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Abstract

A significant excitation of toroidal moments in cylindrically arranged dogbone metallic inclu-
sions is validated and presented in this paper. The antiparallel poloidal currents excited on the
front and back faces of the proposed cylindrical dogbone inclusions create strong magnetic
field confinement at the center generating intense toroidal moments on the structure. The sig-
nificant excitation of toroidal dipole moment causes an improvement in the scattering cross-
section from the resonant system. The resonant mechanism is analyzed using the multipole
scattering theory, and we used the scattering measurement techniques to characterize the
structure experimentally in the microwave regime.

Introduction

Plane-wave scattering from metamaterials exhibiting toroidal dipole moments is a rapidly
growing research area. Toroidal multipole moment is the higher-order multipole in the multi-
pole scattering expansion. When the object size approaches the order of incident wavelength,
then multipole theory shows the presence of toroidal moments. For sub-wavelength particles,
only the first-order electric and magnetic dipole moments will be excited. Kerker and cowor-
kers pointed out that when the electric and magnetic moments on these sub-wavelength inclu-
sions are equal in magnitude and oscillating in phase, then forward scattering is observed
[1, 2]. An out-of-phase oscillation reduces the scattering cross-section of the object [3]. The
lack of natural magnetic materials remained a bottleneck until Pendry et al. demonstrated the
first practical realization of artificial magnetism using the so-called split-ring resonator array [4].
The practical applications of such metamaterials are listed in various review reports [5].

Recently, toroidal dipole excitation in metamaterials has gained considerable interest due to
their promising electromagnetic behaviors such as high near-field energy localization, high
Q-factor, etc. Toroidal moments are created by the poloidal or the axial current distributions
excited on the composite [6]. Classical electromagnetic theory neglects the excitation of this
higher-order moment [7], and Zel’dovich first reported their excitation in nuclear systems
[8]. Specially designed asymmetric configurations of split-ring resonators and stacked struc-
tures show toroidal moments [9–12]. Dielectric resonator-based techniques are also employed
to overcome losses due to conduction currents [13]. Toroidal moments are created in the vis-
ible and ultraviolet range, using silicon-based dielectric materials [14, 15]. Recently, scattering
from composite metamaterial structures is manipulated using toroidal dipole moments.
Toroidal dipole excitation also ensures coherent forward scattering [16, 17]. The parallel exci-
tation of overlapped toroidal and electric dipole moments is an anapole, and the resulting
structure is invisible to a radar located at the far-field [18, 19]. Recently, toroidal metamaterial
with tunable resonant behavior is observed in the THz range [20].

The specialty of dogbone metamaterials is that its dimensions are the order of the operation
wavelength at resonance. Hence, toroidal dipole moments could be excited in specialized cylin-
drical configurations of dogbone structures. One such design is the cylindrically arranged dog-
bone elements around a metallic target [16] and is a modification of the authors’ cylindrical
cloaking structure [21]. The authors also detected a Fano-like resonance profile by exciting
strong magnetic resonance to create an electromagnetic invisibility cloaking scheme in a sep-
arate spectral window devoid of toroidal excitation [22]. This paper proposes a modified
dogbone-based cylindrical structure that shows a significant improvement in toroidal excita-
tion. The authors have used full-wave electromagnetic simulations for optimization, and back-
scattering from the design is measured using PNA E8362B network analyzer.

The geometry of the structure

The unit-cell structure is a modification of our previous work [16], and the main difference
is that it is devoid of the enclosed metallic cylindrical target, as shown in Fig. 1. All the
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other parameters remain the same. Eight dogbone metallic ele-
ments, printed on a substrate of dielectric constant 4.4 and
height 1.6 mm, are arranged in a coaxial fashion, as depicted
in Fig. 1(a). Figure 1(b) shows the top view of the structure.
The inner diameter d is selected to be 14.5 mm. Figure 1(c)
illustrates the unit-cell dimensions. We have used photolitho-
graphic etching techniques for fabrication, and the engraved
copper thickness is 35 μm. The final full design used for meas-
urement utilizes five such unit cells arranged vertically, as
shown in Fig. 1(d).

Simulation and measurement studies

We have used CST Microwave Studio for full-wave simulation
studies of the structure. For that, a plane wave with polarization
along y-axis is incident on the full structure shown in Fig. 1(d).
Reflectance from the design is measured using a monostatic scat-
tering measurement setup for normal incidence. For that, two
ultra wideband antennas, with an azimuth offset of 5°, are
mounted on a turntable assembly. We placed a metallic cylinder
at the turntable assembly center for performing a THRU calibra-
tion. To avoid possible multipath clutters, proper time gating is

applied to receive reflections only from the target. Replacing the
reference target with the studied structure gives the design’s
reflectance, as depicted in Fig. 2, and is well matched. The
observed resonance is around 2 GHz, and it indicates strong back-
scattering suppression at resonance.

The far-field scattering characteristics are studied using
full-wave simulations and shown in Fig. 3. The scattering
cross-section thus obtained for the structure compared with
a metallic plane target is shown in Fig. 3(a). Around reson-
ance, the design shows tremendous enhancement in scattered
power as that of the bare metallic cylinder. Figures 3(b) and 3(c)
compare the 3D scattering characteristics of both these structures.
The cylindrical reference target shows omni-directional
scattering, whereas the proposed structure scatters more power
along the forward direction. Figures 3(d) and 3(e) represent the
scattering patterns along the azimuth and elevation planes. It
shows coherent forward scattering in both these planes. The 3 dB
beamwidth is 57.6° and 111°, respectively, in these planes.

Multipole scattering theory helps to study the scattering con-
tribution from different multipoles [9]. The power scattered
from different multipoles is found by extracting the surface cur-
rent distributions from the structure and then performing spatial
integration as

P = 1
iv

∫
Jd3r, (1)

M = 1
2c

∫
(�rXJ)d3r, (2)

T = 1
10c

∫
[(�r.J)− 2r2J]d3r. (3)

The results of these computations give scattered power from
different multipoles. In the above equations, P and M represent
the lower order electric, magnetic dipole moments, T represents
the higher-order Toroidal dipole moment, c is the velocity of
light in vacuum, �r is the displacement vector from the origin, ω
is the angular frequency, and J is the surface current density.

Fig. 2. Reflection coefficient of the proposed structure.

Fig. 1. Description of the structure under study. (a) Formation of the unit cell, (b) top view, (c) geometrical specifications (L1 = 18mm, L2 = 12mm, W1 = 4mm,W2 = 2mm,
d = 14.5mm), and (d) photograph of the fabricated structure.
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Fig. 3. Results of scattering studies performed. (a) Scattering cross-sections, (b) 3D scattering pattern of a bare metallic cylinder, (c) 3D scattering pattern of the
proposed dogbone array, (d) azimuth plane RCS patterns, and (e) elevation plane RCS patterns.

Fig. 4. Radiation contribution from different multipoles.
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Figure 4 illustrates the radiated power contribution from the Py
(electric), Mx (magnetic), and Ty (toroidal) moments. One could
see here that power released from the magnetic dipole moment
(black line) exceeds that from electric dipole moment Py (redline)
throughout the entire bandwidth under consideration. The power
radiated from the magnetic moment Mx is 7000 times higher than
that from the electric moment Py at resonance. The radiated
power contribution from the toroidal moment Ty is also indicated
in the figure using a solid blueline. We could observe that power
radiated from the toroidal moment is significantly high from this
structure compared to our previous design [16]. The excitation of
toroidal mode is responsible for coherent forward scattering from
it at normal incidence.

The cross-sectional magnetic field distributions are useful in
studying the excitation of toroidal moments on the structure.
Figure 5 shows the resonant surface current and the cross-
sectional magnetic fields excited on the cell. Figure 5(a) confirms
that the surface currents excited on the structure’s input
entrance and output faces are out of phase. These antiparallel

current distributions create out-of-phase magnetic moments,
creating strong in-phase magnetic field distribution at the center
of the structure, causing toroidal moments Ty, as depicted in
Fig. 5(b). The out-of-phase circulation of surface currents on
the structure’s input and output faces cancels the contribution
of electric dipole moment Py on far-field radiation. The unit-cell
system will act as an efficient dielectric sensor because the
enhanced magnetic energy density at the center of the structure
enhances the sensor’s sensitivity due to toroidal excitation.
Figure 5(c) illustrates the computed cross-sectional electric
field distribution at resonance. The electric field is concentrated
on the top and bottom boundaries of the dogbone particle and is
found minimum at the center where the magnetic field is
maximum.

To study the effect of the inner diameter on reflection coef-
ficient, we performed a detailed parametric analysis because
this inner diameter significantly affects the coupling between
dogbone metal strips. Figure 6 illustrates the effect of variation
on reflection coefficient for normal incidence. An increase in
the diameter of the cell redshifts the resonant frequency. The
inner diameter increases the magnetic resonant patch length
due to the significant increase in displacement current channel.
Moreover, this change causes an increase in reflection from the
structure, and the system becomes more inductive due to the
enhancement in the mutual inductance between consecutive
dogbone elements.

We performed the scattering measurements inside an
anechoic chamber, and Fig. 7 illustrates these results. For
that, the same methodology adopted for cloaking measure-
ments is used [21]. Figure 7(a) shows the monostatic backscat-
tered power from the structure for normal incidence. In this
measurement, we rotated the design in the azimuth plane and
recorded the received power. Measurements show that more
than −20 dB reduction in backscattered power is observed for
all the azimuth angles at resonance. The polar plot of mono-
static backscattered power at resonance shown in Fig. 7(b) veri-
fies this observation. Figure 7(c) illustrates the measured
bistatic radar cross section (RCS). A significant reduction in
backscattered power better than −7.1 dB is observed in com-
parison with the reference cylinder.

Fig. 6. Effect of inner diameter on reflection coefficient for normal incidence.

Fig. 5. Resonant field distributions on the structure. (a) Computed current distribution, (b) cross-sectional view of the magnetic field, and (c) electric field
distributions.
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Conclusions

This paper showed the physical excitation of toroidal moments
on cylindrically arranged metallic dogbone inclusions in the
microwave regime. The anti-phase magnetic moments excited
on the structure’s input and output faces create strongly
enhanced magnetic field confinement at the center, yielding
strongly enhanced toroidal moment. Multipole scattering reveals
that significant excitation of magnetic and toroidal dipoles
enhances forward scattering from the structure at resonance.
The results are verified using full-wave electromagnetic simula-
tions and are physically validated in experiments using radar
cross-section measurements.
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