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Abstract

Lesser celandine (Ficaria verna Huds.), an invasive plant from Europe, is becoming widespread
in river valleys throughout the northeastern United States and the Pacific Northwest. Its high
rate of asexual bulbil and tuber production creates dense infestations threatening native spring
ephemerals. Ficaria verna abundance and reproductive output (seeds, bulbils, and tubers) were
examined in invaded transects spanning a disturbance gradient away from a river. Site char-
acteristics (photosynthetically active radiation [PAR], soil pH, moisture, texture, and nutrients)
were quantified to examine their roles in plant abundance and reproduction. A larger-scale
study examined random transects not specifically chosen based on F. verna infestations. Soil
characteristics and slope were hypothesized to drive F. verna abundance and reproduction;
we also hypothesized that reproductive output and biomass would be highest at intermediate
distances from rivers, where disturbances are infrequent. Ficaria verna abundance and repro-
ductive output varied considerably by site; soil characteristics, rather than landscape placement,
appeared to drive plant abundance and reproduction. Lower percent sand was associated with
significantly higher F. verna stem density and bulbil and tuber production. CEC was signifi-
cantly negatively related to F. verna biomass and tuber counts. In the larger-scale survey, slope
and PAR were significantly negatively related to F. verna presence and percent cover, respec-
tively. Overall, these findings suggest that soil texture and slope can help explain higher abun-
dance and reproductive outputs. However, reproductive output and biomass were not
significantly greater at intermediate distances, contrary to expectations. We did not observe
any seed production in any of the plots, although we did see a few plants with seeds outside
our study area in the second year, demonstrating a near-complete reliance on asexual repro-
duction in these populations. This study expands on the current limited understanding of
F. verna and can help management by identifying areas likely to support dense infestations.

Because resources to manage invasive plants are limited, managers are tasked with prioritizing
management efforts. Early recognition and removal of potentially harmful species are incredibly
important for effective control of invasions. The longer an invasion persists, the more difficult
and costly it is to manage, requiring increasing amounts of resources and effort (Hobbs and
Humpbhries 1995). Invasive plants are not always harmful in all environments, and being able
to identify the most susceptible environments for invasion is crucial for focused management
and control efforts (Roxburgh et al. 2004). Therefore, to manage invasive plants more effectively,
we need a greater understanding of their ideal habitats, dispersal mechanisms, and interactions
with the local environment.

Soil characteristics can strongly impact plant communities and species performance. For
example, soil pH can influence the availability of plant nutrients considerably and can limit plant
growth, especially under increasing acidity (Kidd and Proctor 2001). Soil variables may influ-
ence invasive and native plants in a similar way, yet the intensity of influence varies by species
(Porazinska et al. 2003). Variation in the influence of soil characteristics on plants can make
generalizing and predicting trends very difficult (Porazinska et al. 2003). As we better under-
stand the underlying mechanisms of invasion and its consequences, we are better able to detect
threats and protect native ecosystems.

Beyond the species-specific requirements of particular invasions, some areas are more
susceptible to invasion in general than others, especially areas of high disturbance. Roads,
for example, have strong associations with invasion, as they provide a means for long-distance
transportation (Mortensen et al. 2009). River flooding can drastically alter the landscape, and
disturbances have been shown to influence the species richness of riparian plants (Lite et al.
2005). Disturbances also create opportunities for invasive plans to capitalize on available resour-
ces, including open space. For example, the prolific spread of Japanese knotweed (Reynoutria
japonica Houtt.) and reed canary grass (Phalaris arundinacea L.) has been aided by changes in
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Management Implications

One of the difficulties in the management of Ficaria verna
(lesser celandine) is the lack of information about its basic
biology and demography; it is a difficult task to manage a species
that is not fully understood. This spring ephemeral reproduces
primarily via bulbils, an unusual method of asexual reproduc-
tion. Invasive plants such as F. verna often display large varia-
tions in reproductive output, which can make management
prioritization difficult. A lack of knowledge of F. verna reproduc-
tive output and population growth limits our ability to prioritize
management based on which environments are most susceptible
to invasion.

Soil characteristics appear to play a large role in driving the pop-
ulation performance of F. verna and should be considered to help
prioritize the allocation of resources for management. Significant
negative relationships were found in this study between F. verna
abundance and reproduction and percent sand, possibly driven
by low soil moisture. Low-slope areas are also likely to have more
F. verna. These characteristics can be used to identify high-risk pop-
ulations for immediate management. Management will be most
effective in combating population spread by targeting sites where
high reproductive output is likely.

In addition to reproductive potential, it is also important to con-
sider where spread is most likely to occur. Areas close to a river are
extremely important with regard to population spread and may
also require management. While F. verna abundance and repro-
duction generally were not highest near the river, there was still
considerable bulbil production right at the river, where flooding
is likely to transport bulbils, which remain on the soil surface after
the plant dies back. Overall, the highest-priority sites for manage-
ment are in floodplains with less sandy soils and a low slope
gradient.

It is imperative to gain a greater understanding of this peren-
nial in order to more efficiently manage and control its spread.
Because F. verna is not well established at this point in all areas,
effective management could still prevent it from becoming widely
established, at which point management costs and control efforts
would increase considerably. Moreover, it appears that native
communities can recover to some extent following F. verna
removal (J. Hillmer, personal communication). Management
should focus efforts on reducing the spread by focusing on two
key areas: areas where F. verna is likely to grow well, and areas
likely to be a source for future spread, such as near rivers that
flood regularly. In less-invaded areas, soil and elevation maps
could be used to prioritize certain populations for management
or predict critical areas that may be suitable for and susceptible
to F. verna invasion in future.

disturbance regimes that alter competitive interactions and
resource availability in favor of alien species, resulting in reduced
native plant diversity and abundance (Jose et al. 2013). Many inva-
sives grow along transport-disturbance corridors such as roads and
river systems, and managers need a better understanding of plant
reproduction in such environments, which likely drive regional
spread.

Spring ephemeral plant communities are under increasing threat
from invasive plant species and are often outcompeted to critically
low levels (Axtell et al. 2010). In river valleys in the northeastern and
Pacific Northwest regions of the United States, a threat to native
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communities has emerged, lesser celandine [Ficaria verna
(Huds.), syn: Ranunculus ficaria L.; Ranunculaceae]. It is a spring
ephemeral itself, which is unusual for an invasive, because it disap-
pears for parts of the year, potentially facilitating the growth of other
plants. Ficaria verna can form dense monocultures, threatening
local biodiversity (Axtell et al. 2010; Swearingen 2005). Its presence
has been associated with an increase in pollinator visits to two native
spring ephemerals, narrowleaf spring-beauty (Claytonia virginica L.)
and cutleaf toothwort [Cardamine concatenata (Michx.) Sw.], but
invaded plots ultimately had decreased seed set of both native plants
(Masters and Emery 2015b). Ficaria verna presence can also lead to
decreased biomass and recruitment of nearby competitors such as
grass species (Masters and Emery 2016).

Flooding events and river systems likely play an important role
in explaining the spread of this invasive species through transpor-
tation and deposition of propagules. While F. verna can be found
on steeper, drier slopes and in sunny spots with low canopy cover,
there is evidence that it prefers moist floodplain in shaded areas,
with higher levels of disturbances (Axtell et al. 2010). These
conditions are common at intermediate distances from rivers.
Because F. verna dies back early in the growing season, its presence
on steeper slopes could lead to more soil erosion later in the year.

The aim of this study was to examine the relationship between
site characteristics and the abundance and reproductive output of
F. verna along a disturbance gradient away from a river. To accom-
plish this, biomass, reproductive output, and site characteristics
were measured at various infested sites along the Rocky River in
northeastern Ohio, USA. An additional larger-scale study was con-
ducted examining F. verna abundance and reproduction along a
longer portion of the river without specifically targeting infested
areas. Soil texture, nutrient availability, and slope were hypoth-
esized to play an important role in determining successful F. verna
populations. We also hypothesized that F. verna abundance and
reproduction would be highest at intermediate distances from
the river.

Ficaria verna is native to Europe and parts of Asia and is mainly
found in floodplains and wetland lowlands; it can also be found in
drier, woodier highlands. Ficaria verna has an early, yet brief
growing season; it germinates in spring around March and
April, or sometimes even earlier under the snow in winter, and
top growth completely dies back in the early summer around
June and July (Axtell et al. 2010). In northeast Ohio, we have
observed bulbil germination as early as December (although
growth is halted when covered by snow). During senescence
around late June, large portions of land are left barren, making
them susceptible to invasion by a host of weedy species (Axtell
et al. 2010). Ficaria verna is not as palatable as its competitors
for many herbivores, which contributes to its competitive advan-
tage (Axtell et al. 2010).

Ficaria verna may be a particularly successful invasive due to
its multiple reproductive strategies; besides forming seeds, it also
produces tubers and aboveground bulbils. Under intermediate
disturbance, F. verna invests more heavily in the production of
seeds (Jung et al. 2008). When resources are not readily available
for sexual reproduction, asexual bulbils are produced in place of
seeds, and in some cases, the amount of bulbils produced is
inversely related to the amount of seeds produced (Arizaga and
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Ezcurra 1995). Because the invasion is thought to have started
from a deliberately planted patch in one landowner’s property,
the Rocky River populations may be clones incapable of sexual
reproduction. This may lead to further selection for traits that
decrease sexual fertility (Barrett 2015). Not all subspecies of F.
verna produce tubers, which are another important dispersal
mechanism with high germination rates (Kertabad et al. 2013),
but in our study, only Ficaria verna ssp. bulbifer, was present
in the survey area.

Ficaria verna biomass and seed, bulbil, and tuber production rates
were examined along the river valley of the Rocky River
Reservation in the Cleveland Metroparks in Cleveland, OH
(41.40902°N, 81.88399°W). The Rocky River Reservation was
chosen because it has the highest infestation of F. verna in
Cuyahoga County (Cleveland Metroparks Invasive Plant Atlas
2016). In 2008, the Rocky River Reservation had more than 183
acres of F. verna where cover was greater than 50% (Mack
2008). This reservation provides a large array of recreational ser-
vices from hiking trails and picnic sites to golf courses. It mainly
consists of floodplain deciduous forests, wetlands, and meadow
with a variety of wildlife and bird species year-round. The domi-
nant tree species include willow (Salix spp.), American sycamore
(Platanus occidentalis L.), American beech (Fagus grandifolia
Ehrh.), and maple (Acer spp.).

Six sample sites were selected in 2015, with an additional two
sites added in 2016, spanning a portion of the Rocky River, to
explore abundance and reproductive outputs while ensuring vary-
ing site characteristics. Sites were selected in floodplains with an
F. verna population extending at least 25 m away from the river,
as is common along this watershed, while attempting to mitigate
any anthropogenic disturbances such as trails or paths as much
as possible. There were often anthropogenic alterations around
10- to 20-m quadrats away from the river, in the form of hiking
trails or footpaths, throughout the Rocky River Reservation.
Sample sites had no management applied in the last 2 yr.

A transect was set up perpendicular to the river at each of the six
sites in 2015, starting from the vegetation nearest the riverbank and
extending away from the river, to represent a disturbance (flood-
ing) gradient. In early May, midway through the growing season,
20 by 20 cm quadrats were set up along each transect at 0, 5, 10, 15,
20, and 25 m away from the stream bank to evaluate the F. verna
aboveground biomass, stem density, and reproductive output (bul-
bil and tuber production). Within each of these quadrats, 10 plants
were removed at coordinates selected using a random number gen-
erator. Bulbils were counted and weighed, and the length of each
plant removed was measured. The total number of stems within
each quadrat was then quantified to estimate density. In addition
to the 10 individual plants sampled, once bulbils had fully formed,
10 additional plants per quadrat were selected at random from each
quadrat for destructive sampling to quantify biomass and bulbil
and tuber production. The average aboveground plant biomass
was calculated for the 10 randomly removed stems, which were
dried for 2d at 60 C in a drying oven (Fisher Scientific,
Waltham, MA) before being weighed.

In 2015, the populations at some sites extended beyond 20 to
25 m; we therefore extended the transect length by 10 m in 2016
and resampled all sites to gain a greater understanding of the plant
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dynamics at distances farther from the Rocky River. Two addi-
tional sample sites were also added, following the same site-selec-
tion process as in 2015, with an additional goal to include sites
south of Site 1.

Distance from the river, PAR, soil characteristics (pH, percent
moisture, and nutrient analysis), slope, and aspect were recorded
at each site. PAR measurements were taken in late April during the
peak growing season (Apogee Instruments, Logan, UT), as close to
noon as possible on a cloudless day. In April 2016, two 15-cm soil
cores were also taken from each quadrat; soil moisture content was
measured for each sample in the lab. Soil texture (particle-size
analysis) was also investigated using the hydrometer method
(Gee and Bauder 1979). Nutrient analyses involving phosphorus,
potassium, calcium, magnesium, CEC, pH, lime test index
(a measure of reserve acidity), and total nitrogen were performed
by the STAR laboratory at the Ohio State University. Due to
additional costs associated with testing, nitrate nitrogen levels were
only assessed for every other quadrat along the transect.

A larger-scale survey was conducted to gain more insight into the
impact of site characteristics on F. verna presence and performance
without bias toward sites with F. verna present. The random point
generator in ArcMap v. 10.3.1 (Environmental Systems Research
Institute, Redlands, CA, USA) was used to identify 30 random
sample points along the river.

At each sample site, a 30-m transect was set up as close to the
randomly generated point as possible, perpendicular to the river
(avoiding large fallen trees, paths, or any other major impedance
on transect.) Sampling was conducted at the 0-, 15-, and 30-m
marks along the 30-m transect, representing close, intermediate,
and far distances from the river. In some sites, due to the presence
of steep cliffs, there were no 15- and 30-m plots available. Ficaria
verna percent cover and above ground biomass were measured at
each of the three distances from the river. We used 2 by 2 m for
estimating percent cover based on visual percentage estimates
and for categorization according to Daubenmire’s (1959) cover
classes: 0% to 5%, 5% to 25%, 25% to 50%, 50% to 75%, 75% to
95%, and 95% to 100%. Ficaria verna aboveground biomass was
collected from 50 by 50 cm quadrats at each sampling location,
dried in a drying oven for 2 d, and weighed. Site characteristics
measured include canopy cover, slope angle, and aspect. PAR
was measured at each plot along the transect.

Generalized linear mixed-effect models were used to analyze the
data, and all analyses were conducted in R, using the LME4,
LMERTEST, and MASS packages (Bates et al. 2015; Kuznetsova
et al. 2017; R Development Core Team 2011; Venables and Ripley
2002). The results were similar in both years, and the analyses
presented here focus on the 2016 data, which involved surveying
two additional sites and longer transects. Site was included as a
random factor in all final models for both surveys.

In the F. verna—focused transect survey, the following response
variables were all analyzed separately: plant biomass, the number of
stems per square meter, and the average number of bulbils and
tubers per plant. Initially, linear mixed-effect models were fit using
LMER; however, in several cases, diagnostic plotting indicated strong
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heteroscedacity. Log transformations were applied for plant biomass
and for count or count-like data, Poisson/quasipoisson regression
models were fit using glmmPQL from the MASS package.

To test whether there was a relationship between the plant
response variables and the distance of plots from the river, we con-
ducted ANOV As with the distance classes as a categorical variable
(due to expected nonlinear increase with distance). Because the
distance from the river was likely related to changes in environ-
mental variables, especially soil characteristics, we assessed the
relationship between site variables and F. verna abundance and
reproduction in separate models. The following environmental
variables were initially considered: PAR, soil pH, percent soil mois-
ture, P, K, N, Ca, Mg levels, CEC, and soil texture (percent sand,
silt, and clay). Multicollinearity was detected in the soil variables
using correlation tests and by examining variance inflation factors.
Percent sand was chosen as the most likely important soil texture
variable in this system, as F. verna generally requires moist soils. As
expected, sand was inversely correlated with nitrogen and lower
soil moisture. CEC was chosen to represent all the base cations
together. The remaining environmental variables were PAR, soil
pH, log-transformed P, CEC, and percent sand. In models involv-
ing just these variables, variance inflation factors were all below the
recommended level of 4 (Zuur et al. 2009).

Following the approach of Zuur et al. (2009), full models were
fit using all the candidate variables, and graphical analysis, includ-
ing diagnostic plots of residuals versus each explanatory factor, was
used to determine whether two-way interactions were needed in
the models. Individual explanatory variables were then dropped
one by one in a sequential hypothesis-testing approach to deter-
mine final models. For linear regressions, the model-selection
process was performed using models fit with maximum-likelihood
estimation, and final models were then fit using restricted maxi-
mum-likelihood estimation (Zuur et al. 2009). Models were vali-
dated by plotting residuals against fitted values and by
examining Q-Q plots of the residuals to assess model homogeneity
of variances and normality. We also examined the pattern in the
residuals versus all explanatory variables. If the simplified model
had poorer fit, then the last dropped variable was included in
the final model, even if not statistically significant.

In the large-scale study, because the design was not specifically
targeted at known F. verna populations, logistic regression was first
used to model F. verna presence/absence, including plots with no
F. verna present. For plots with F. verna present, we modeled the
percent cover of F. verna as a function of distance from the river
and broader-scale environmental variables, using Poisson regres-
sion. We then modeled F. verna biomass, which again required log
transformation due to strong nonhomogeneity of variance. The
candidate explanatory variables were distance from the river
(0, 15, 30 m), slope, aspect, PAR, and canopy cover. As before, dis-
tance from the river was treated as a categorical variable to allow
for possible nonlinear response. Slope and PAR required log trans-
formation. Aspect was transformed to two variables, southness and
eastness, ranging from —1 to 1. No multicollinearity was detected
between these response variables using graphical analysis or
examination of variance inflation factors.

Ficaria verna abundance and reproduction were variable between
sample sites during both years of field observations (coefficient of

https://doi.org/10.1017/inp.2019.27 Published online by Cambridge University Press

217

variation for the number of F. verna stems m™2 = 54.9, coefficient
of variation for F. verna biomass = 75.6). Densities of F. verna were
found to be as high as 11,425 plants m~2 in some areas, with an overall
mean of 2,772 plants m™2 (maximum = 11,425, median = 2,412).
This maximum was an outlier, with a large number of small F. verna
plants. The number of F. verna stems per square meter was signifi-
cantly negatively related to percent sand, t=-2.61, df =52,
P =0.012, slope = —0.01; Figure 1). The final model also included
a nonsignificant positive relationship with log-transformed soil
phosphorus (t=1.74, df =52, P = 0.088, slope = 0.15) and a non-
significant negative relationship with CEC (t=-1.611, df =52,
P =0.11, slope = —0.026; Figure 2).

For plant biomass, there was a significant negative effect of
CEC (F(1, 57.3) =4.57, P=0.037), and a significant interaction
of pH and CEC (F(1, 57.0) =4.91, P =0.031). The final model
also included pH (F(1, 57.8) =3.80, P =10.056), percent sand
(F(1,57.34) = 3.14, P = 0.081), and an interaction between percent
sand and pH (F(1, 57.7) = 3.13, P = 0.082), although these were
only marginally significant.

Of the plants sampled over the 2yr, 31% produced bulbils.
Bulbil production ranged from 0 to as high as 18 per plant (overall
mean = 2.9). Average bulbil production (averaged over 10 plants)
ranged from 0 to 6.1 per stem (mean = 1.3, median = 0.95). Bulbils
had an average length of 3.93 mm and an average mass of 0.0101 g.
The average number of bulbils produced per plant was significantly
negatively related to percent sand (t=-2.27, df =55, P =0.027,
slope =—0.012).

Tuber presence ranged from 1 to as high as 11 tubers per
plant (mean = 2.4, median = 2.2, SE = 0.093). The average number
of tubers present was 2.3 per plant, with an average tuber length
of 7.9 mm and an average mass of 0.041 g. The average number
of tubers produced per plant was significantly negatively
related to percent sand (t=-2.71, df =54, P =0.009, slope =
—0.0089) and negatively to CEC (t=-2.32, df =54, P =0.024,
slope =—0.032). Interestingly, there was no seed production
observed in any of the sample quadrats.

The distribution of F. verna was more sparse near the river
(0-m quadrats), and then a dense monoculture was typically
observed up to the 20-m quadrat. Beyond the 20-m quadrat,
there appeared to be higher abundances of other species
present. However, in the F. verna-focused transect survey, none
of the response variables indicated significant relationships
with the distance from the river (all P-values were greater than
0.05; Figure 3).

A few sites had a dense mat of F. verna extending beyond the
farthest quadrat (25 m), primarily in locations consisting of a
well-established, successful population of F. verna. Sites with
a gentle gradient more often had extended populations beyond
the length of the established transect. Sites that rapidly
increased in gradient beyond the transect typically also declined
in the cover of all vegetation, not just F. verna, and steep slopes
are often common features throughout river valleys due to ero-
sion over time.

Ficaria verna was present in 75% of the random plots surveyed,
and present with more than 10% cover in 53% of plots. Ficaria
verna presence was significantly related to slope (z=-2.007,
P =0.045, slope=-0.078) but not to distance from the river
(I5m: z=-0.57, P=0.569, slope=-0.398; 30m: z=1.30,
P =0.193, slope =1.29).
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Figure 1. The relationship of Ficaria verna performance to percent sand. In the Ficaria verna-focused survey, stem density (upper left) had a significant negative relationship
with stem density (P = 0.012); however, the relationship with plant biomass (upper right) was not significant (P = 0.081). The average numbers of bulbils per plant (lower left) had
a significant negative relationship with percent sand (P = 0.012), as did the average number of tubers per plant (lower right, P = 0.009). Lines shown are regression lines from the

fitted model for statistically significant relationships.

In plots with F. verna present, percent cover in the large-scale
survey was significantly higher at 30 m than at Om (z=3.77,
P <0.001, slope=0.218; Figure 4) and significantly negatively
related to light availability (z = —5.22, P < 0.001, slope = —0.164).
Plant biomass maxima were generally found at locations of low
slope gradients of below 10°. The model of F. verna biomass
included nonsignificant relationships with distance from the river
(F(2,33.9) =0.0036, P = 0.997) and a nonsignificant negative rela-
tionship with log-transformed slope (t=-1.82, df=28.15,
P =-0.079, slope = —0.486).

Soil characteristics are important driving forces behind F. verna
success, with significant negative relationships found between
F. verna abundance and reproductive output and percent sand
and in some cases also with CEC. We found relatively consistent
relationships with percent sand across the response variables, and
this result may be driven by the fact that lower percent sand is
associated with higher soil moisture. Although percent sand and
CEC are often negatively related to each other, in our study, they
were only weakly related to each other, perhaps because soil
organic matter is also important in determining CEC. We were
unable to simultaneously test correlated variables; soil moisture
and nitrogen were inversely correlated with percent sand and
were not a focus of our analyses. Higher performance in less
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sandy soils may also be due to elevated calcium levels; soil cal-
cium has been linked to increased F. verna abundance and
reproduction, as it has for several other invasive species
(Harrison 1999; Howard et al. 2004).

While some sites did have higher F. verna abundance and
reproduction at intermediate distances, as indicated by higher
maximal values at intermediate distances, overall, we did not
observe significantly higher F. verna abundance and reproduction
at intermediate distances. One possible reason is that flooding
from the river was not the only major disturbance at several sites.
There were several trails and swales that generally occurred
around the 10- to 20-m quadrats, and these tended to have poor
plant performance. Anthropogenic disturbances were avoided as
much as possible, yet the Rocky River Reservation is well fre-
quented by the public, making certain disturbances unavoidable.
This resulted in some intermediate distance plots also experienc-
ing high levels of disturbance.

Soil pH was not in most final models due to a lack of strong
relationships with F. verna abundance and reproduction, but there
was a negative relationship between soil pH and plant biomass that
was marginally significant, (P =0.056). This result was unex-
pected, because generally, F. verna performance appeared to be
higher at higher pH values. It may be that some of the pH levels
in our study were higher than F. verna would prefer. According
to previous work, F. verna requires a pH range of 4.4 to 6.9
(Axtell et al. 2010). The F. verna populations during the 2-yr obser-
vational study were found growing in soils with pH levels from
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Figure 2. The relationship of Ficaria verna performance and CEC. In the F. verna-focused survey, there was a nonsignificant negative relationship with stem density (upper left,
P =0.11), and a significant negative relationship with plant biomass (upper right, P = 0.037), as well as a significant interaction of pH and CEC. CEC was not included in the final
model with average bulbils, due to a lack of a significant relationship, but it did have a significantly negative relationship with the average number of tubers produced (lower right,

P =0.024). Lines shown are regression lines from the fitted model.

4.49 t0 7.35. This elevated pH range may be attributed to the parent
rock material in the Cleveland area, which can result in soil pH
above 7.0. In general, higher-pH areas are considered to be at
greater risk of invasion (Tsui et al. 2004). Increasing soil acidity
allows for increased availability of phosphorous uptake, yet alka-
line elements such as potassium, magnesium, calcium, and sodium
are lost (Kidd and Proctor 2001).

Although PAR was not strongly associated with higher F. verna
abundance and reproduction in the F. verna—focused survey
models, percent cover had a negative relationship with light in
the large-scale study. Ficaria verna is most often found in shaded
sites and less commonly found in full sun on open ground, unless
soil moisture levels are sufficient (Axtell et al. 2010). Too much
direct sunlight may also lead to withering in populations, and thus
slightly shaded areas seemed to lead to more vigorous populations
in the field.

Slope had a significantly negative relationship with percent
cover. It was clear in field sites that, although F. verna can be found
on very steep slopes, the plant population is increasingly sparse
and patchy with increasing gradients. Steep slopes generally
have dry, shallow soils, and F. verna prefers moist, fertile flood-
plain (Axtell et al. 2010). Invasive plants typically occur most
frequently on flatter slopes, along with other herbaceous plant
species (Underwood et al. 2004).
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Additionally, several of our candidate variables did not have a
close enough relationship to F. verna abundance and reproduction
to be included in any final models. For example, in the large-scale
survey, aspect (southness and eastness) was not included in any
final models. Similarly, canopy cover was also not in any final mod-
els. Canopy cover may be less important for F. verna performance,
because its peak growing season occurs before leaf-out.

Variations in weather patterns from year to year can play a sig-
nificant role in observational studies of this nature. Water-level
fluctuations can influence effects on plant abundance and repro-
duction, allowing some plant species to thrive in areas of high-
frequency flooding while restricting others to higher elevations
(Leyer 2005; Van Eck et al. 2004). There were large temperature
and precipitation differences from 2015 to 2016; the 2015 winter
was significantly more severe, with temperatures reaching much
colder levels with greater amounts and sustained snow and ice
cover. The cold winter rebounded sharply into a warmer spring
to summer transition in comparison to 2016, causing sharp and
erratic flash floods after ice melt in 2015, potentially spreading
the F. verna propagules to a greater degree. We observed similar
plant biomass with higher densities and bulbil counts in 2016 than
in 2015. Ficaria verna prefers cooler growing conditions and starts
to senesce, with tubers delaying their growth, when temperatures
consistently hit or exceed 20 C (Kertabad et al. 2013). This implies
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Figure 3. The relationship of Ficaria verna performance with distance from the river. Plant abundance and reproduction in the F. verna-focused survey was variable as a function
of distance to the river, and the median was generally lower close to the river, and to some extent farther from the river. None of the metrics of F. verna abundance and repro-

duction had significantly different means at different distances.

that weather conditions may have played a large role in the
increased reproductive output in 2016. In general, spring ephem-
erals prefer cooler growing conditions, which result in longer leaf
longevity (Badri et al. 2007; Yoshie 2008).

Although our study did not focus on leaf litter, variable leaf
litter depths are common to riparian corridors due to the varia-
tion in flooding frequency and intensity (Masters and Emery
2015a). While a lack of litter and deep litter both decreased
F. verna biomass, bulbil production was not different across treat-
ments, and seed production only decreased in deep litter of 20 cm
(Masters and Emery 2015a). This maintenance of reproductive
output across a variety of leaf litter depths may provide an advan-
tage over native species competing for resources (Masters and
Emery 2015a).

During the 2-yr observational study in Rocky River Reservation,
F. verna produced no seeds in our study plots, and we only observed
a few plants outside the study transects producing seeds. This sug-
gests that F. verna populations in Rocky River do not rely heavily on
sexual reproduction. Resource allocation in this invasive favors asex-
ual reproduction through high production of tubers and above-
ground bulbils. Vegetative diaspores have been hypothesized to
be physiologically advantageous during germination (Jung et al.
2008). This may be a more effective method for dispersal, as germi-
nation rates have resulted in higher percentages for bulbils than
seeds, with 81% germination for bulbils in comparison to 71% ger-
mination for polyploid seeds and 18% for diploid seeds (Marsden-
Jones 1935). One drawback of investment into tubers and bulbils is
the high resource cost needed to produce the large structures,
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yet field observations show that this strategy does lead to large
infestations of F. verna.

The degree to which F. verna produces seeds, bulbils, and tubers
is variable and may depend on which subspecies is present. Bulbils
are thought to have evolved in response to limited pollinator visita-
tions in moist habitats mainly caused by a shady living environment
(Deng et al. 2013). It appears that bulbil germination rates by the end
of the year are extremely high, indicating little innate dormancy in
the field. Due to trade-offs in resource allocation, an increase in
clonal investment is linked with decreased allocation to sexual repro-
duction (Barrett 2015). Extensive vegetative dispersal and clonal
growth can negatively impact the functioning of sexual polymor-
phisms, which can relate to single mating groups with consequential
effects on mating and fertility (Barrett 2015). Sexual dysfunction and
loss of sexual reproductive ability can result from populations in
which clonal propagation is the dominant form of dispersal, which
aids mutations that decrease fertility (Barrett 2015).

In conclusion, management will be most effective in combating
F. verna populations by targeting sites where high reproductive
output, most often in the form of bulbils, is likely. Soil character-
istics appear to play a large role in driving population performance
and should be considered to help prioritize the allocation of resour-
ces for management. Besides reproductive potential, it is also
important to consider where spread is most likely to occur.
Areas close to the river are extremely important with regard to
population spread and may also require management. Overall,
the highest-priority sites are in floodplains with less sandy soils
and a low slope gradient.
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Figure 4. Ficaria verna abundance and reproduction in the large-scale survey. Ficaria verna percent cover was higher 30 m from the river (upper right, P =0.001) and was lower
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