉 : σ & τ
(& I)

Γ; ∆ � M : σ & τ

Γ; ∆ � fstσ,τ M : σ
(& EL)

Γ; ∆ � M : σ & τ

Γ; ∆ � sndσ,τ M : τ
(& ER)

together with the standard axioms

M = 〈 〉 (M : �)

fst 〈M,N〉 =M

snd 〈M,N〉 =N

〈fstM, sndM〉 =M.

Again, we do not need any additional axiom for commuting conversions. Furthermore, it

is possible to eliminate the C combinators for additives, as we can prove (using Lemma 2.1

for the latter case).

Lemma 5.1.

1 C� = λm(��⊥)�⊥.〈 〉.
2 Cσ & τ = λm((σ & τ)�⊥)�⊥.

〈Cσ (λkσ�⊥.m (λzσ & τ.k (fstσ,τ z))),Cτ (λhτ�⊥.m (λzσ & τ.h (sndσ,τ z)))〉.

As a consequence, if we do not have base types, it is possible to axiomatise DCLL with

additives as a quotient of a typed lambda calculus (with →, �, �, &) on a single base

type ⊥, in the same way as described at the end of Section 2.

The coproduct ⊕ and its unit 0 are given by σ1 ⊕ σ2 ≡ ((σ1 � ⊥) & (σ2 � ⊥)) � ⊥
and 0 ≡ � � ⊥, as usual. The associated term constructs are

Γ; ∆ � M : 0

Γ; ∆ � abortσ M ≡ Cσ (λkσ�⊥.M 〈 〉) : σ
(0 E)

Γ; ∆ � M : σ

Γ; ∆ � inlσ,τ M ≡ λk(σ�⊥)& (τ�⊥).fstσ�⊥,τ�⊥ kM : σ ⊕ τ
(⊕ IL)

Γ; ∆ � N : τ

Γ; ∆ � inrσ,τ N ≡ λk(σ�⊥) & (τ�⊥).sndσ�⊥,τ�⊥ k N : σ ⊕ τ
(⊕ IR)

Γ; ∆1 � L : σ ⊕ τ Γ; ∆2, x : σ � M : θ Γ; ∆2, y : τ � N : θ

Γ; ∆1�∆2 � case L of inl xσ �→ M ‖ inr yτ �→ N ≡
Cθ (λkθ�⊥.L 〈λxσ.kM, λyτ.k N〉) : θ

(⊕ E) .

These satisfy the standard axioms for coproducts as well as commuting conversion axioms.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 333

A category-theoretic model of DCLL extended with additives can be given as a

∗-autonomous category with a linear exponential comonad and finite products. The

soundness and completeness results in the last section can be easily extended to this

setting.

6. Formulation based on the λµ-calculus

Instead of the combinator C for the double-negation elimination, we could use the syntax

of the λµ-calculus (Parigot 1992) for expressing the duality, as done in Koh and Ong (1999)

for the multiplicative fragment (MLL). Below, we present such a system, µDCLL, which

is routinely seen to be equivalent to DCLL. While the λµ-calculus style formulation

requires us to introduce yet another typing context, a potential benefit of the λµ-calculus

approach is that it may give a confluent and normalising reduction system (up to a

certain equivalence class of terms, as in Koh and Ong (1999)); it also allows a natural

treatment of the connective

&

(by introducing the binary µ-bindings). Bierman (1999) also

has relevant results.

6.1. The system µDCLL

Types and Terms

σ ::= b | σ → σ | σ � σ | ⊥
M ::= x | λxσ.M | M @M | λxσ.M | MM | [α]M | µασ.M.

Typing

Γ1, x : σ,Γ2; ∅ � x : σ | Σ
(Int-Ax)

Γ; x : σ � x : σ | ∅
(Lin-Ax)

Γ, x : σ1; ∆ � M : σ2 | Σ

Γ; ∆ � λxσ1 .M : σ1 → σ2 | Σ
(→I)

Γ; ∆ � M : σ1 → σ2 | Σ

Γ; ∅ � N : σ1 | ∅
Γ; ∆ � M @N : σ2 | Σ

(→E)

Γ; ∆, x : σ1 � M : σ2 | Σ

Γ; ∆ � λxσ1 .M : σ1 � σ2 | Σ
(�I)

Γ; ∆1 � M : σ1 � σ2 | Σ1

Γ; ∆2 � N : σ1 | Σ2

Γ; ∆1�∆2 � MN : σ2 | Σ1�Σ2
(�E)

Γ; ∆ � M : σ | Σ

Γ; ∆ � [α]M : ⊥ | {α : σ}�Σ
(⊥I)

Γ; ∆ � M : ⊥ | α : σ,Σ

Γ; ∆ � µασ.M : σ | Σ
(⊥E) .

Axioms

(λx.M) @N =M[N/x]

λx.M @ x =M (x 	∈ FV (M))

(λx.M)N =M[N/x]

λx.M x =M

L (µασ.M) =M
[
L(−)/[α](−)

]
(L : σ � ⊥)

µα.[α]M =M,

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 334

where M[L(−)/[α](−)] is obtained by replacing the (unique) subterm of the form [α]N by

LN in the capture-free way.

Lemma 6.1. The following equations are provable in µDCLL:

— L (µασ.M) = µβτ.M[[β]L(−)/[α](−)] where L : σ � τ

— [α′](µασ.M) = M[α′/α]

— µα⊥.M = M[(−)/[α](−)]

— µγσ→τ.M = λxσ.µβτ.M[[β](−) @ x/[γ](−)]

— µγσ�τ.M = λxσ.µβτ.M[[β](−)x/[γ](−)].

6.2. DCLL vs. µDCLL

We first note that the combinator Cσ is easily represented in µDCLL by

Cσ = λm(σ�⊥)�⊥.µασ.m (λxσ.[α]x) : ((σ � ⊥) � ⊥) � σ.

Let us write M◦ for the induced translation of a DCLL-term M in µDCLL by this

encoding.

Lemma 6.2. If Γ; ∆ � M : σ is derivable in DCLL, then Γ; ∆ � M◦ : σ | ∅ is derivable

in µDCLL.

Proposition 6.1. If Γ; ∆ � M = N : σ is provable in DCLL, then Γ; ∆ � M◦ = N◦ : σ | ∅
is provable in µDCLL.

Conversely, there is a translation (−)• from µDCLL to DCLL given by

([α]M)• = [α]M•

(µασ.M)• = Cσ (λk.M•[k(−)/[α](−)

]
),

and so on; for this (−)• we have the following lemma and proposition.

Lemma 6.3. If Γ; ∆ � M : σ | α1 : σ1, . . . , αn : σn is derivable in µDCLL, then Γ; ∆, kn :

σn � ⊥, . . . , k1 : σ1 � ⊥ � M•[k1(−)/[α1](−), . . . ,
kn(−)/[αn](−)] : σ is derivable in DCLL. In

particular, if Γ; ∆ � M : σ | ∅ is derivable in µDCLL, then Γ; ∆ � M• : σ is derivable in

DCLL.

Proposition 6.2. If Γ; ∆ � M = N : σ | ∅ is provable in µDCLL, then Γ; ∆ � M• = N• : σ

is provable in DCLL.

Proposition 6.3. For Γ; ∆ � M : σ, we have Γ; ∆ � M = M◦• : σ in DCLL. For

Γ; ∆ � M : σ | ∅, we have Γ; ∆ � M = M•◦ : σ | ∅ in µDCLL.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 335

Thus we conclude that DCLL is identical to the single conclusion-fragment of µDCLL

as a typed equational theory.

6.3. Categorical semantics

The interpretation of a typing judgement of the form

x1 : σ1, . . . , xm : σm; y1 : τ1, . . . , yn : τn � M : σ | α1 : θ1, . . . , αk : θk

is given as an arrow from ![[σ1]] ⊗ . . .⊗![[σm]] ⊗ [[τ1]] ⊗ . . . ⊗ [[τn]] to [[σ]]

&

[[θ1]]

&

. . .

&

[[θk]]

by routinely extending and modifying the case of DCLL. The soundness and com-

pleteness of µDCLL with respect to the same class of categorical models immediately

follow.

7. Discussion

7.1. DCLL as a typed intermediate language

The design of DCLL is heavily inspired from our experience (and still on-going project) on

the study of compiling (mostly call-by-value typed) programming languages into linearly

typed (idealised) intermediate languages (Hasegawa 2002a), which was mentioned briefly

in the introduction.

In Berdine et al. (2001) and Berdine et al. (2002) the {→,�}-fragment of DILL (with

recursive types) is used as the target language of call-by-value CPS transformations.

In Hasegawa (2002a) we extend the idea of ibid. to general monadic transformations

into a fragment of DILL. The essential idea of this work is that, in programming

practice, certain computational effects like continuations are often used linearly, and

such good (or stylish) usage of computational effects should be explicitly captured by

certain linear typing discipline on the compiled codes. In these studies the ‘linearly-used

continuation monad’ ((−) → θ) � θ plays the key role†: → for continuations and

� for the linearity of their passing. Dually, the construction ((−) � θ) → θ plays a

similar role for the call-by-name CPS transformation (Hasegawa 2004). The choice of

connectives of DCLL then comes to us naturally: → and � come first, and we regard

the exponential ! as the special case of the linearly-used continuation monad by letting θ

be ⊥: !σ (!σ � ⊥) � ⊥ (σ → ⊥) � ⊥.

It is also interesting to re-examine the previous work on applying Classical Linear

Logic to programming languages with control features (Filinski 1992; Nishizaki 1993)

using DCLL: in particular, Filinski’s work seems to share several ideas with the design of

DCLL – the use of a control operator for expressing the duality is explicitly found in his

work.

† This is not a monad on the term model of DILL; it is a monad on a suitable subcategory of the category of

!-coalgebras.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 336

7.2. Is ‘!’ better than ‘→’?

A possible criticism of DCLL is its indirect treatment of the exponentials, which have

been regarded as the central feature of Linear Logic by many people (though there are

some exceptions, for example, Wadler (1990), Plotkin (1993), Hodas and Miller (1994) and

Maietti et al. (2000)). We used to consider ! as a primitive and → as a derived connective

via Girard’s formula σ → τ ≡ !σ � τ, but not the converse, that is, !σ ≡ (σ → ⊥) � ⊥,

as we do in DCLL.

However, even in Intuitionistic Linear Logic, we have the full completeness of the {→,

�}-fragment in the {!,�}-fragment, in the following sense. Let (−)◦ be the embedding

from the former into the latter via Girard’s translation:

b◦ ≡ b

(σ1 � σ2)
◦ ≡ σ◦

1 � σ◦
2

(σ1 → σ2)
◦ ≡ !σ◦

1 � σ◦
2

x◦ ≡ x

(λxσ.M)◦ ≡ λxσ
◦
.M◦

(Mσ1�σ2 Nσ1)◦ ≡ M◦ N◦

(λxσ.M)◦ ≡ λy!σ◦
.let !xσ

◦
be y in M◦

(Mσ1→σ2 @Nσ1)◦ ≡ M◦ (!N◦).

It is not hard to see that (−)◦ is type-sound (preserves typing), and, also, equationally

sound and complete (two terms in the source calculus are equal if and only if their

translations are equal in the target). But we can say more (Hasegawa 2002a), as in the

following theorem.

Theorem 7.1. Suppose that Γ◦; ∆◦ � N : σ◦ is derivable in the {!,�}-fragment. Then there

exists Γ; ∆ � M : σ derivable in the {→,�}-fragment such that Γ◦; ∆◦ � M◦ = N : σ◦

holds.

This can be shown by mildly extending the proof of full completeness of Girard’s

translation from the simply typed lambda calculus into the {!,�}-fragment of DILL

(Hasegawa 2000). This observation tells us that → is no less delicate than ! at the level

of proofs (terms), while {→,�} enjoys much simpler term structures and nice properties

like confluence and strong normalisation. And, in Classical Linear Logic, as we have

demonstrated in this paper, {→,�,⊥} is literally isomorphic to {!,�,⊥}, which means

it is not unnatural to use the technically simpler presentation.

Moreover, as mentioned above, DCLL does have natural advantages in programming

language theory. From such an application-oriented view, we think that the simplicity of

DCLL is undeniably attractive. See also Maietti et al. (2000) for relevant discussions on

the {→,�,⊗, I, & ,�}-fragment and its fibration-based models (which can be adopted for

DCLL without problem).

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 337

7.3. Coherence of the double negation

Another possible source of criticism of DCLL would be the way we deal with the duality,

which again is the essential feature of Classical Linear Logic. Many systems for Classical

Linear Logic, especially those of proof nets, identify the type σ⊥⊥ (= (σ � ⊥) � ⊥) with

σ by definition. On the other hand, in DCLL (and some other term-based systems like

Bierman (1999) and a net-based one (Blute et al. 1996)) they are just isomorphic, and we

explicitly have terms for the isomorphisms. The essential reason of this non-identification

in DCLL is that we intend it to have ∗-autonomous categories with linear exponential

comonads as models, rather than those with strict involution (that is, (−)⊥⊥ is the identity

functor and the canonical isomorphism σ
→ σ⊥⊥ is an identity arrow), as we think that

having a strict involution is not a natural assumption on semantic models.

Fortunately, it was shown recently (Cockett et al. 2003) that any ∗-autonomous category

is equivalent to a ∗-autonomous category with strict involution, and that any free ∗-

autonomous category is strictly equivalent to a free ∗-autonomous category with strict

involution; and the results remain true under the presence of linear exponential comonads

and finite products too. These coherence results indicate that from a technical viewpoint

it does not matter whether the double negation is made strict or non-strict: it is safe

to transfer the results on up-to-isomorphism systems to up-to-equality systems, and vice

versa.

Thus, this criticism of DCLL is, at least technically, not very essential: the choice of

making the double negation strict is just a matter of convenience and taste.

7.4. Faithful categorical models

In this paper we have demonstrated that DCLL is sound and complete with respect to the

standard categorical models of Linear Logic (∗-autonomous categories with additional

structure). However, it is via the encoding of constructs like tensor products, which are

not included in DCLL as primitive constructs. It is an interesting task to identify the

categorical structure that is more ‘faithful’ to DCLL, that is, that can accommodate the

interpretation of linear and non-linear implications without requiring a monoidal structure

and a linear exponential comonad. A most promising direction would be the one based on

multicategories (Lambek 1989), and perhaps polycategories (Szabo 1975) for µDCLL. The

story looks fairly clean as long as we work on the multiplicative fragment (see Hyland’s

analysis of ∗-autonomous categories and ∗-polycategories (Hyland 2002)), but explaining

the dual-context feature seems to call for some subtle technical developments.

7.5. Second-order linear logic of implications

We conclude this paper by observing an attractive relationship between DCLL and a

second-order linear lambda calculus: they are strikingly similar (at least syntactically),

but also show some interesting differences.

In Plotkin (1993), Plotkin introduced the second-order {→,�}-calculus (enriched with

fixed-point operators) in which other connectives of DILL, including !, are definable in a

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 338

similar way to our approach in DCLL, for example !σ as ∀X.(σ → X) � X. In fact, it

suffices to have the axiom (in addition to the standard βη-axioms)

Lσ�τ (M∀X.(σ�X)�X σ (λxσ.x)) = M τL

(which just says σ is canonically isomorphic to ∀X.(σ � X) � X) to give the structure

of models of DILL to the term model of this calculus – the story is completely analogous

to the case of DCLL, with the encoding of types and terms given as follows:

I = ∀X.X � X

σ1 ⊗ σ2 = ∀X.(σ1 � σ2 � X) � X

!σ = ∀X.(σ → X) � X

∗ = ΛX.λxX.x

let ∗ be MI in Nτ =M τN

Mσ1 ⊗ Nσ2 = ΛX.λkσ1�σ2�X.kM N

let xσ1 ⊗ yσ2 be Mσ1⊗σ2 in Nτ =M τ (λxσ1 .λyσ2 .N)

!Mσ = ΛX.λhσ→X.h @M

let !xσ be M!σ in Nτ =M τ (λxσ.N)

By a very similar argument to the one given in Section 3 (though the proof is longer), we

have the following theorem.

Theorem 7.2. Any equation derivable in DILL is derivable in the second-order {→,�}-
calculus (with the axiom described above) via this encoding.

However, note that we cannot have the connectives ⊥,

&

and ?, since the presence of any

of them would enable us to interpret Classical Linear Logic, while there are models of this

calculus that are not a model of Classical Linear Logic (for example, domain theoretic

models (Plotkin 1993) and the model based on an operational semantics by Bierman, Pitts

and Russo (Bierman et al. 2000)). In particular, we do not have ∀X.(σ � X) → X ?σ

(in contrast to (σ � ⊥) → ⊥ ?σ in DCLL). In fact, under a suitable parametricity

assumption (Plotkin 1993; Bierman et al. 2000), we have ∀X.(σ � X) → X σ.

Despite the syntactic similarity of the encodings of DILL, we think that these

observations suggest that the relationship between the semantic structure of Classical

Linear Logic and that of Second-Order Intuitionistic Linear Logic is far from obvious;

the full story seems yet to be developed.

Appendix A. Dual intuitionistic linear logic

Types and Terms

σ ::= b | I | σ ⊗ σ | σ � σ | !σ

M ::= x | ∗ | let ∗ be M in M | M ⊗ M | let xσ ⊗ xσ be M in M |
λxσ.M | MM | !M | let !xσ be M in M.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 339

Typing

Γ1, x : σ,Γ2; ∅ � x : σ
(Int-Ax)

Γ; x : σ � x : σ
(Lin-Ax)

Γ; ∅ � ∗ : I
(I I)

Γ; ∆1 � M : I Γ; ∆2 � N : σ

Γ; ∆1�∆2 � let ∗ be M in N : σ
(I E)

Γ; ∆1 � M : σ1 Γ; ∆2 � N : σ2

Γ; ∆1�∆2 � M ⊗ N : σ1 ⊗ σ2
(⊗ I)

Γ; ∆1 � M : σ1 ⊗ σ2

Γ; ∆2, x : σ1, y : σ2 � N : τ

Γ; ∆1�∆2 � let xσ1 ⊗yσ2 be M in N : τ
(⊗ E)

Γ; ∆, x : σ1 � M : σ2

Γ; ∆ � λxσ1 .M : σ1 � σ2
(�I)

Γ; ∆1 � M : σ1 � σ2 Γ; ∆2 � N : σ1

Γ; ∆1�∆2 � MN : σ2
(�E)

Γ; ∅ � M : σ

Γ; ∅ �!M :!σ
(! I)

Γ; ∆1 � M :!σ Γ, x : σ; ∆2 � N : τ

Γ; ∆1�∆2 � let !x be M in N : τ
(! E) .

Axioms

let ∗ be ∗ in M =M let ∗ be M in ∗ =M

let x ⊗ y be M ⊗ N in L=L[M/x,N/y] let x ⊗ y be M in x ⊗ y=M

(λx.M)N =M[N/x] λx.M x=M

let !x be !M in N =N[M/x] let !x be M in !x=M

C[let ∗ be M in N] = let ∗ be M in C[N]

C[let x ⊗ y be M in N] = let x ⊗ y be M in C[N]

C[let !x be M in N] = let !x be M in C[N] ,

where C[−] is a linear context (no ! binds [−]).

Appendix B. Formulation without C

As noted in Section 2, we can formalise DCLL using just lambda terms and five axioms,

if there is no base type.

Types and Terms

σ ::= σ → σ | σ � σ | ⊥ M ::= x | λxσ.M | M @M | λxσ.M | MM.

Typing

Γ1, x : σ,Γ2; ∅ � x : σ
(Int-Ax)

Γ; x : σ � x : σ
(Lin-Ax)

Γ, x : σ1; ∆ � M : σ2

Γ; ∆ � λxσ1 .M : σ1 → σ2
(→ I)

Γ; ∆ � M : σ1 → σ2 Γ; ∅ � N : σ1

Γ; ∆ � M @N : σ2
(→ E)

Γ; ∆, x : σ1 � M : σ2

Γ; ∆ � λxσ1 .M : σ1 � σ2
(� I)

Γ; ∆1 � M : σ1 � σ2 Γ; ∆2 � N : σ1

Γ; ∆1�∆2 � MN : σ2
(� E) .

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 340

Axioms

(λx.M) @N =M[N/x]

λx.M @ x =M (x 	∈ FV (M))

(λx.M)N =M[N/x]

λx.M x =M

L (λxσ.M (λfσ�⊥.f x)) =ML

(
L : (σ � ⊥) � ⊥
M : ((σ � ⊥) � ⊥) � ⊥

)
.

Acknowledgements

I am grateful to Hayo Thielecke for drawing my attention to the implicational fragments

of Linear Logic. I thank Ryu Hasegawa, Martin Hofmann, Yoshihiko Kakutani, Valeria

de Paiva and Alex Simpson for discussions and comments related to this work, and to

the anonymous reviewers for helpful comments.

References

Barber, A. (1997) Linear Type Theories, Semantics and Action Calculi, Ph.D. Thesis, ECS-LFCS-97-

371, University of Edinburgh.

Barber, A. and Plotkin, G. (1997) Dual intuitionistic linear logic. Manuscript. (An earlier version

is available as Technical Report ECS-LFCS-96-347, Laboratory for Foundations of Computer

Science, University of Edinburgh.)

Barr, M. (1979) ∗-Autonomous Categories. Springer-Verlag Lecture Notes in Mathematics 752.

Barr, M. (1991) ∗-autonomous categories and linear logic. Mathematical Structures in Computer

Science 1 159–178.

Benton, P.N. (1995) A mixed linear and non-linear logic: proofs, terms and models (extended

abstract). In: Computer Science Logic (CSL’94). Springer-Verlag Lecture Notes in Computer

Science 933 121–135.

Berdine, J., O’Hearn, P.W., Reddy, U. S. and Thielecke, H. (2001) Linearly used continuations.

In: Proc. ACM SIGPLAN Workshop on Continuations (CW’01). Technical Report No. 545,

Computer Science Department, Indiana University, 47–54.

Berdine, J., O’Hearn, P.W., Reddy, U. S. and Thielecke, H. (2002) Linear continuation-passing.

Higher-Order and Symbolic Computation 15 (2/3) 181–203.

Bierman, G.M. (1995) What is a categorical model of intuitionistic linear logic? In: Proc. Typed

Lambda Calculi and Applications (TLCA’95). Springer-Verlag Lecture Notes in Computer Science

902 78–93.

Bierman, G.M. (1999) A classical linear lambda-calculus. Theoret. Comp. Sci. 227 (1–2) 43–78.

Bierman, G.M., Pitts, A.M. and Russo, C. V. (2000) Operational properties of Lily, a polymorphic

linear lambda calculus with recursion. In: Proc. Higher Order Operational Techniques in

Semantics (HOOTS 2000). Electronic Notes in Theoretical Computer Science 41.

Blute, R. F., Cockett, J. R. B., Seely, R.A.G. and Trimble, T.H. (1996) Natural deduction and

coherence for weakly distributive categories. J. Pure Appl. Algebra 113 (3) 229–296.

Blute, R. F., Cockett, J. R. B. and Seely, R.A.G. (1997) Categories for computation in context and

unified logic. J. Pure Appl. Algebra 116 49–98.

Cockett, J. R. B., Hasegawa, M. and Seely. R.A.G. (2003) Coherence of the double involution on

∗-autonomous categories. (Submitted for publication.)

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

Classical linear logic of implications 341

Felleisen, M., Friedman, D. P., Kohlbecker, E. E. and Duba, B. F. (1987) A syntactic theory of

sequential control. Theor. Comput. Sci. 52 205–237.

Filinski, A. (1992) Linear continuations. In: Proc. Principles of Programming Languages (POPL’92)

27–38.

Führmann, C. and Thielecke, H. (2004) On the call-by-value CPS transform and its semantics.

Inform. and Compt. 188 241–283.

Girard, J.-Y. (1987) Linear logic. Theoret. Comp. Sci. 50 1–102.

Hasegawa, M. (1999) Logical predicates for intuitionistic linear type theories. In: Proc. Typed

Lambda Calculi and Applications (TLCA’99). Springer-Verlag Lecture Notes in Computer Science

1581 198–213.

Hasegawa, M. (2000) Girard translation and logical predicates. J. Funct. Programming 10 (1) 77–

89.

Hasegawa, M. (2002) Linearly used effects: monadic and CPS transformations into the linear

lambda calculus. In: Proc. Functional and Logic Programming (FLOPS2002). Springer-Verlag

Lecture Notes in Computer Science 2441 67–182.

Hasegawa, M. (2002) Classical linear logic of implications. In: Proc. Computer Science Logic

(CSL’02). Springer-Verlag Lecture Notes in Computer Science 2471 458–472.

Hasegawa, M. (2004) Semantics of linear continuation-passing in call-by-name. In: Proc. Functional

and Logic Programming (FLOPS2004). Springer-Verlag Lecture Notes in Computer Science 2998

229–243.

Hodas, J. S. and Miller, D. (1994) Logic programming in a fragment of intuitionistic linear logic.

Inform. and Comput. 110 (2) 327–365.

Hyland, M. (2002) Proof theory in the abstract. Ann. Pure Appl. Logic 114 43–78.

Hyland, M. and Schalk, A. (2003) Glueing and orthogonality for models of linear logic. Theoret.

Comp. Sci. 294 (1/2) 183–231.

Kelly, G.M. and Mac Lane, S. (1971) Coherence in closed categories. J. Pure Appl. Algebra 1 (1)

97–140.

Koh, T.W. and Ong, C.-H. L. (1999) Explicit substitution internal languages for autonomous and

∗-autonomous categories. In: Proc. Category Theory and Computer Science (CTCS’99). Electronic

Notes in Theoretical Computer Science 29.

Lambek, J. (1989) Multicategories revisited. In: Categories in Computer Science. AMS Contemporary

Mathematics 92 217–239.

Maietti, M. E., de Paiva, V. and Ritter, E. (2000) Categorical models for intuitionistic and linear

type theory. In: Foundations of Software Science and Computation Structure (FoSSaCS 2000).

Springer-Verlag Lecture Notes in Computer Science 1784 223–237.

Murawski, A. S. and Ong, C.-H. L. (1999) Exhausting strategies, Joker games and IMLL with units.

In: Proc. Category Theory and Computer Science (CTCS’99). Electronic Notes in Theoretical

Computer Science 29.

Nishizaki, S. (1993) Programs with continuations and linear logic. Science of Computer Programming

21 (2) 165–190.

Parigot, M. (1992) λµ-calculus: an algorithmic interpretation of classical natural deduction. In:

Proc. Logic Programming and Automated Reasoning. Springer-Verlag Lecture Notes in Computer

Science 624 190–201.

Plotkin, G. (1993) Type theory and recursion (extended abstract). In: Proc. Logic in Computer

Science (LICS’93) 374.

Seely, R.A.G. (1989) Linear logic, ∗-autonomous categories and cofree coalgebras. In: Categories

in Computer Science. AMS Contemporary Mathematics 92 371–389.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

M. Hasegawa 342

Streicher, T. (1999) Denotational completeness revisited. In: Proc. Category Theory and Computer

Science (CTCS’99). Electronic Notes in Theoretical Computer Science 29.

Szabo, M.E. (1975) Polycategories. Comm. Algebra 3 663–689.

Wadler, P. (1990) Linear types can change the world! In: Proc. Programming Concepts and Methods,

North-Holland 561–581.

Wadler, P. (1993) A syntax for linear logic. In: Proc. Mathematical Foundations of Programming

Semantics (MFPS’93). Springer-Verlag Lecture Notes in Computer Science 802 513–529.

https://doi.org/10.1017/S0960129504004621 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004621

