X-ray powder diffraction data for tetrazene nitrate monohydrate, $C_2H_9N_{11}O_4$

J. Maixner ^(1,a) and J. Ryšavý²

¹Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic ²Faculty of Chemical Technology, Institute of Energetic Materials, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic

(Received 24 May 2021; accepted 17 September 2021)

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, $C_2H_9N_{11}O_4$, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, $\beta = 97.826(3)^\circ$, unit-cell volume V = 1019.8(4) Å³, Z = 4, and space group $P2_1/c$]. All measured lines were indexed and are consistent with the $P2_1/c$ space group. No detectable impurities were observed. © *The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data.* [doi:10.1017/S0885715621000579]

Key words: X-ray powder diffraction, tetrazene, hydrate, explosive, munitions industry

I. INTRODUCTION

Tetrazene, first prepared in 1892 by Thiele (1892), is a primary explosive mainly used in the munitions industry as an energetic sensitizer particularly in percussion and stab priming compositions (Hagel and Redecker, 1986; Matyáš and Pachman, 2013). It was first studied in 1910 by Hofmann and Roth (1910) who also prepared several anionic and cationic salts of tetrazene. This ability is attributed to the zwitterion nature of tetrazene, which was discovered after several revisions of the molecule structure in 1971 by Duke (1971). These salts, aside of few minor mentions (McNutt, 1933; Straka and Vachovec, 1944; Conduit, 1955; Patinkin *et al.*, 1955; Špičák and Šimeček, 1957; Багал, 1975), were never truly studied.

We have not found this compound in the CSD database (Groom *et al.*, 2016) or in the PDF4+ database (Gates-Rector and Blanton, 2019). Therefore, we have decided to characterize this compound by an X-ray powder diffraction (XRD) technique. In our study, we present powder data for tetrazene nitrate monohydrate ($C_2H_9N_{11}O_4$; Figure 1).

II. EXPERIMENTAL

A. Synthesis

The synthesis of tetrazene nitrate was inspired by the first preparation of this compound type by Hofmann and Roth (1910): Tetrazene (1.5 g; 7.97 mmol) was dissolved in 65% nitric acid (20 ml; 292 mmol) and diethylether (80 ml) was added dropwise. First, a layer of heavy white liquid separates in the mixture, which with further diethylether starts to coagulate to form lumps that eventually within a matter of minutes fall apart into course heavy white powder. The solid was filtered off and washed with ether.

B. Specimen preparation

Tetrazene nitrate monohydrate is a primary explosive and therefore must be handled very carefully. The synthesized powder is very well crystallized with crystallite size suitable for powder XRD, and therefore, no grinding is necessary. The sample could be front-loaded into the specimen holder and limited force was used to make the sample surface flat.

C. Diffraction data collection and reduction

The diffraction pattern for the title compound was collected at room temperature with an X'Pert³ Powder θ – θ powder diffractometer with parafocusing Bragg–Brentano geometry using Cu*K* α radiation (λ = 1.5418 Å, Ni filter, generator setting: 40 kV, 30 mA). An ultrafast PIXCEL detector with 255 channels was employed to collect XRD data over the angular range from 5 to 80° 2 θ with a step size of 0.026° 2 θ and a counting time of 0.618 s per step.

The software package HIGHSCORE PLUS V 4.8 (PANalytical, Almelo, Netherlands) was used to smooth the data, to fit the background, to eliminate the $K\alpha_2$ component and the top of the smoothed peaks were used to determine the peak positions and intensities of the diffraction peaks (Table I). The *d*-values were calculated using Cu $K\alpha_1$ radiation ($\lambda = 1.5406$ Å).

Figure 1. Structural formula of tetrazene nitrate monohydrate

https://doi.org/10.1017/S0885715621000579 Published online by Cambridge University Press

^{a)}Author to whom correspondence should be addressed. Electronic mail: jaroslav.maixner@vscht.cz

TABLE I. Indexed X-ray powder diffraction data for C₂H₉N₁₁O₄.

TABLE I. Continued

$2\theta_{\rm obs}$ (°)	$d_{\rm obs}$ (Å)	$I_{\rm obs}$	h	k	l	$2\theta_{\mathrm{cal}}$ (°)	$d_{\text{calc}}(\text{\AA})$	$\Delta 2\theta$	$2\theta_{\rm obs}$ (°)	$d_{\rm obs}({\rm \AA})$	$I_{\rm obs}$	h	k	l	$2\theta_{\rm cal}$ (°)	$d_{\text{calc}}(\text{\AA})$	$\Delta 2\theta$
8.911	9.9156	1	0	1	-1	8.927	9.8977	0.016	42.695	2.1161	6	1	5	3	42.680	2.1168	-0.015
12.565	7.0391	3	0	0	2	12.578	7.0318	0.013	43.440	2.0815	4	0	6	-3	43.456	2.0808	0.016
14.089	6.2809	2	0	1	2	14.097	6.2776	0.008	44.276	2.0441	2	2	2	3	44.253	2.0451	-0.024
17.166	5.1615	19	1	0	0	17.183	5.1563	0.017	44.717	2.0250	1	1	3	-6	44.677	2.0267	-0.039
18.314	4.8405	23	1	1	0	18.332	4.8358	0.018	45.004	2.0127	1	1	1	6	45.048	2.0108	0.044
18.623	4.7607	1	1	1	-1	18.611	4.7639	-0.013	45.941	1.9738	1	1	6	-3	46.002	1.9714	0.061
19.902	4.4576	7	1	0	-2	19.902	4.4577	-0.001	46.475	1.9524	2	1	5	4	46.473	1.9525	-0.002
20.082	4.4180	11	0	3	1	20.120	4.4098	0.038	46.872	1.9368	2	2	1	4	46.867	1.9370	-0.005
21.410	4.1470	15	1	2	0	21.423	4.1445	0.013	47.564	1.9102	1	1	5	-5	47.561	1.9103	-0.003
21.690	4.0941	4	1	2	-1	21.664	4.0989	-0.026	48.105	1.8900	2	1	6	3	48.095	1.8903	-0.011
22.874	3.8848	7	0	2	3	22.847	3.8892	-0.027	48.893	1.8613	2	1	3	6	48.883	1.8617	-0.010
23.606	3.7658	11	1	1	2	23.603	3.7663	-0.003	50.174	1.8168	1	1	7	-2	50.156	1.8174	-0.018
24.647	3.6092	3	1	1	-3	24.685	3.6037	0.038	51.011	1.7889	1	0	6	-5	50.957	1.7907	-0.054
25.295	3.5181	28	0	0	4	25.311	3.5159	0.016	51.249	1.7812	2	2	5	2	51.186	1.7832	-0.063
25.811	3.4489	9	1	3	0	25.797	3.4508	-0.014	51.441	1.7750	3	1	7	2	51.474	1.7739	0.033
26.065	3.4159	13	1	2	2	26.104	3.4109	0.039	52.616	1.7380	4	1	0	-8	52.626	1.7377	0.010
27.044	3.2945	11	0	3	-3	27.004	3.2992	-0.040	53.946	1.6983	3	1	7	3	53.955	1.6980	0.009
27.683	3.2198	6	1	3	-2	27.717	3.2159	0.034	54.424	1.6845	1	3	2	-1	54.465	1.6834	0.041
28.647	3.1137	100	1	0	-4	28.695	3.1086	0.048	55.977	1.6414	1	2	6	2	55.976	1.6414	-0.001
29.367	3.0389	13	1	1	-4	29.416	3.0340	0.049	56.589	1.6251	1	3	3	-1	56.589	1.6251	0.000
30.731	2.9071	10	1	3	-3	30.716	2.9085	-0.015	57.341	1.6055	1	1	5	-7	57.336	1.6057	-0.005
30.926	2.8892	14	1	4	0	30.958	2.8863	0.032	57.626	1.5983	1	1	0	8	57.608	1.5987	-0.018
31.852	2.8072	1	0	3	4	31.900	2.8032	0.048	58.309	1.5812	3	2	7	-1	58.345	1.5803	0.036
32.619	2.7430	3	1	4	-2	32.599	2.7446	-0.019	59.402	1.5547	3	3	1	-5	59.401	1.5547	-0.001
33.363	2.6835	4	1	1	4	33.340	2.6853	-0.024	59.841	1.5443	2	2	1	-8	59.824	1.5447	-0.017
34.486	2.5986	3	1	4	2	34.449	2.6014	-0.038	61.018	1.5173	2	0	7	-6	61.025	1.5171	0.007
34.795	2.5763	3	2	0	0	34.768	2.5782	-0.027	61.381	1.5092	1	3	2	3	61.332	1.5103	-0.049
35.248	2.5442	5	1	4	-3	35.223	2.5459	-0.025	61.818	1.4996	1	1	6	-7	61.806	1.4999	-0.012
36.252	2.4760	7	0	4	-4	36.276	2.4744	0.023	62.728	1.4800	1	3	4	-4	62.745	1.4796	0.017
36.649	2.4501	3	1	5	0	36.629	2.4514	-0.020	63.248	1.4691	2	1	8	4	63.240	1.4692	-0.009
36.845	2.4375	3	2	1	1	36.828	2.4386	-0.017	64.037	1.4529	1	1	4	8	64.031	1.4530	-0.006
37.318	2.4077	3	0	3	5	37.347	2.4059	0.029	64.398	1.4456	1	3	5	-3	64.434	1.4449	0.035
38.143	2.3575	3	1	3	4	38.139	2.3577	-0.004	64.577	1.4420	1	2	8	0	64.521	1.4431	-0.056
38.754	2.3217	7	0	6	0	38.748	2.3220	-0.006	65.473	1.4244	1	2	8	1	65.464	1.4246	-0.009
39.003	2.3074	4	1	1	5	39.016	2.3067	0.013	65.950	1.4153	1	3	3	-6	65.953	1.4152	0.003
39.399	2.2852	2	1	3	-5	39.410	2.2846	0.011	67.032	1.3950	1	2	7	4	67.031	1.3951	-0.001
39.756	2.2655	2	2	3	-1	39.704	2.2683	-0.051	78.375	1.2191	1	4	2	2	78.361	1.2193	-0.014
39.956	2.2546	3	2	3	0	39.965	2.2541	0.009									
40.517	2.2246	1	2	3	-2	40.512	2.2249	-0.005	Only the	peaks with	I _{rel} of	l or	grea	ter are	presented	[a = 5.205(1) Å, $b =$
40.936	2.2028	2	2	2	2	40.959	2.2017	0.022	13.932(3)	Å, $c = 14.1$	96(4) Å	, β	= 97.	.826(3)°, unit-cell	volume V	/=1019.8
41.306	2.1839	1	0	5	-4	41.310	2.1838	0.003	(4) $Å^3$, Z:	=4, and sp	pace gr	oup	$P2_{1}$	/c]. A	ll lines we	ere indexed	and are

Continued

consistent with the $P2_1/c$ space group. The *d*-values were calculated using Cu*K* α_1 radiation ($\lambda = 1.5406$ Å).

Figure 2. X-ray powder diffraction pattern of tetrazene nitrate monohydrate using CuK α radiation ($\lambda = 1.5418$ Å).

III. RESULTS AND DISCUSSION

The automatic indexing of results was obtained using Dicvol (Boultif and Louër, 2004). The experimental powder diffraction pattern is shown in Figure 2. Tetrazene nitrate monohydrate, $C_2H_9N_{11}O_4$, is monoclinic with the space group $P2_1/c$ and unit-cell parameters: a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, $\beta = 97.826(3)^\circ$, unit-cell volume V = 1019.8(4) Å³, and Z = 4. The figures of merits are $F_{20} = 16.3(0.0205, 60)$ and $M_{20} = 8.8$ (de Wolff, 1968; Smith and Snyder, 1979). All measured lines (Table I) were indexed and are consistent with the $P2_1/c$ space group.

Funding

Part of this work was supported by the University of Pardubice, Czech Republic, under the project no. SGS_2021_004.

- Багал, Л. И. (1975). Химия и технология инициирующих взрывчатых веществ (Машиностроение, Москва), pp. 377–393.
- Boultif, A. and Louër, D. (2004). "Powder pattern indexing with the dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- Conduit, C. P. (1955). The ultra-violet spectroscopic examination of tetrazene (AD-083780, Report no.22/R/55). Waltham Abbey, Essex: Explosives Research & Development Establishment.

- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- Duke, J. R. C. (1971). "X-ray crystal and molecular structure of 'tetrazene' ('tetracene'), C₂H₈N₁₀O," J. Chem. Soc. D(1), 2–3.
- Gates-Rector, S. D. and Blanton, T. N. (2019). "The Powder Diffraction File: a quality materials characterization database," Powd. Diffr. 34(4), 352–360.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). "The Cambridge Structural Database," Acta Crystallogr. B72, 171–179.
- Hagel, R. and Redecker, K. (1986). "Sintox a new, non-toxic primer composition by dynamit nobel AG," Propellants, Explos., Pyrotech. 11, 184–187.
- Hofmann, K. A. and Roth, R. (1910). "Aliphatische diazosalze," Ber. Dtsch. Chem. Ges. 43, 682–688.
- Matyáš, R. and Pachman, J. (2013). Primary Explosives (Springer, Heidelberg), pp. 189–194.
- McNutt, J. D. (1933). "Priming mixture," US Patent 1933/1930653 1-3.
- Patinkin, S. H., Horwitz, J. P., and Lieber, E. (1955). "The structure of tetracene," J. Am. Chem. Soc. 77, 562–567.
- Smith, G. S. and Snyder, R. L. (1979). "F_N: a criterion for rating powder diffraction pattern and evaluating the reliability of powder indexing.," J. Appl. Crystallogr. 12, 60–65.
- Špičák, S. and Šimeček, J. (1957). Chemie a technologie třaskavin (Vojenská technická akademie Antonína Zápotockého, Brno), pp. 168–183.
- Straka, A. and Vachovec, F. (1944). "Stanovení guanylnitrosaminoguanyltetrazénu," Chem. Obz. 19, 156–157.
- Thiele, J. (1892). "Ueber nitro- und amidoguanidin," Justus Liebigs Ann. Chem. 270, 1–63.