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The hydrodynamic stability of plane Poiseuille flow of superfluid is studied using
modal and non-modal analysis. Two modes of instability are predicted, in normal
mode stability analysis of the normal fluid, one caused by viscosity similar to the
classical mode and another due to mutual friction between superfluid and normal fluid.
The mutual friction mode occurs at high wavenumbers, which are stable wavenumbers
in classical plane Poiseuille flow. A high superfluid vortex line density alone is not
enough to induce instability in normal fluid; a localization of vortex lines is shown to
play a major role. The extent of vortex line concentration required to cause instability
depends on the density itself. Non-modal instability analysis shows that oblique waves
are stronger than streamwise waves, unlike the scenario in classical plane Poiseuille
flow.
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1. Introduction

The hydrodynamics of superfluid flow is best explained by Landau’s two-fluid
model, and it has given interesting insights into the classical and quantum behaviour
of the system, see for example, Landau & Lifshitz (1959), Vinen & Niemela (2002)
and Tilley & Tilley (2005). This model considers He-II as an intimate mixture of
two fluid components, a viscous normal fluid and an inviscid superfluid, with different
velocity fields (Vn and Vs) and densities (ρn and ρs). Superfluid flow is dissipation-
less if the relative velocity is below some critical value (Tough 1982), above which
there is dissipation associated with triggering of turbulence in the superfluid. Because
of the existence of two velocities, turbulence in He-II can be co-flow turbulence
or counterflow turbulence, based on whether the two components are moving in
the same direction or in opposite directions. Co-flow turbulence is analogous to
classical turbulence, whereas counterflow turbulence is excited by thermal counterflow
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(Barenghi 2001). The turbulence in superfluid consists of a tangle of quantized vortex
lines which scatter the normal fluid leading to a dissipative interaction between
the two fluids, called the mutual friction (Vinen 1957). The mechanism triggering
turbulence is not clearly known in either co-flow or counter-flow scenarios (Haas et al.
1974; da Haas & van Beelen 1976). Analysing the various experimental results, Tough
(1982) pointed out that two different states of counterflow turbulence exist, the T1
and T2 states, marked by sudden jumps in superfluid vortex line densities. He argued
that in the T1 state only superfluid becomes turbulent whereas in the T2 state both
the superfluid and normal fluid become turbulent. Linear modal stability analysis of
normal fluid in thermal counterflow through a circular pipe reveals that the transition
from T1 to T2 is an instability of normal fluid due to the action of superfluid vortices
(Melotte & Barenghi 1998). In this paper, however, we study instability in co-flow of
He-II in plane channel flow.

Co-flow turbulence is more interesting because of its similarities with classical
turbulence (Vinen 2006). Most studies in co-flow turbulence in He-II were focused on
measuring the velocity spectrum and comparing it with that of classical fluids, see a
recent review by Skrbek & Sreenivasan (2012). However, studies on the transition of
laminar to turbulent flow in co-flow of He-II have rarely been reported. Donnelly &
Lamar (1988) experimentally investigated the stability characteristics of flow of He-II
between rotating concentric cylinders and showed that the nucleation of quantized
vortices alters its characteristics from those of classical fluids. Barenghi & Jones
(1988) confirmed Donnelly & Lamar (1988)’s arguments with a numerical study
on the stability characteristics and showed the effect of vortex tension in altering
the stability. Godfrey, Samuels & Barenghi (2001) studied co-flow of He-II using a
linear modal stability analysis in a channel using the two-fluid model. They showed
that two modes of instability are possible, one similar to classical fluids and the
other a low-wavenumber instability. The action of superfluid vortices did change the
velocity profile, but was considered to be independent of Reynolds number, Re, as
also reported in Sooraj & Sameen (2011), which need not be true. Bergström (2008)
studied the transient growth of three-dimensional disturbances in plane Poiseuille flow
of He-II using non-modal analysis. A substantial increase in transient growth of three-
dimensional perturbations, in comparison with classical fluids, was observed in normal
fluid due to the action of mutual friction from the superfluid. Mutual friction was
shown to affect the transient growth characteristics in two ways: by reducing the
damping of disturbances and by altering the mean flow. The present work shows the
effect of vortex line density distribution in determining the stability of normal flow
using a modal and non-modal analysis and is different from previous stability studies
in two aspects. First, because of the absence of a base-flow similarity relation, an
appropriate velocity profile is computed for every Reynolds number. Secondly the sign
of the mutual friction term in the governing equation is different as discussed below
and in Sooraj & Sameen (2011).

The system is governed by two separate equations for momentum conservation of
the two fluids, which are coupled through the mutual friction force. The equations for
the normal fluid are considered here, keeping the effect of the superfluid fixed through
mutual friction. The momentum conservation for the normal fluid, in the absence of
temperature gradient, in non-dimensional form is written as (Tough 1982; Melotte &
Barenghi 1998)

∂

∂t
Vn + (Vn ·∇)Vn =−∇P+ 1

Re
∇2Vn − Fmf , (1.1)
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where P is pressure and Re is the normal-fluid Reynolds number defined with
the viscosity νn of the normal fluid; suffix n denotes normal fluid throughout this
paper. The centreline velocity of the normal fluid, V0, and channel half-width, L, are
the velocity and length scales used for non-dimensionalizing. Fmf is the dissipative
mutual friction interaction between the two fluid components, defined as (Donnelly &
Swanson 1986)

Fmf =
(

BρsLκ

2ρV0

)
2
3

l(Vn − Vs), (1.2)

where B is the mutual friction coefficient, κ = h/m4 is the quantized circulation, where
h is Planck’s constant and m4 is the mass of an 4He atom, and l is the superfluid
vortex line density i.e. total length of quantized superfluid vortex lines per unit volume;
subscript s denotes superfluid. The mutual friction term in the governing equations
in Godfrey et al. (2001) and Bergström (2008) posses a sign different from that in
Tough (1982). In this work the sign as in Tough (1982) and Tilley & Tilley (2005) is
followed, because mutual friction will decelerate the normal fluid as reported in Hall
& Vinen (1956a,b), which is more appropriate as also discussed in Sooraj & Sameen
(2011). The above mutual friction can be simplified as (Godfrey et al. 2001)

Fmf = f (z)(Vn − Vs). (1.3)

The function f (z) gives the distribution of superfluid vortex lines along the wall-normal
direction z. Comparing (1.2) and (1.3), assuming B and κ are constants for given
temperature, the dependence of f (z) on z comes from l which is the vortex line density.
Numerical simulations by Samuels (1992) and Aarts & de Waele (1994) based on
vortex dynamics show that the superfluid vortex lines tend to move towards points
where superfluid and normal-fluid velocities are equal. Therefore a bimodal Gaussian
distribution is assumed for the superfluid vortex line distribution, having the peaks at
points of zero relative velocity between the two fluids. The assumed distribution with
standard deviation σ is written as (Godfrey et al. 2001; Bergström 2008)

f (z)= fmax{exp[− (z− z−)
2 /2σ 2] + exp[− (z− z+)

2 /2σ 2]}, (1.4)

where z± are the points of zero relative velocity and fmax is the maximum value of
f (z). A sample f (z) distribution is given in figure 1. As (1.4) suggests, an increase in
σ means an increase in uniformity of the vortex line distribution. The strength of the
mutual friction term is characterized by parameter fmax . A given combination of σ and
fmax depicts a situation of superfluid flow at some particular temperature (Bergström
2008).

2. Base flow

The classical parabolic velocity profile for plane Poiseuille flow is modified due to
mutual friction. This modified profile is numerically calculated from the momentum
equation for the normal fluid with a steady and parallel flow assumption and no-slip
boundary condition at the walls. Equation (1.1) takes the form

−dP

dx
+ 1

Re

d2Un

dz2
− f (z)[Un − Us] = 0. (2.1)

Un(z) and Us are the normal-fluid and superfluid velocities along streamwise direction.
The pressure gradient is chosen such that Re dP/dx = −2, as in the case of classical
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FIGURE 1. Superfluid vortex line distribution f (z) along the wall-normal direction. fmax = 0.03
for all cases shown.

fluid (Barenghi, Donnelly & Vinen 1983; Donnelly 1991; Bergström 2008). Since
Us is assumed inviscid, the superfluid velocity is constant across the channel width.
(In co-flowing He-II in isothermal conditions the average velocities of the two
components are equal, i.e.

∫ 1
−1 Un dz = ∫ 1

−1 Us dz = 2Us which implies Us = 2/3. It
can be easily shown that the volume flow rates of both the components are equal
(Godfrey et al. 2001).) It is clear that, unlike classical fluids, the mean flow profile
calculated from the non-dimensional equation is not self-similar with respect to the
normal-fluid Reynolds number as shown figure 2. The deviation of the normal flow
profile from classical plane Poiseuille flow increases with Reynolds number and the
profile becomes more flattened as Reynolds number increases. A recent experiment
by Guo et al. (2010) using the molecular tagging method visualized the velocity
profile for a counter-flowing normal fluid. They observed the normal fluid to have
flat velocity profile for heat fluxes well above a critical value required for the onset
of quantum turbulence. In view of the high broadening rates of molecule lines, they
attribute the flattening of the profile to turbulence in the normal fluid rather than due
to mutual friction. However further experiments are required to make it clear whether
the state is ‘laminar, turbulent or doubly turbulent?’ as Barenghi (2010) suggests in
a review on this work. Guo et al. (2010) in their conclusion point to a possibility
of both superfluid and normal fluid becoming turbulent and velocity profiles being
flattened. The flattening of the normal-fluid profile may be achieved in (2.1) at high
fmax or σ . It is to be recalled that the present stability analysis is for a co-flowing
superfluid.
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FIGURE 2. Sample velocity profiles of normal fluid, superfluid, and classical fluid. Velocity
profile for normal fluid calculated with fmax = 0.03 and σ = 0.15.

3. Stability of the normal fluid

Stability of the normal fluid is studied by perturbing the normal fluid while keeping
the superfluid part unperturbed. We are interested in the temporal stability of the
normal fluid where the nature of the time evolution of the perturbations is studied.
The standard procedure in Schmid & Henningson (2001) is followed to derive the
linearized perturbation equations from the normal-fluid momentum equation, which
forms an eigenvalue problem. The modified Orr–Sommerfeld and Squire’s equations
for the perturbation velocity, vn, and vorticity, ηn, in the normal direction are written in
matrix form as

−iω

(
k2 − D2 0

0 1

)(
ṽn

η̃n

)
+
(

LOS 0
iβUn

′ LSQ

)(
ṽn

η̃n

)
= 0, (3.1)

where

LOS = iαUn(k
2 − D2)+ iαUn

′′ + 1
Re
(k2 − D2)

2−[f ′(z)D+ f (z)D2 − k2f (z)], (3.2)

LSQ = iαUn + 1
Re
(k2 − D2)+ f (z). (3.3)

A prime on a quantity indicates the derivative in the z-direction of that quantity, D
represents the differential operator in the z-direction (∂/∂z) and k is defined such that
k2 = α2 + β2 where α and β are the wavenumbers of perturbations in the streamwise
direction x and spanwise direction y respectively. The matrix equation (3.1) is solved
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FIGURE 3. Neutral stability curve for the normal fluid with fmax = 0.001 and σ = 0.15.

with boundary condition ṽn = Dṽn = η̃n = 0 at the walls, using the Chebyshev spectral
collocation method (Schmid & Henningson 2001).

3.1. Modal stability analysis
In the modal stability analysis we are concerned with the temporal asymptotic
behaviour of perturbations. The eigenmodes are considered individually for predicting
the stability of the flow. Squire’s theorem is valid for parallel flow and the stability
analysis is limited to two-dimensional perturbations (β = 0). A base flow profile
is numerically calculated for every Reynolds number (since the similarity profile
is absent) and the neutral stability curve is obtained using this varying mean flow
profile. A sample neutral stability curve for mutual friction parameters fmax = 0.001
and σ = 0.15 is given figure 3.

The neutral stability curve shows two branches representing two modes of instability.
The critical Reynolds number for the lower branch occurs for α = 1.05 and is similar
to classical fluids. Therefore, analogously to classical fluids, this lower-wavenumber
mode can be considered as a viscous mode. A second branch of neutral stability
curve appears at a higher wavenumber (α = 2.6) compared to the viscous mode.
This higher-wavenumber mode appears because of the mutual friction term in the
normal-fluid governing equation, hence it can be termed the mutual friction mode.
The critical Reynolds number due to the viscous mode is higher than in classical
fluids, for the particular fmax(=0.001) and σ(=0.15) values shown in figure 3. Figure 4
shows the variation of growth rate, ωi, with streamwise wavenumber, α, for the
same mutual friction parameters as in the previous figure. The viscous mode alone
is unstable at Re = 10 000 and the maximum growth rate occurs for perturbations
with α = 1.05. The curve for Re = 50 000 shows two regions of positive growth
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FIGURE 4. Perturbation growth rate, ωi, versus streamwise wavenumber, α, for Reynolds
numbers 10 000 and 50 000. Mutual friction parameters as in figure 3.

rate, corresponding to the viscous mode and the mutual friction mode, at α = 1.05
and α = 2.65 respectively. The perturbation growth rate is higher for the mutual
friction mode, compared to the viscous mode, even though instabilities of the mutual
friction mode are triggered only at a higher Reynolds number than the viscous mode.
Therefore when Re is high enough, the mutual friction mode is predominant. (The two
modes can be viewed as two different mechanisms triggering the instability.) However,
these stability characteristics are different when the mutual friction parameters fmax and
σ are changed, and the two modes becomes less distinct.

Neutral stability curves for different mutual friction parameters are plotted in
figure 5. Both the branches, the viscous mode and the mutual friction mode, shift
towards lower Re with increase of fmax , except at small values of fmax where the
viscous mode shifts towards higher Re. Thus, the initial nucleation of superfluid
vortices stabilizes normal-fluid flow, and any further increase of vortex line density
above some critical value starts destabilizing the flow with the appearance of a new
mode called the mutual friction mode. At small vortex line densities it is still the
viscous mode which has the lower Recr, but at higher fmax mutual friction mode has
the lower Recr. Thus high superfluid vortex line density makes normal fluid more
vulnerable to higher-wavenumber instability. The fmax = 0 curve in the figure is the
limiting case, which is equivalent to classical plane Poiseuille flow.

The increase of the σ value causes the neutral stability curve to close, thus forming
an island of unstable region. On further increase this unstable region shrinks and at
some critical value of σ the unstable region disappears completely, indicating that
the normal-fluid flow is completely stable at all Reynolds numbers when σ is greater
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FIGURE 5. Neutral stability curve for the normal fluid with different fmax and σ values. Solid
line represents classical plane Poiseuille flow neutral curve, which is obtained as the limiting
case of fmax = 0.

than this critical value. Both mechanisms (viscous mode and mutual friction mode)
cease to trigger instability in normal fluid above this critical σ value. Thus a uniform
distribution of superfluid vortex lines (high σ value) across the channel can completely
stabilize the normal-fluid flow. In the limiting case of σ →∞, the function f (z)
becomes independent of z.

The variation of critical Reynolds number with σ is shown figure 6. The general
pattern in the figure is such that it comprises two parts with different local minima and
joined at a point where there is a discontinuity in the slope. The lower-σ region of
the curve represents the viscous mode and the higher-σ region represents the mutual
friction mode (comparing the α values for Recr leads to this conclusion). The classical
viscous mode has the lower critical Reynolds number for small values of σ whereas
the mutual friction mode has the lower critical Re for large σ values. Different curves
represent different fmax values and each curve is extended only up to certain σ values.
This termination of curves represents the shrinking and extinction of closed neutral
stability curves.

Figure 7 shows the variation of critical Reynolds number with fmax . The two modes
are less visible in this graph but the kink at a small fmax value represents the separation
between the two modes. Similar to figure 6 each curve terminates at a certain critical
fmax value corresponding to the extinction of the closed loop in the neutral stability
curve and beyond this critical value the flow is completely stable. The value of this
critical fmax varies with σ , and this variation is shown in figure 8. It is observed
from the figure that the critical σ , at which flow become completely stable for all Re,
is decreasing with increase of fmax . The region above the curve is stable for all Re.
As mentioned above, high σ means a wider distribution of vortex lines. It may be
concluded that it is the vortex line distribution that is important from a stability point
of view, rather than the strength of vortex in itself. In short, the local accumulation of
superfluid vortex lines may trigger normal-fluid instability. The inset in figure 8 shows
the values at large fmax , usually found in counter-flow experiments.
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FIGURE 6. Variation of critical Reynolds number with σ for the normal fluid.
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FIGURE 7. Variation of critical Reynolds number with fmax .
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FIGURE 8. Variation of critical superfluid vorticity distribution, σ , with fmax at which flow
becomes completely stable for all Reynolds numbers. Inset shows the curve extended for large
fmax . Note that the abscissa is in logarithmic scale.

3.2. Non-modal stability analysis
The non-normal nature of the Orr–Sommerfeld and Squire’s operators can result
in transient growth of the perturbations even when the individual eigenmodes are
asymptotically decaying (Schmid & Henningson 2001). In classical plane Poiseuille
flow, the transient growth can amplify to the order of 102–103 which results in
subcritical transition to turbulence.

The maximum possible amplification, G(t), of an initial disturbance q0, which is the
one optimized over all possible initial conditions, is defined as (Schmid & Henningson
2001)

G(t)=max
q0 6=0

‖q(t)‖2

‖q0‖2 . (3.4)

The maximum possible growth function, G(t), is plotted against time in figure 9
for α = 1 and β = 0 and for two different Reynolds number 1000 and 8000 at which
classical fluid shows exponentially stable and unstable behaviours respectively. The
normal fluid, with parameters fmax = 0.005 and σ = 0.15, is exponentially stable at
Re = 1000. There is a transient growth of perturbations similar to classical fluids but
the maximum growth is smaller compared to classical fluids. For Re = 8000 and for
the same set of wavenumbers as before, where the classical fluid is exponentially
unstable, the normal fluid shows a stable behaviour for parameters fmax = 0.01 and
σ = 0.15 and an unstable behaviour for fmax = 0.03 and σ = 0.15. There are two local
maxima visible and the maximum of G(t) for normal fluid is seen to occur at a later
time than that for classical fluid.

The maximum growth rate function, Gmax , is defined as the largest possible energy
amplification for all times, i.e. Gmax =Max(G(t)). The contours of Gmax are plotted in
the α–β plane for Re= 1000, fmax = 0.03, σ = 0.15 in figure 10. The normal fluid with
fmax = 0.03 and σ = 0.15 has a critical Reynolds number less than the classical plane
channel flow; Re = 1000 is stable for both flows. However, the non-modal analysis
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FIGURE 9. Maximum amplification of perturbation, G(t), versus time for normal fluid and
classical fluid for two Re values 1000 and 8000 at α = 1 and β = 0.
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FIGURE 10. Gmax contours for normal fluid. Re= 1000, fmax = 0.03, σ = 0.15.
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FIGURE 11. Variation of maximum Gmax with σ for normal fluid at Re= 1000.

gives a lower maximum transient growth for the normal fluid than classical fluid. This
can be attributed to more flattening of the mean flow profile of the normal fluid, which
could also mean that the chance of subcritical instability is less in normal fluid. Unlike
classical fluids, the maximum of Gmax occurs for a non-zero α (streamwise waves),
showing that oblique waves have the maximum transient amplification of energy. The
above result contradicts the results reported in Bergström (2008) and is attributed to
the difference in sign of Fmf . The variation of maximum of Gmax with σ and fmax is
plotted in figures 11 and 12. The transient energy growth is increasingly less dominant
with the increase of σ and fmax .

4. Discussion

The mutual friction force was modelled with a bimodal Gaussian distribution for
superfluid vortex lines involving parameters fmax(peak value) and σ (standard deviation),
causing a non-uniform mutual friction forcing. It is easy to show, from equations
(1.2)–(1.4), that the parameter fmax can be expressed in the following form:

fmax = BρsLκl

ρV0
. (4.1)

Thus fmax can be directly related to superfluid vortex line density, l. In experiments it is
the value of l that is measured as the excess attenuation of second sound. By varying
the peak value (fmax) and spread (σ ) of the distribution, one could model different
vortex density scenarios, representing different temperatures of superfluid.

The modal analysis showed that both superfluid vortex line density and its
distribution have significant effects on the neutral stability. Two modes of instabilities
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FIGURE 12. Variation of maximum Gmax with fmax for normal fluid at Re= 1000.

at different wavenumbers are predicted, which we termed the viscous mode and
mutual friction mode. The whole instability region disappeared for every fmax when
σ exceeded a particular value, indicating a stable regime for any wave at all Reynolds
numbers. Thus we consider that a high superfluid vortex line density alone is not
enough to induce instability in the normal fluid. A localization of vortex lines can
considerably affect the stability. However, the extent of non-uniformity required to
cause instability depends on the density itself.

The numerical simulation of superfluid vortex lines by Aarts & de Waele (1994) has
shown that they tend to move to points of lower relative velocity between superfluid
and normal fluid. Thus it is plausible that increasing Re can make the superfluid vortex
line distribution localized or increase its non-uniformity. It is also possible that an
increase in Re can increase superfluid vortex line density, due to interaction with the
walls and due to the increase of relative velocity of the two fluids. In other words, as
Re increases σ decreases and fmax increases, thus moving towards the unstable region
in figure 8. In the present calculations we have assumed a uniform superfluid velocity
profile, and the superfluid vortex line distribution is assumed to be non-uniform across
the channel width. In a related recent numerical computation by Galantucci et al.
(2011) the superfluid velocity profile is shown to be non-uniform. However, they
assumed a constant parabolic velocity profile for the normal fluid. In reality as shown
in Barenghi (2010) and Guo et al. (2010) both profiles may be a function of z and
Re. In approximating the mutual friction with (1.3) we have in fact approximated
curl of Us with κl, to represent the vorticity of the superfluid averaged over several
quantized vortex lines. If κl is a function of z, Us is also a function of z, which is
inconsistent with our earlier assumption. However, variations in Us will make only a
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marginal change in the mutual friction (Bergström 2008). More work needs to be done
experimentally and theoretically to evaluate both the velocity profiles simultaneously.

In conclusion, the results point to a scenario where the triggering of instability and
the subsequent transition in the normal fluid is initiated by a mechanism that is related
to mutual friction and makes it distinct from the instability and transition behaviours
of classical fluids.
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