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ABSTRACT
The Federal Aviation Administration often blocks strategically located airspace volumes to
ensure safety during a variety of operations that are potentially hazardous to aircraft, such as
space launches. As the frequency of these operations increases, there is a growing need to
deepen collaboration and transparency between stakeholders regarding the use of airspace.
This collaboration can be supported by models and capabilities to quickly assess the impact of
airspace closures, up to 12 months into the future. This paper presents a technique to enable a
‘what-if’ analysis capability coupled with a prediction model, whereby changes in airspace
dimension, location, and activation time are reflected instantaneously as measures of
projected impact. The technique can also be used for quick post-operations analysis using
historical traffic data and to develop air traffic impact assessment capabilities accessible to a
broad range of users outside of the air traffic domain. This research has three key components:
developing a model to predict air traffic demand up to 12 months into the future, modelling
air traffic impact to the affected traffic, and reducing this information into a data structure that
can support on-demand analysis. The focus of this paper is on new techniques to predict
demand using a large set of historical track data and further encode these projections to
support the quick assessment of the impact of blocking various airspace volumes. Initial
results show that the proposed data reduction scheme accurately represented the traffic
crossing an airspace and resulted in data size reduction by over 50%. The projection model
performed well, the actual number of impacted flights were within the estimated range of
approximately 80% of the time. Finally, the responsiveness of the web-based prototype
developed to illustrate the concept demonstrated the model’s ability to support an on-demand
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assessment of the air traffic impact of blocking airspace. A significant limitation of the
projection model is that it is based on the historical traffic pattern within the U.S. airspace;
separate analysis is needed to adapt it to other geographical location.

Keywords: NAS impact; What-if analysis; air traffic projection; data reduction; data
encoding; traffic pattern; blocked airspaces; CDM; commercial Space

NOMENCLATURE
Yp year for which the traffic is projected
Dp date for which the traffic is projected
Hp hour of day for which the traffic is projected
Wp week number of the year for which the traffic is projected
Ds day selected as the surrogate from the year previous to projected year

(Yp) that is the same day of the week as Dp and in the week number Wp

1.0 INTRODUCTION
Demand for airspace access has been on the rise due to an increasing number of new entrants
such as space operators, unmanned aircraft systems (UAS), and balloon operators. To manage
operations that are potentially hazardous to aircraft, such as space launches in the National
Airspace System (NAS), the Federal Aviation Administration (FAA) may route air traffic
around strategically located blocked airspace to ensure operational safety. As the frequency of
these activities increases, there is a growing need to increase collaboration and transparency
among stakeholders regarding airspace usage. A primary need to support this collaboration is
the ability of all stakeholders to quickly assess the impact of planned operations far in advance
of the event, up to 12 months into the future. Different stakeholders will have different uses for
such a capability. A space operator may be able to adjust the plan of launch and re-entry
operations to have minimal impact to the NAS, and a FAA analyst may be able to quickly
assess the impact of last-minute changes in the launch time. In fact, a prediction model coupled
with a ‘what-if’ analysis capability, in which changes in blocked airspace dimensions, location,
and activation time are reflected instantaneously as a measure of projected impact, could be a
key enabler of collaborative and transparent airspace use among all stakeholders.

This work has three key components: developing a model to predict air traffic impacted by
blocking airspace volumes, modelling air traffic impact on the affected traffic, and reducing
this information to a data structure that can support on-demand analysis. The focus of this
paper is on new techniques to predict demand from a large set of historical track data and
further encode these projections into a data structure that can support the quick assessment
using a ‘what-if’ analysis paradigm.

The organisation of this paper is as follows: Section 2 explores background on existing
approaches to predicting the air traffic impact of blocked airspace, Section 3 provides an
overview of the approach, and Section 4 discusses the data sources underpinning the
implemented algorithms and the scope of the study. Section 5 discusses the data reduction and
encoding scheme, Section 6 describes the traffic projection model, and Section 7 summarises
notes on the implementation of the model as a prototype. In conclusion, Section 8 points out
the strengths and weakness of this approach and future work.
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In this paper, the terms aircraft hazard areas (AHAs) and Special Use Areas (SUAs) are
collectively referred to as ‘blocked airspace’; additionally, use of the word ‘airspace’ implies
airspace volumes having lateral as well as vertical dimensions.

2.0 BACKGROUND
The primary focus of the research presented in this paper is enabling a ‘what-if’ analysis
capability that can provide immediate assessment of the impact of blocking airspace to a
broad class of users with little expertise in the air traffic domain. To the best knowledge of the
authors, no published research addresses this requirement. Tools such as Dynamic Airspace
Routing Tool (DART)1 can be used to assess the NAS impact of closing airspaces; however,
to do that requires access to the tool, operator knowledge of the air traffic domain, availability
of data (such as traffic and weather), and setup time.

The other component of the research is projecting the air traffic impact of blocking an
arbitrary airspace, which is a complex task, as it varies significantly depending on factors
such as location, season, the day of the week, time of day, and weather. In addition, the air
traffic management strategies to avoid hazard areas vary depending on area control centres
and are not known in advance of the operation that requires blocking airspace.

There are several publicly available demand forecasts. FAA publishes the Terminal Area
Forecast (TAF) for active airports in the National Plan of Integrated Airport Systems
(NPIAS), which is considered the de facto official aviation forecast. It is developed from a
series of airport models that use trends in demographics to forecast changes in enplanement.
Boeing publishes its latest assessment of the 20-year demand for world travel in its Current
Market Outlook(1), and Airbus provides its projection of 20-year demand in its Global Market
Forecast(2). Finally, the Transportation Systems Analysis Model (TSAM)(3) developed by
Virginia Tech’s Air Transportation Systems Lab and NASA Langley can be used to project
the passenger demand for trips more than 100 miles selecting among three modes of transport:
automobile, airline, and on-demand services using very light jet aircraft. All these forecasts
focus on demand growth at the airports, not in the airspace in between; that is, they do not
provide a prediction of trajectories of fights between the origin and destination airports. This
makes them insufficient for modelling the impact of blocked airspace.

One approach to assessing the impact of a launch or re-entry operation is to model the
traffic on the launch day based on available traffic and weather forecasts, and calculate the
expected delay by simulating the rerouting of the affected flights around the AHAs using
tools such as Future ATM Concepts Evaluation Tool (FACET)2 and systemwideModeler3.
This approach requires significant effort from a well-informed operator in setting up the
simulation to realistically model the planned operation conditions, making it unsuitable for
use in a ‘what-if’ analysis capability that can be used by a broad range of users with no
knowledge of the air traffic domain.

Another approach used by Jessica Lee and Marie Kee(4) involves statistical analysis on a
specific SpaceX Falcon9 launch vehicle/Dragon capsule re-entry vehicle operation to deter-
mine if the operation caused flights to experience significantly longer flight distances, more
fuel burned, and longer flight durations as compared to similar flights on other days. The paths

1 DART is a product of AvMet, information at http://www.avmet.com/dart.
2 Fast-time simulation tool developed by National Aeronautics and Space Administration (NASA) Ames.
3 Fast-time simulation tool developed by The MITRE Center for Advanced Aviation System Development

(CAASD).
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of the flights on the launch day were compared to the similar flights on a set of five historical
days to arrive at a range of distance and time impacts of the launch. This approach may be used
to develop prediction models of the launches with similar characteristics, such as the location
and geometry of the hazard areas, block time window, and the day of the week of the operation.
However, its use as a general-purpose method to assess the impact of any blocked airspace is
limited. Since this approach is derived from a comparison to actual impacts, a large number of
historical impacted days would be required before such an approach can be used to estimate
behaviour for future events. Also, the study required significant human effort and is not
amenable to automation and producing results in a short time.

In related research, Srivastava(5) projected the NAS impact of blocking airspace by mea-
suring the effect of delaying or routing flights around blocked airspace on a sample historical set
of days similar to the proposed launch day traffic. This approach requires minimal air traffic
domain knowledge’ however, analysis takes some time (on the order of 20min), making it
unsuitable for use in a ‘what-if’ analysis. Moreover, the model relies on selecting historical days
close to the launch day and is, therefore, useful only for assessing relatively near-term impacts.

The approach presented in this paper combines insights gained from the earlier work to
develop a model that predicts the impact of blocking airspace on the NAS and encoding the
results in a data structure that can support interactive queries on blocking arbitrary airspace.

3.0 OVERVIEW OF THE APPROACH
The research objective presented in this paper is to enable a user to ‘draw’ an airspace,
anywhere on a map, indicate time window for which it is blocked, and instantaneously
receive metrics indicating the effect on airlines of blocking it. A user may move, reshape, or
change the closure times of the airspace, and the changes in impact are instantaneously
reflected. In effect, it is envisioned that the geographical map is ‘geo-coded’ with NAS impact
information, which is then used to provide a real-time assessment of the impact.

One of the key requirements for achieving this vision is to develop a geo-coded data structure
to store aggregated projected or historical traffic data. The data structure referred to as ‘route
segment’ is used for this purpose; a route segment is a line segment between two known fixes or
waypoints. Since traffic within the NAS changes from moment to moment, it needs to be
aggregated for a unit of time; for this model, the unit selected is 1 h. The route segments carry
bi-directional traffic density, aggregated hourly; thus, creating a ‘route segment density map’
over the geographical area of interest. The route segment density map enables a ‘what-if’
analysis paradigm since the traffic density information in the route segments intersecting any
arbitrary airspace can be used to assess the impact instantaneously. To generate the route
segments, the flown flight path is reverse-engineered into the known fixes and slotted to the
hourly bins, depending on the time when the flight was in the route segment.

Once the data structure used to store projected (or historical) traffic density is designed, the
next step is developing the model for traffic projections. If reliable traffic forecasts were
available 12 months in advance, then they could have been the basis of projected NAS impact
of blocked airspace. Unfortunately, that is not the case. Flight schedules databases, such as the
one from Innovata4, exist, but they do not contain information on general aviation and many
business jet flights, which together form a significant portion (approximately 20%) of U.S.
traffic. Moreover, the database only provides flight schedules between city pairs, and not the

4 Innovata is source of airline schedule data covering over 800 carriers worldwide. http://www.innovata-llc.com/.
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expected path (trajectory) of the flights, which are required to model the effect of closed
airspace on the NAS. Trajectories may be generated using flight schedules as an input to fast-
time traffic simulation system such as DART; however, such an approach requires operator
knowledge of the air traffic domain, availability of other data (such as weather), and setup
time, which makes it unsuitable for our purpose.

In the absence of a traffic forecast, an approach that applies heuristic methods to project
traffic is used. The forecasting model is based on the analysis of historical traffic trends
combined with known flight schedule patterns. Traffic flows at different locations for multiple
years are studied to uncover trends by aggregating the data at different levels (daily, weekly,
and monthly).

An important part of this research is to develop a prototype implementing the model and
testing the extent to which the goals of enabling a ‘what-if’ analysis have been accomplished.
Notes on implementation and the user interface are also part of this paper.

To summarise, the key steps in the research to enable an on-demand assessment of air
traffic impact of blocking airspace are:

• Devise a data reduction and encoding scheme to enable a geo-spatial ‘what-if’ analysis.
• Develop an air traffic projection model.
• Model the NAS impact of blocked airspace.

4.0 DATA SOURCES AND SCOPE
This research is relevant to locations worldwide; however, due to data and resource limita-
tions, it has been confined to airspace in the continental U.S. airspace only, specifically to a
region bounded by latitude 10N–50N and longitude 40W–160W. Note that since the key
approach discussed in this paper relies on heuristic methods and historical traffic patterns, it
would need to be adapted for use elsewhere, as these will vary from one region to another.

The data source used to generate historical track data is Aircraft Situation Display to
Industry (ASDI) feed provided by the Traffic Flow Management System (TFMS) as a System
Wide Information Management (SWIM) service. The feed allows real-time air traffic data to
be disseminated to members of the aviation industry and includes aircraft scheduling, routing,
and positional information covering flights traversing the scope of this study. It does not
contain the flights using Visual Flight Rules or military flights.

The actual flown track data are generated using the track position report (TZ) messages and
is augmented by the oceanic messages (TO) for portions of track that are over the ocean in the
non-radar airspace. In the event a gap of more than 20 min is present between two nodes, an
interpolated node is inserted, along with the great circle path, in the middle at the same
altitude as the prior one to ensure continuity in the track.

The historical track data comprising all tracks from 2011 to 2016 is used in this study.

5.0 DATA REDUCTION AND ENCODING SCHEME
A key objective of this research is to achieve the ability to get instantaneous metrics on the
NAS impact of blocking an arbitrary airspace, for any length of time. This requires that the
historical and projected traffic information be stored in a geocode data structure, which when
combined with blocked airspace co-ordinates and activation time is able to produce the NAS
impact metrics.
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There are readily available aggregated historical track data sets including the number of daily
flights between city pairs. This data set will not suffice as the flights between a city pair may
follow different paths. For example, Fig. 1 shows flight paths from New York’s John F.
Kennedy Airports to Miami International Airport on 3 March 2017. A blocked airspace located
at positions A, B, or C will impact a different number of flights, as is evident from the figure.
The variation in the number of impacted flights will rise for longer distance flights, as there may
be more routes connecting the origin and destination and a larger range of flight durations.

It is apparent that the track data needs to be collected between points that are nearer and do
not have multiple paths between them. We use fixes and waypoints along tracks to aggregate
tracks. These are more closely spaced, with well-known points common to many flight paths.
A flight track is split into several ‘route segments’, each bounded by a pair of nodes that are
typically fixes and/or waypoints.

An aircraft’s flight plan can be a starting point to splitting a track, as it has the intended
route of a flight in terms of fixes and waypoints. In practice, however, the path deviates
significantly from the flight plan. Analysis of track data from 1 August 2015, revealed that
33% of flights deviated from the last filed flight plan by 25 nautical miles (NM) or more. To
address this, the actual flight track is snapped to the closest fixes and waypoints it passes over,
in effect reverse engineering the flown flight plan. Since fixes and waypoints are generally not
available over oceans, a grid of intersection points one degree apart (going north-south and
east-west) is created to cover such locations. In addition, since the set of fixes and waypoints
in use changes over a long period (6 years used in this study), only currently used fixes and
waypoints are used to create route segments.

After the tracks are split into route segments, the number of times each route segment is
traversed every hour is recorded as its ‘traffic density’; a collection of traffic density for all the route
segments make up a route segment density map. Finally, an algorithm to assess traffic blocked by
any arbitrary airspace projected over the route segment density map is developed and tested.

Figure 1. (Colour online) Flight paths from JFK to MIA on 3 March 2017.
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To summarise, the following are the steps to reduce and encode track data to support ‘what-
if’ analysis capability:

▪ Create a database of nodes of frequently used fixes, waypoints, and one-degree latitude
and longitude grid points.

▪ Align flight tracks to the nodes to infer the flown flight route and generate route segments.
▪ Aggregate traversal of route segments by all the flights on an hourly basis to generate

route segment density map.
▪ Develop an algorithm to assess traffic blocked by any arbitrary airspace projected over the

route segment density map.

These steps are described in detail in the subsequent sections.

5.1 Generate database of nodes

The objective of this process is to generate a database of nodes that is granular enough to capture
prevailing air traffic patterns and contains usage frequency information. The aeronautical navi-
gation database (from sources such as National Flight Data Center) does not contain usage fre-
quency, whichmakes it inadequate for our purpose. To generate this database, flight plans of flights
from 2011 to 2015 were parsed to get the nodes (mostly fixes and waypoints) specified in the plans
and their usage frequency. Airways and jetways were expanded to the individual waypoints and
fixes in the process. The nodes were further classified on the frequency of use as high usage
(97.5 percentile or higher), medium usage (90.0–97.4 percentile), low usage (75.0–89.9 percentile),
and rarely used (below 75.0 percentile). This resulted in a large node’s data set (see Fig. 2 for a
sample, which shows high (red), medium (blue), and low (yellow) usage count nodes).

Figure 2. (Colour online) Nodes bound by 25N–31N and 77W–81W.
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To account for low coverage in the oceanic areas due to the absence of fixes and way-
points, a 1 × 1 degree grid was generated, and each intersecting point was stored as a synthetic
node. All the nodes, their locations, usage class, and type are stored in the database of nodes,
which is later used to align flown tracks to the route segments.

5.2 Infer flown flight route

The goal of this step is to infer the route that a flight flew, within a specified tolerance limit on
the allowed deviation from the actual path. To ensure that the inferred path is close to the
actual, we limited the maximum deviation between them to be less than 10NM, and the
distance between two nodes on the flown plan to less than 150NM.

The first step of this process is to check if the flight path generated using the filed flight
plan (or amendments) is within the tolerance limit of maximum deviation of 10NM from the
actual path. The maximum deviation is computed as the maximum perpendicular distance
from the nodes on the actual flown path to the closest point on the inferred flown flight plan
path (see Fig. 3, in which the maximum deviation is the perpendicular distance of the inferred
flight plan path from its flown path node A2). Results from this test indicated that the majority
of flights deviated from the flight plan by more than 10NM (for example, analysis of flights
on 1 August 2015, showed 59% deviated more than 10NM and 33% deviated more than
25NM). To address this, an algorithm that aligns the deviated section of the flight plan-based
path to the flown path is developed.

Steps in this algorithm are the following:

1. Start with the flight path generated using the filed flight plan.
2. Traverse nodes in the flight plan path to identify the starting and ending nodes that

deviate more than 10NM from the actual path.
3. Locate the points on the flown path that are closest to the identified deviated starting

and ending node. Construct a corridor 10NM across between starting and ending
points.

Figure 3. (Colour online) Deviations of flown path nodes from inferred flight plan path.
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4. Search for nodes from the generated database of nodes within this corridor, starting with
high usage ones. Repeat the search for medium, low, and synthetic nodes in that order.
Stop the search when connecting nodes less than 150NM apart are located.

5. Replace the deviated nodes with the ones found in the corridor to get an aligned
flight path.

6. Repeat steps 3–5 for other disconnected deviated sections.

Figure 4 illustrates steps 3–5. Section F2–F4 of the flight plan path has deviated from the
flown path. A corridor is created over the flown track between points corresponding to nodes
F2–F5 (corridor is shown in green). The fixes and waypoints (nodes) within the corridor are
used to construct a path that is closely aligned with the flow track (path shown in dash yellow
lines).

5.3 Generate route segment density map

The flown flight plan track generated from the previous step connects origin to destination
using segments (also referred to as ‘route segments’) defined by the nodes in the database. In
this step, the number of traversals over every route segment is aggregated on an hourly basis.
Note that since flights can traverse a segment in both directions, a bidirectional usage count is
kept. If the hour of the day changes while a flight is moving across the segment, the hour span
with most of the traversal time is chosen. Table 1 shows the top 20 busiest route segments in
the continental United States on a sample day of 4 January 2015, between hours 15 and 16
UTC. Route segment ‘IAH.BOTLL’ had 26 aircraft traverse in the direction of node IAH to
node BOTLL, reflecting high usage of this segment connecting the Houston International
Airport (IAH) to the departure fix (BOTLL). Similarly, there was a high number of arrivals
using the fix APPLE into the LaGuardia Airport (LGA) in New York (route segment
‘APPLE.LGA’).

Additional metadata including a mix of different airlines, the proportion of international
flights, and general aviation flights may also be stored along with the route segment traffic
density to provide supplementary information. Figure 5 visualises the route segment density
map for route segments with hourly usage of five or higher across the continental United
States.

Figure 4. (Colour online) Aligning flight plan based path to flown path.
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Table 1
Sample route segments with bidirectional usage count

Route segment Forward count Reverse count

IAH.BOTLL 26 0
APPLE.LGA 23 0
DOSBE.IKICO 20 0
CEDOX.DOSBE 19 5
BOTLL.FLYZA 19 0
JOHNS.FOSSE 19 0
FOSSE.CEDOX 19 0
IAH.SHAAK 19 0
DVR.KONAN 19 0
IKICO.CLT 19 0
FRWAY.TUNNE 18 0
FLCON.DIRTY 17 0
HYDRR.PHX 17 0
MCO.ORL 17 0
SHAAK.BNDTO 17 0
ERLIN.ATL 16 0
RMG.ERLIN 16 0
FRNCH.SKARF 16 4
DIRTY.ATL 16 0
SKARF.TOMSN 16 0

Figure 5. (Colour online) U.S.-wide route segments with hourly usage count of five or higher.
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5.4 Assess NAS impact of blocking arbitrary airspace

The route segment density map enables instantaneous assessment of the impact of blocking an
arbitrary airspace. This is accomplished by considering the bidirectional traffic density of the
route segments impacted by the blocked airspace. For cases where the airspace is not blocked
for the entire hour, the impact is assumed to be distributed linearly across the hour and is
apportioned accordingly.

To test the efficacy of the Route Segment Density map in assessing the impact of blocked
airspace, five areas of airspace, distributed throughout the continental United States as shown
in Fig. 6, were used. The areas of airspace were placed in areas of relatively high traffic and
oriented across the direction of flow.

Table 2 provides the co-ordinates and activation time (time during which the airspaces
were blocked).

Using actually flown tracks, the number of flights intersecting the five test airspace during
the time they were active was compared to the ones using the Route Segment Density map for
the entire year of 2016, resulting in a total of 366 comparisons. The results, depicted in Fig. 7,
show a close alignment between the actual number of impacted flights and the assessment
made using the Route Segment Density map.

In another analysis, the assessed impact number was correlated to the actual impact
numbers for all the areas of airspace. The results depicted in Table 3 show a strong correlation
between the two.

These results indicate that the Route Segment Density map is an efficient way to reduce
track data to perform instantaneous impact assessment. While there is some loss in
accuracy due to multiple steps involved in generating the Route Segment Density map, it is
not significant. An interesting observation from the results in Table 3 is that the data
reduction for the North-West Airspace introduced higher error (indicated by lower cor-
relation). There may be multiple reasons for this, such as lower conformance of flown path
(compared to the filed flight plans) or less availability of available fixes to align the track
to the actual path.

Figure 6. (Colour online) Test areas of airspace placed across the continental United States.
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6.0 AIR TRAFFIC PROJECTION MODEL
Air traffic expected to flow through an airspace is influenced by several factors. These include
the flight schedules; time of the day and seasonal pattern; effect of weather events such as
thunderstorms, fog, low visibility conditions, wind speed, and direction; temporary capacity
constraints such as construction on a runway or problems with radars; special events and
military operations requiring closure of SUA; changes due to mechanical issues with aircraft;
avionics capabilities of the aircraft; and air traffic control techniques used by the controllers.
Most of these factors and their impact on the traffic flow are not known ahead of time. Flight
schedules are published in advance; however, they do not include general aviation which
makes up approximately 20% of U.S. traffic. Moreover, the schedule data do not contain the
expected path (trajectories) of the flights, which is needed for modelling the impact of
blocked airspace. For the near-term future (4–8 h), it is possible to predict flight trajectories
based on the filed flight plans and the available weather and wind forecast. However, in this
research, we are targeting predicting traffic for a relatively long-term time horizon (up to
12 months in future) at a high level of time granularity (hourly), and for this, there are no clear
predictors of the future traffic pattern.

The approach to predicting traffic used in this research applies heuristic methods to his-
torical traffic patterns. Since traffic in the NAS is influenced by several factors that cannot be
known in advance, projection estimates are produced as a range of likely low to likely high
values along with the mean, instead of a single value, which is unlikely to be accurate.

Table 2
Test airspaces co-ordinates and activation times

Airspace Co-ordinates Activation times

East Airspace 3629N, 8018W 1600–1800 UTC
3600N, 8024W
3554N, 7509W
3630N, 8028W

Florida Airspace 2505N, 8214W 1600–1800 UTC
2505N, 7905W
2440N, 7907W
2440N, 8211W

Centre Airspace 4151N, 9936W 1600–1800 UTC
4148N, 9855W
3832N, 9849W
3836N, 9931W

North-West Airspace 4500N, 12500W 1600–1800 UTC
4500N, 12000W
4430N, 12000W
4430N, 12500W

West Airspace 3431N, 11514W 1600–1800 UTC
3431N, 11430W
3111N, 11430W
3111N, 11514W
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Figure 7. (Colour online) Actual intersection vs based on route segment density map for the test
airspace areas.
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The model essentially produces an estimate of the range of likely impact of blocking an
airspace for the given length of time, based on historical traffic pattern at that location.

The traffic predictions from this model are encoded in the Route Segment Density map data
structure described earlier, to enable ‘what-if’ analysis for predicted impact.

To summarise, the steps involved in developing this model are the following:

• Analyse the historical traffic of the continental U.S. airspace to uncover traffic patterns.
• Develop a traffic projection model based on the results of this analysis.
• Encode the projection model into the Route Segment Density map to enable its use in a

‘what-if’ analysis paradigm.

These steps are described in detail in the sections that follow.
To assess the accuracy of the model, its results are compared to an alternate method of

projection. The track data from the years 2011 to 2015 is used to develop the model to project
for the year 2016.

6.1 Analyse historical traffic pattern in the continental U.S. Airspace

To analyse the historical traffic pattern in the continental United States, three areas of airspace
are chosen at different locations, as shown in Fig. 8. These areas of airspace span approxi-
mately 100NM and are oriented across the direction of traffic flow at that location, and
together are considered to reflect the traffic pattern observed in the continental United States.

Air traffic within a specific airspace within the NAS changes from one moment to the next,
and needs to be aggregated by a time unit for analysis. This unit of aggregation is a key factor
to consider when uncovering historical air traffic patterns. For example, aggregation could be
daily (consider the historical behaviour of all flights crossing an airspace during a day such as
1 March 2016), monthly (consider the historical behaviour of all flights crossing the airspace
during a month, such as March 2016), and so on. The unit of aggregation should be suffi-
ciently granular to capture the traffic pattern without being noisy.

Flights for the West Airspace (see Fig. 8) aggregated daily over years 2010–2015 are
shown in Fig. 9. The chart below appears very noisy and not suitable to uncover traffic
patterns.

When aggregated monthly (see Fig. 10), the traffic plot appears flat with no pattern.
These results point to a need to consider a unit of aggregation between daily and monthly,

that is at a weekly level. The weekly numbers begin at the start of the year; for example, week

Table 3
Correlation between actual impacts and those based on route segment

density map

Airspace R 2

East Airspace 0.983004
Florida Airspace 0.948678
Centre Airspace 0.938896
North-West Airspace 0.866413
West Airspace 0.948552
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Figure 8. (Colour online) Airspaces chosen to proxy the U.S. air traffic pattern.

Figure 9. (Colour online) Flights aggregated daily for West Airspace during the years 2010–2015.

Figure 10. (Colour online) Flights aggregated monthly for West Airspace during the years 2010–2015.
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number 1 is the set of the first 7 d of the year. Since a set of seven consecutive days represents
all the days of the week, weekly aggregation cancels the effect of ‘day of week’ variation and
appears to be a good candidate.

Figures 11–13 show the weekly traffic pattern for the three areas of airspace. The charts
reflect the seasonal traffic trends, especially pronounced in Florida (see Fig. 12) and are not
noisy. Based on these observations, weekly aggregation is chosen, as it is granular enough for
a pattern discovery without being too noisy.

The charts above also indicate that the traffic flowing through the selected areas of airspace
did not significantly change between years 2010 and 2015. A separate analysis revealed an
average yearly growth of 2.75% during this time.

Based on the analysis above, and because air traffic tends to follow a weekly pattern, the
projection model uses week number and day of the week to correlate historical days to the day
to be projected. To capture the past seasonal traffic trend, the model additionally selects same
weekday from 2 weeks before and 2 weeks after the week of the day being predicted from the
previous 6 years (see the shaded section in Fig. 12), thus selecting 30 (5 days in each of past
6 years) historical days in total. The distribution of traffic in the selected historical days is
used to arrive at the mean and likely low and high values of projected impact.

To summarise, steps to project for day Dp, at hour Hp occurring in week number Wp in the
year Yp are:

Figure 11. (Colour online) Flights aggregated weekly for West Airspace during the years 2010–2011.

Figure 12. (Colour online) Flights aggregated weekly for Florida Airspace during the years 2010–2011.
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a. From the previous year (Yp − 1), select five historical days from the week numbers Wp − 2
to Wp + 2, which are the same day of the week as Dp.

b. Repeat the above steps for the previous 5 years (Yp − 6) to (Yp − 2), to get a total of 30
historical days.

c. Use distribution of impact for these historical days to project the impact for Dp; 25 per-
centiles and 75 percentiles are used as the low and high bounds and mean as the impact.

d. Hourly impact numbers are based on average impact during the hour Hp for the 30
selected historical days.

e. A multiplication factor of 1.0275 is applied to all metrics to reflect the historical grown
rate of 2.75%.

For example, the traffic prediction for 1 March 2016, at Cape Canaveral (Tuesday
occurring in week number 9) is based on the distribution of the traffic on Tuesdays during
week numbers 7, 8, 9, 10, and 11 for the years 2011–2015.

6.2 Predict future traffic during holidays

Holidays such as Christmas Day or Memorial Day change the air traffic pattern. Certain
holidays, such as Memorial Day and Thanksgiving Day, fall on the same day of the week
every year, and historical traffic patterns can be readily applied to these. Others, such as
4 July, may fall on a different day of the week every year, and the traffic pattern in that year
will depend on a specific day, particularly in relation to the weekend. To uncover the holiday
traffic pattern, the days relative to the holidays are compared for the years 2010–2014.
Figure 14 shows the percentage variance in traffic from a 60-day mean around Thanksgiving
Day for the Florida Airspace. Days relative to Thanksgiving Day are labelled as
‘T±<relative day>’, for example T – 1 means the day before Thanksgiving.

The figure shows that the Wednesday before and Sunday after Thanksgiving Day tend to
be busy, while day after Thanksgiving is light in traffic across all the years.

Figure 15 shows the percentage variance in traffic from a 60-day mean around 4 July for
the Cape Canaveral site. The chart shows no specific trend, since 4 July may fall on a different
day of the week each year, which in turn influences overall traffic trends (i.e. a Wednesday
holiday may not produce increased demand whereas a Monday or Friday holiday may).

For holidays, that fall on the same day of the week (such as the Thanksgiving Day), the
model selects historical days that are same relative days compared to the holiday. For other
holidays, no special processing is used.

Figure 13. (Colour online) Flights aggregated weekly for north-east airspace during the years 2010–2011.
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In this model, the holidays during which unusual traffic is anticipated are the following:

▪ Memorial Day
▪ Labour Day
▪ Thanksgiving Day
▪ Christmas Day

6.3 Adapt projection model for use in the route segment density map

The projection model described above needs to be encoded in the Route Segment Density
map to support an on-demand projected impact assessment capability. The impact assessment
model used to assess historical impacts described earlier can then be used to assess future
impacts as well.

In Section 4 (Data Reduction and Encoding), bidirectional traffic traversing route segments
is aggregated to generate a Route Segments Density map of the historical traffic. Route
segments can also be used to store the projected bidirectional traffic density to generate a
Projected Route Segment Density map. The projected traffic density of a route segment can

Figure 14. (Colour online) Historical traffic patterns during Thanksgiving.

Figure 15. (Colour online) Historical traffic pattern during 4 July.
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be derived based on the projection model described above (i.e. by using the distribution of its
usage across 30 historical days selected by the projection model).

One potential issue with this approach is that fixes and waypoints used by traffic in an area
may change (or fixes can be renamed) over a period (6 years is used for this research). This
would result in a route segment not appearing in all the past years, thus resulting in less than
30 days’ sample data to project for that route segment. Table 4 shows historical days that had
the flight counts for the busiest 20 route segments (shown earlier in Table 1). Analysis of
route segments in the top 2.5 percentile (450 route segments) in terms of usage showed an
average number of historical days to be 23.8, which is considered acceptable for this model.
Section 8 discusses other approaches that can improve the model sample size.

Since usage patterns of fixes and waypoints change over time, route segments used in the
year prior to the projected year are used to make the projections.

To summarise, steps to project for day Dp, at hour Hp occurring in week number Wp in the
year Yp are the following:

a. Select the surrogate day Ds from the previous year (Yp − 1) as one that is the same day of
the week as Dp and in the week number Wp.

b. For each route segment in the Route Segment Density map for day Ds, get the distribution
of the traffic density for historical days using the traffic projection model. Fewer than
30 days may be selected, as discussed before.

Table 4
Frequency of route segment appearing in 30 historical days selected by the

projection model

Route segment Forward count Reverse count Historical days used

IAH.BOTLL 26 0 5
APPLE.LGA 23 0 30
DOSBE.IKICO 20 0 30
BOTLL.FLYZA 19 0 5
CEDOX.DOSBE 19 5 30
DVR.KONAN 19 0 30
FOSSE.CEDOX 19 0 30
IAH.SHAAK 19 0 5
IKICO.CLT 19 0 30
JOHNS.FOSSE 19 0 30
FRWAY.TUNNE 18 0 30
FLCON.DIRTY 17 0 26
HYDRR.PHX 17 0 21
MCO.ORL 17 0 30
SHAAK.BNDTO 17 0 5
DIRTY.ATL 16 0 10
ERLIN.ATL 16 0 10
FRNCH.SKARF 16 4 15
RMG.ERLIN 16 0 26
SKARF.TOMSN 16 0 15
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c. Compute the mean value, 25 percentile, and 75 percentile values as the range of projected
traffic density for that route segment.

d. Repeat steps b and c for each hour of the day, to store it in the Projected Route Segment
Density map.

e. The Projected Route Segment Density map can be used to project traffic for any blocked
airspace based on segments that intersect the airspace.

The projection model encoded in the Route Segment Density map uses the distribution of
route segments in the previous years to generate mean, low, and high estimates of predicted
impact. Using a value based on a large sample size reduces the effect of outliers in the
historical usage counts.

6.4 Preliminary results of using the projection model and discussion

There is innate randomness in the traffic pattern in the NAS, which will limit the accuracy of
any projection model to predict it. This model targets relatively long-term horizon of
12 months and at 1-hour granularity, and is not expected to yield high-fidelity results. Pre-
processing and reducing data to make the model suitable for use in a ‘what-if’ analysis
capability will further degrade its results. The approach used to assess the efficacy of this
model is to compare its results with an alternate traffic projection model, as well as with
observed impacts based on actual flight paths. The model is developed using historical traffic
from the year 2011 to 2015, the tracks from 2016 are used to assess the results.

The following comparisons are performed:

• Comparison to a projection model that uses TAF5 average (2.0%) growth applied to the
previous year’s traffic as a proxy for the next year.

• Comparison of trends of the moving average of actual impacts to the moving averages of
projected low and high values for the year.

• Percentage of times the actual impact values fall within the predicted low to high range.

All the comparisons are performed on a set of test airspace areas listed in Table 2.

6.5 Comparison with projection based on the previous year
traffic model

The ‘truth’ data are first generated as the daily number of flight tracks intersecting the test
areas of airspace (see Table 1) to arrive at a total of 365 data points (29 February is ignored)
for the year 2016. These are termed ‘Actual’ intersections.

Next, the projection using the previous year traffic model is generated. This model projects
by applying a growth factor to the prior year traffic. The daily traffic in the year 2015 is used
to find the number of flights that will intersect the test areas of airspace. A growth factor of
2.0% is applied to the result to arrive at 365 projections for the year 2016. These projections
are termed ‘Prior-year based’. The difference between actual and projected value (actual
minus projected) is a measure of error.

5 Projected National Rate of Enplanement as per FAA’s TAF available at: https://www.faa.gov/data_research/
aviation/taf/media/taf_summary_fy2014-2040.pdf.
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Finally, the model is used to project demand for each day in 2016, where these projections
are termed ‘Model-based’. The difference between actual and model projected values is a
measure of error for the model; this is compared to observed error for the Prior-year-based
model, and results are shown in Table 5.

The results show that the Model-based projections are consistently more accurate than the
Prior-Year-based projections, indicated by lower mean and standard deviation of error for all
of the areas of airspace.

6.6 Comparison of trends of actual vs estimated range

Seven-day moving averages of actual intersections are plotted along with moving averages of
low and high estimates of the model for all test areas of airspace in Fig. 16.

The charts show that estimated range values follow trends similar to actual impacts, and in
most cases, the moving average of actual values falls within the estimated range.

6.7 Accuracy of estimated range

Table 6 shows the percentage of actual flight intersection falling in the projected range in the
365 projections made for the year 2016.

The results in Table 6 show that the estimated range in most cases covers the actual flight
intersections.

Note that this is effectively a sensitivity study – future study is to evaluate the sensitivity of
model performance to variations in constraint parameters. The test areas of airspace are
approximately 200NM in span and oriented perpendicular to the direction of traffic. Pro-
jection of blocking airspaces of different size, shapes, and locations may produce different
results. Another variable is the activation time; changing it from the current value of 2 h may
result in the different performance of the model.

7.0 IMPLEMENTATION
An important goal of this research is to explore the feasibility of the model in providing an
instantaneous impact assessment of arbitrarily defined airspace using a ‘what-if’ analysis
paradigm. To accomplish that, the projections were generated and encoded in advance in a
pre-processing step, and a graphical user interface was developed to test the ability of the
model to support ‘what-if’ analysis.

Table 5
Comparison between prior-year based and model-based projection accuracy

Airspace
Mean (error) Std dev (error)

Model Prior-year Model Prior-year

East 3.48 −9.53 45.63 62.68
Florida −4.4 4.54 16.24 22.97
Centre 0.90 13.89 36.09 41.03
West −1.76 4.28 18.12 20.83
North-West −8.53 8.90 9.78 14.97
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Figure 16. (Colour online) Actual intersection vs. projected range for all test airspaces.
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7.1 Pre-processing to generate and encode projections

The model required multiphase processing of daily flight tracks spanning 5 years and gen-
erating the resulting Route Segment Density maps. Steps such as inferring flown flight plans
(see Section 5) are very compute-intensive, as they require geo-spatial queries over a large
database of nodes to align flight plan path to flown path. The team used a massively parallel
high-performance computing cluster with 896 nodes and 1 TB of disk to process the data and
fine-tune the model.

The Route Segment Density maps were stored in a geohash database to allow quick
responses to spatial queries and partitioning of the data to match user geographical view. The
size of Route Segment Density maps got reduced to approximately 45% of the original track
data, reflecting a significant data reduction.

7.2 Graphical user interface

A graphical user interface was developed to illustrate the proposed concept and capabilities.
This interactive, web-based interface is a prototype environment that allows the user to
conduct ‘what-if’ analysis, composed of a web application that provides a front-end user
interface using an AngularJS interface and a back-end Java web service interface using
Spring.

The front-end user interface provides key functionality for the user to configure impact
assessment parameters including date, hour, and the name of the blocked airspace region.
A user can view traffic density for the selected time on the Route Segment Density map and
can ‘draw’ airspace on the map. Two views shown are the ‘FAA View’ and the ‘Space
Operator View’ to provide different perspectives of the same capability to two different
stakeholders (see Fig. 17). The ‘FAA View’ provides flight-based metrics and airspace
analysis, whereas the ‘ Space Operator View’ is limited to display of colour-coded ‘impact-
levels’ of a specific space launch or re-entry operation.

Table 6
Percentage of actual values falling within the estimated range

East Florida Centre West North-West

Percent in range 81.4 82.4 79.7 96.7 88.5

Figure 17. (Colour online) Impact assessor FAA view (left) and space operator view (right).
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The back-end service handles requests from the interface using a REpresentational State
Transfer (REST) web service, which provides a uniform interface to the prediction model
capable of rapid assessment of air traffic impact to blocked airspaces. This design decouples
the server and client and enables underlying components, including the prediction model, to
be evolved independently of the service interface.

The impact assessment data are provided from the web service as a comma-separated value
(CSV) file, which is reformatted and parsed for display. D3 is used in conjunction with
Leaflet to provide both a geospatial mapping display and bar and pie charts displayed after
executing an analysis. That enables a user to ‘draw’ an airspace or load in predetermined
hazard areas onto a map to instantaneously get metrics and visualise a Route Segment Density
map over the intersecting airspace at a user-designated time. Mapping overlays are exposed
using Web Map Service (WMS)6 services, which include contextual charts including sec-
tional, and en route low and high charts.

The graphical user interface performed well and supported interactive impact analysis;
most queries were serviced within 3 s.

8.0 CONCLUSIONS AND FUTURE WORK
The rising tempo of activities by new entrants such as space vehicle operators is putting
increasing demands on the national aviation airspace. As air navigation service providers
(ANSPs) such as FAA seek to balance competing demands on the NAS safely and efficiently,
there is a need to research ways to increase transparency and collaboration in the use of
airspace among all stakeholders. This research is aimed at developing models and techniques
to project, up to 12 months in advance, the impact of blocking any airspace. An explicit goal
of this research is to enable the projection model for use in a ‘what-if’ analysis that is
accessible to a broad range of users with no prior knowledge of air traffic. Such a capability
will promote collaboration among all stakeholders and ANSPs. There are multiple challenges
in achieving these research goals. First and foremost are the innate uncertainties in factors
affecting daily air traffic patterns and its lack of clear predictors. Another challenge is
enabling instantaneous response to the impact queries.

In this paper, we present an approach that uses historical traffic patterns to project future
NAS impact. We describe a data structure with encoded projection information to support
‘what-if’ analysis capability and assess the accuracy of the projection model as well as the
responsiveness of the web-based prototype based on the model. The results on the efficacy of
the data structure show that it is accurately able to represent the projected or historical traffic
flow crossing an arbitrary airspace. The initial results of the projection model show good
performance given the uncertainties of the traffic pattern, the robustness of this performance is
an area of continued work. Finally, the performance of the web-based prototype has
demonstrated the model’s ability to support ‘what-if’ analysis of the impact of blocking
airspaces.

The main limitation of the projection model is that it is based on the yearly traffic pattern
within the U.S. airspace. It needs to be adapted to other geographical locations as the traffic
growth trend and the impact of holidays on it will be different at those locations. In addition,
any planned future changes in route structures will impact the also accuracy of the model.

6 WMS is OpenGIS standard, information at http://www.opengeospatial.org/standards/wms.
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Finally, the model cannot be used to answer queries such as the benefit of opening a special
use airspace which has historically been always closed.

This research is ongoing, and other approaches to predicting impact are being explored. For
example, instead of using route segments, a 10NM grid might be used to capture historical
traffic patterns and to make projections. Doing so addresses the issue of changes in use of
fixes and waypoints. Another avenue being considered is to use the flight schedules for
predictions in the near-term range of 3–4months. Enhancements to the functionality and
features are also being researched. These include assessment of extra distance and delay as an
additional impact metrics, the ability to assess the impact of multiple airspaces of the same
time or of differing time windows, including altitude attributes for an airspace (floor and
ceiling), and extending the model to locations worldwide.

DISCLAIMER
The contents of this document reflect the views of the author and The MITRE Corporation
and do not necessarily reflect the views of the Federal Aviation Administration (FAA) or the
Department of Transportation (DOT). Neither the FAA nor the DOT makes any warranty or
guarantee, expressed or implied, concerning the content or accuracy of these views.
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