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GREY SUBSETS OF POLISH SPACES

ITAÏ BEN YAACOVAND JULIEN MELLERAY

Abstract. We develop the basics of an analogue of descriptive set theory for functions on a Polish
space X . We use this to define a version of the small index property in the context of Polish topometric
groups, and show that Polish topometric groups with ample generics have this property. We also extend
classical theorems of Effros and Hausdorff to the topometric context.

Introduction. Work on this paper initially started as a follow-up to [3], in which
we introduced the notion of aPolish topometric group, and defined a notion of ample
generics in that context.
Recall that a Polish metric structure M is a complete, separable metric space

(M,d ), along with a family (Ri)i∈I such that each Ri is a uniformly continuous
map from someMni toR. (Onemay also allow symbolsfj for uniformly continuous
functions from Mmj to M . However, any such function is equally well coded by
(x̄, y) �→ d

(
fj(x̄), y

) ∈ R, so no generality is gained. In particular, a constant,
or zero-ary function, c ∈M , is coded by d (·, c).) The automorphismgroupAut(M)
is made up of all the isometries of (M,d ) which preserve all the relations Ri . When
endowed with the pointwise convergence topology �, Aut(M) is a Polish group.
One can also consider the metric of uniform convergence ∂ defined by

∂(g, h) = sup
{
d (gm, hm) : m ∈M}

.

This metric ∂ is complete, bi-invariant, and in general not separable. It also refines �,
and is �-lower semi-continuous, i.e., the sets {(g, h) : ∂(g, h) ≤ r} are closed for
all r.
With this paradigm in mind, we define a Polish topometric group as any triplet

(G, �, ∂), where (G, �) is a Polish group and ∂ possesses the properties cited above.
Automorphism groups of Polish metric structures, and therefore Polish topometric
groups, are ubiquitous in analysis. Of particular interest to us are the unitary group
U(�2) of a complex separable infinite-dimensional Hilbert space, the group Aut(�)
of all measure-preserving isomorphism of a standard probability space, and the
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isometry group of the Urysohn space U. The first two structures in that list in
particular have natural, and well-studied, topometric structures: for instance, the
topometric structure on U(�2) is given by the strong operator topology and the
operator norm (since �2 is unbounded, the uniform convergence metric is calcu-
lated on its unit ball). The notion of ample generics for Polish topometric groups
involves an interplay between the topological and metric structures, and it was
shown that all three examples above have ample generics. This was applied to show
that Aut([0, 1], �), endowed with its usual Polish topology, has the automatic conti-
nuity property, i.e., any group homomorphism with source Aut([0, 1], �) and taking
values in a separable topological group must be continuous. This automatic conti-
nuity theorem was given a shorter proof, which also involves the use of the uniform
metric and the pointwise convergence topology, by Malicki in [10], where the small
index property of Aut([0, 1], �) is also investigated. Soon after [3] Tsankov [12] used
the existence of ample generics for U(�2) to show that it, too, has the automatic con-
tinuity property.We should note here that, very recently, Sabok [11] gave new proofs
of automatic continuity theorems for Aut([0, 1], �) and U(�2) which do not involve
topometric structure; his technique also allowed him to prove that the isometry
group of the Urysohn space satisfies the automatic continuity property.
Further study of topometric groups, and of ample generics in this context, leads
to an interesting phenomenon, or obstacle, namely that results which would, in the
usual Polish group context, be about sets, are naturally formulated in the topometric
context as results about functions. The reason behind this phenomenon is that in
the presence of a metric, one no longer asks whether two things are equal or not,
but rather, how far apart they are. Thus, for example, where one would consider
a set of the form

{
x : f(x) = g(x)

}
, we often find ourselves considering the

function x �→ d(f(x), g(x)) (or ∂(f(x), g(x)), depending on what the objects in
question are). Similarly, a point x is naturally represented by the function d (x, ·).
It is not always immediately clear, however, how statements should be translated
from the context of sets to that of functions.
In the beginning of this paper we develop the basics of descriptive set theory
in that context, where sets are replaced by grey sets, i.e., functions with values in
[0,+∞]. A rule of thumb which every such extension should satisfy is that, in the
particular case of functions only taking the values 0 and +∞, it should just boil
down to the usual statement regarding sets (where a set A is represented by its
zero-indicator 0A, see below). The first (and easy) task is to figure out the analogues
of open sets, closed sets, meagre sets, and so on, after which we extend a few basic
results of descriptive set theory to the grey setting. Having thus argued that such an
approach can be made to work, we focus on the case of Polish groups, introducing
in particular a semi-group structure on grey sets. Using this semi-group structure,
one can see that the analogue of a subgroup in our context (i.e, a grey subgroup) is
a semi-norm on G , i.e., a map H such that

• H (1) = 0,
• ∀g ∈ G H (g) = H (g−1),
• ∀g, g ′ ∈ G H (gg ′) ≤ H (g) +H (g ′).
Such a function H naturally defines a left-invariant pseudometric dH on G ,
defined by dH (g, h) = H (g−1h), and the index ofH is simply the density character
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of the metric space obtained when identifying points g, h such that dH (g, h) = 0.
A “grey” analogue of the small index property would then be: wheneverH is a left-
invariant pseudometric on G with density character < 2ℵ0 , H must be continuous
with respect to �. This version implies immediately the classical version of the small
index property, as well as automatic continuity, and in fact can be shown to be
equivalent to the latter. A topometric version thereof must take ∂ into account
(or else be too strong), and one is led to the following statement, which is one of
our main results.

Theorem 3.6. Assume that (G, �, ∂) is a Polish topometric groupwith ample gener-
ics, and that H is a semi-norm on G which is Baire-measurable with respect to ∂ and
has density character < 2ℵ0 . Then H is continuous with respect to �.

We say that a topometric group satisfying the conclusion of the above theorem
has the small density property. It is important to note that the above result can also
be obtained from one of the main results of [3] and in that sense is not new. That
said, the version presented here implies the said result of [3] in a trivial manner,
and moreover, the “grey approach” renders possible a more streamlined proof.
We therefore contend that the grey approach is a better presentation of the theory.
We then use our techniques to establish a topometric version of a theorem due

to Effros, which states (among other equivalent conditions) that, if G is a Polish
group acting continuously on a Polish space X and x ∈ X has a dense orbit, then
Gx is co-meagre if and only if the map g �→ gx is open from G to Gx. One of
the implications in this theorem is a direct consequence of Hausdorff’s theorem
stating that an open, metrisable image of a Polish space is Polish. After obtaining a
topometric version of Hausdorff’s theorem (Theorem 5.1 below), we establish the
following result, the proof of which requires the machinery of grey sets.

Theorem 5.2. Let (X, �, ∂) be a Polish topometric space and G a Polish group
acting continuously on X by �-homeomorphisms and ∂-isometries. Assume that
(U )∂<r = {x ∈ X : ∃u ∈ U ∂(x, u) < r} is open in X for any open subset U
of G and any r > 0, and that x ∈ X is such that Gx is dense. Then the following
conditions are equivalent:

(i) Gx
∂
is G� .

(ii) Gx
∂
is co-meagre.

(iii) For any open subset U of G and any r > 0, (Ux)∂<r is open in Gx
∂
.

(iv) There exists y ∈ Gx∂ such that, for any open subset U of G and any r > 0,
(Uy)∂<r is open in Gy.

Note that the condition that (U )∂<r is open in X for any open U and any
r > 0 is always satisfied when G is a Polish group and X = Gn equipped with
its natural topometric structure; hence, the previous theorem applies in particular
to the case when G acts on Gn by diagonal conjugation. Also, since (Ux)∂<r =
U ({x})∂<r , this result is indeed an illustration of the fact that, when moving to
the topometric setting, one replaces the notion of “point” by that of “point up to a
small, uniform error”, which is the information contained in the distance function to
the point.
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§1. Grey sets. We recall that the classical setting for descriptive set theory is
that of Polish spaces, i.e., separable metrisable topological spaces whose topology
is induced by a complete metric, or more generally that of completely metrisable
topological spaces. Our aim is to “do some topology”, or descriptive set theory,
where instead of considering subsets of a topological spaceX we consider functions
on X , say valued in [0,∞].
Definition 1.1. By a grey subset of X , denoted A 	 X , we mean a function
A : X → [0,∞].
If A and B are two grey subsets of X then we say that A 	 B, or A ≥ B,
if A(x) ≥ B(x) for all x. Consequently, we write �

Ai for x �→ supAi(x), and
similarly for

⊔
Ai , A�B, and A�B. We say thatA 	∗ B (respectively, A =∗ B) if

A(x) ≥ B(x) (respectively, A(x) = B(x)) outside a meagre set.
Notation 1.2. For any set A ⊆ X we define its zero-indicator

0A(x) =

{
0 x ∈ A,
∞ x /∈ A.

An ordinary set A ⊆ X can be viewed as a grey set by identifying it with its
zero-indicator.

1.1. Basic topology. We start with some basic topological notions. These reduce
fairly easily to the corresponding notions regarding ordinary sets, via the following
notation.

Notation 1.3. Given a function ϕ : X → [−∞,∞] and r ∈ R, we define ϕ<r ={
x : ϕ(x) < r

}
, and similarly for ϕ≤r , etc.

Recall that a function ϕ : X → [−∞,∞] on a topological space X is upper
(respectively, lower) semi-continuous if the set ϕ<r (respectively, ϕ>r) is open for all
r ∈ R.
Definition 1.4. Let A 	 X be a grey set.
(i) We say thatA is open (in symbols, A 	o X ) if it is upper semi-continuous as
a function. We say that it is closed (A 	c X ) if it is lower semi-continuous,
and clopen if it is both, namely continuous.

(ii) We say that A is G� if A≤r is a G� set for all r.
(iii) We say that A is meagre if A<r is meagre for some r > 0, and that it is

co-meagre if A<r is co-meagre for all r > 0, i.e., if A=0 is co-meagre.

We leave it as an easy exercise for the reader to check that a grey A is G� if
and only if it is equal to

�
On for a countable family of open grey sets On. Also,

it is clear that if A<r is G� for all r then A is G� , but the converse is false. Indeed,
let B : [0, 1]→ [0, 1] assign 1/m to a reduced rational n/m and 0 to all irrationals,
and let A = 1 − B. Then A≤r is either finite or all of [0, 1], and in any case G� ,
but A<1 = Q ∩ [0, 1] is not.
Convention 1.5. When doing arithmetic in [0,∞], let us agree that∞−∞ = 0.
Recall also that t −. s = max(0, t − s), which we extend by this convention to all
t, s ∈ [0,∞].
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With this convention, A 	∗ B (respectively, A =∗ B) if and only if B −. A
(respectively, |A− B|) is co-meagre.
For example, 0A is open, i.e., upper semi-continuous (respectively, closed, i.e.,

lower semi-continuous) if and only if A is open (respectively, closed), 0A 	 0B if
and only if A ⊆ B, and so on. For grey sets, we have A 	 X if and only if A 	 0X ,
and if Ai are all open (respectively, closed) then so is

⊔
Ai (respectively,

�
Ai).

Onemay restrict grey subsets to values in [0, 1] (in which case we define 0A(x) = 1
when x /∈ A), or extend to [−∞,∞]. Since these are isomorphic ordered sets,
equipped with the order topology, choosing one or the other has essentially no
effect on most of our results.

Definition 1.6. Let A 	 X .
(i) We define A◦, the interior of A to be the least u.s.c. B greater than A.
(ii) We define A, the closure of A to be the greatest l.s.c. B less than A.

One can check that⊔
{B 	o X : B 	 A} = A◦ 	 A 	 A =

�
{B 	c X : B � A},

A◦(x) = lim sup
y→x

A(y), A(x) = lim inf
y→x A(y),

(A◦)<r = (A<r)◦, (A)≤r = (A≤r).

It follows immediately that for any family (Ai)i∈I of grey subsets of X , one has�
i Ai 	

�
i Ai and

(⊔
i Ai

)◦ � ⊔
i A

◦
i , and similarly A � B = A � B , (A � B)◦ =

A◦ � B◦.
Another notion which transfers without much pain to the grey context is Baire

measurability. Throughout the rest of this section, let X denote a completely
metrisable topological space (not necessarily separable). For all the basic facts and
theorems of descriptive set theory we use below, we refer the reader to Kechris [8].
WheneverA,B ⊆ X andA\B is meagre inX wewriteA ⊆∗ B, and ifA ⊆∗ B ⊆∗ A
then we write A =∗ B. A subset A ⊆ X is called Baire-measurable if there exists
an open set U such that A =∗ U . The family of all Baire-measurable sets forms a
�-algebra which contains all open sets and therefore all Borel sets. We recall:

Fact 1.7 (see [8, Theorem 8.29]). When X is completely metrisable, we define

U (A) =
⋃{
U open in X : U ⊆∗ A

}
.

This is an open set, it is always the case thatA ⊇∗ U (A), andU (A) is the largest open
set with this property. The set A is then Baire-measurable if and only if A =∗ U (A),
if and only if A ⊆∗ U (A).
The following is easy and left to the reader.

Lemma 1.8. LetA,B 	 X be two grey sets. ThenA	∗ B if and only ifA<r ⊆∗ B≤s
for every rational r < s , if and only if A<r ⊆∗ B<r (A≤r ⊆∗ B≤r) for all r.
Lemma 1.9. Let A be a grey subset of X , and define

U (A) =
⊔{
O 	o X : O 	∗ A

}
.

ThenU (A) 	∗ A,U (A) is the least u.s.c. function (namely,	-greatest open grey set)
with this property, and the following are equivalent:
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(i) We have A 	∗ U (A).
(ii) We have A =∗ U (A).
(iii) There exists an open grey set B such that A =∗ B.
(iv) As a function, A is Baire-measurable.

Proof. We make free use of Fact 1.7 and Lemma 1.8. Let U ′(A) be the open
grey set defined by U ′(A)<r =

⋃
s<r U (A<s ), and let us show that U

′(A) = U (A).
Indeed, for each r we have

⋃
s<r U (A)<s = U (A)<r ⊆∗ A<r , whereby U (A)<r ⊆

U (A<r) and thereforeU (A)<r ⊆ U ′(A)<r , i.e.,U (A) 	 U ′(A). Conversely, we have
U ′(A)<r ⊆ U (A<r) ⊆∗ A<r , so U ′(A) 	∗ A and therefore U ′(A) 	 U (A).
Thus U (A) = U ′(A) 	∗ A, and it is clearly 	-greatest. Now,
(i) =⇒ (ii) =⇒ (iii). Clear.
(iii) =⇒ (iv). If such B exists then B<r =∗ A<r for all r. It follows that A<r is a

Baire-measurable set for all r, i.e., A is a Baire-measurable function.
(iv) =⇒ (i). Assume that A<r is a Baire-measurable set for all r. Then A<r ⊆∗

U (A<r), and thereforeA<r =
⋃
s<r A<s ⊆∗ ⋃

s<r U (A<s ) = U (A)<r . It follows that
A 	∗ U (A). �
Notice that if A is meagre then inf U (A) > 0. If A is, in addition,
Baire-measurable, then by Lemma 1.9 the converse holds as well.

Lemma 1.10. A grey set B 	 X is G� if and only if there exists a countable family
of On 	o X such that B =

�
n On. Moreover, if A and B are open or closed then

A+ B and A−. B are G� .
Proof. Assume that B is G� . For each rational r > 0, let B≤r =

�
n Or,n, where

Or,n ⊆ X are open, and letO′
r,n = 0Or,n + r 	o X . Then B =

�
r,n O

′
r,n. The converse

implication is immediate.
For the moreover part, observe that

(A+ B)≤r =
⋂
s+t>r

A≤s ∪ B≤t , (A−. B)≤r =
⋂
s−. t>r

A≤s ∪ B≥t ,

and similarly with any of ≤, ≥ replaced with <, >. �
1.2. Relative topology. We now turn to somewhat more involved aspects of grey
set topology, which do not reduce to the corresponding properties of sets, namely
closure and interior relative to a grey superset.

Definition 1.11. For A 	 B 	 X , we define the relative closure of A in B as
AB = A�B. We say thatA is (relatively) closed inB, in symbolsA 	c B, ifA = AB .

Lemma 1.12. Let B 	 X .
(i) If C 	c X then C � B 	c B.
(ii) If (Ai)i∈I is a family of relatively closed grey subsets of B, then

�
i Ai is also

closed in B.
(iii) The grey set AB is the 	-least relatively closed grey subset of B containing A.
Proof. For the first item, C � B 	 C � B � B 	 C � B � B = C � B. For the
second, let D =

�
Ai . Then D = D �B 	 D �B 	 �

(Ai �B) = D. For the third
item, we haveAB 	c B by the first item, and if A 	 C 	c B thenAB 	 CB = C . �
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Definition 1.13. For A 	 B 	 X , we say that A is dense in B if AB = B
(equivalently, if A � B, which is further equivalent to A = B).
Lemma 1.14. For any A 	 B 	 X , A is dense in B if, and only if, for any open

U 	 X , we have inf(B +U ) ≥ inf(A+U ).
Proof. The latter condition is easily checked to be equivalent to A � B . �
We turn to the definition of relative interior inside a grey set, which may seem

less straightforward than the definition of relative closure. In particular, it is not
obtained from the latter by mere passage to the complement (indeed, there is no
notion of relative complement of a grey subset). We leave it to the reader to check
that for ordinary sets (identified with their zero-indicator functions) this gives the
usual notions. While there are other possible definitions which pass this test, and
even verify Lemma 1.18 (possibly with the exception of the first item), it is this
definition which allow us to prove the relative Baire Category Theorem below.
Let us start with a few useful technical results

Lemma 1.15. For any A,B 	 X one has A+ B � A+ B◦.

Proof. Recall that by Convention 1.5,

t −. s =
{
t − s if s < t,
0 otherwise.

It follows that the grey set A+ B −. B◦ is closed, and A+ B −. B◦ ≤ A, i.e.,
A 	 A+ B −. B◦. Then A 	 A+ B −. B◦ and therefore

A+ B � A+ B −. B◦ + B◦ � A+ B◦,

as desired. �
Lemma 1.16. For anyA 	 B 	 X , one hasA◦

B � A◦, or equivalently, (A−B)◦+
B � A◦.

Proof. Assume first that A and B are bounded, and let C = B − A + supA.
Then the desired inequality is equivalent to C +A � C + A◦ which follows from
Lemma 1.15. For the general case, truncate A and B at some M > 0, and let
M → ∞. �
Definition 1.17. For A 	 B 	 X , we define the relative interior of A in B as

A◦
B =

(
(A−B)◦ +B)�A, where we recall that by convention∞−∞ = 0. We say

thatA 	 B is (relatively) open in B, in symbols A 	o B, if A = A◦
B , or equivalently,

if A 	 (A− B)◦ + B .
Lemma 1.18. Let B 	 X .
(i) If A 	o X then A+ B 	o B. If, in addition, A 	 B then A 	o B.
(ii) If (Ai)i∈I is a family of relatively open grey subsets of B, then

⊔
i Ai and

A0 �A1 are also open in B.
(iii) Assume A 	 B. Then the grey set A◦

B is the 	-greatest grey subset of A
relatively open in B. In particular, A◦

B � A◦.

Proof. The first item is immediate from the definitions and Lemma 1.16. For the
second, let D =

⊔
Ai . Then (D − B)◦ + B � ⊔

(Ai − B)◦ + B � D. Similarly,
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(A0 �A1)−B

)◦
+B = (A0 −B)◦ � (A1 −B)◦ +B =

(
(A0 −B)◦ +B

)� (
(A1 −

B)◦ + B
) � A0 � A1.

For the third item, let us check that A◦
B 	o B. Indeed,

(A◦
B − B)◦ + B =

[[(
(A− B)◦ + B) � A]− B]◦ + B

�
[
(A− B)◦ � (A− B)

]◦
+ B

= (A− B)◦ + B � A◦
B.

Assume now that C 	o B and C 	 A. Then
A◦
B =

(
(A− B)◦ + B) � A � (

(C − B)◦ + B) � C = C. �
One should be careful, though: for example, A 	o B 	o C does not imply that
A 	o C , and A 	 B 	 C , A 	o C does not imply A 	o B.
Lemma 1.19. Assume that A 	o B, and let U = (A−B)◦. Then B +U 	 A and
B + U 	o B. Moreover, B + U is dense in A, and if A is dense in B then B + U is
dense in B.

Proof. Clearly B +U 	 A, and B +U 	o B since U is open. By Lemma 1.15,
and since A 	o B, we have B +U � U ◦ + B � A, so B +U is dense in A, and if
A is dense in B then so is B +U . �

Definition 1.20. Let B 	 X , and letOn 	o B for every n ∈ N. Then we say that�
n On is G� in B. If each On is moreover dense in B then any intermediate grey set�
On 	 A 	 B is said to be co-meagre in B.

WhenB = X (i.e., whenB = 0X ), this agrees with our previous definitions.More
generally,

Lemma 1.21. Let A 	 B 	 X .
(i) If A is co-meagre in B then B 	∗ A (equivalently, A =∗ B).
(ii) When B is open, the converse holds as well.

Proof. Assume first that A is co-meagre in B. By Lemma 1.19 we may assume
that A = B +

�
Un, where each Un is open, B +Un is dense in B, andUn � Un+1.

Fix ε > 0, and consider the ordinary open sets Vn = (Un)<ε andWn = (X \ Vn)◦.
Since C �Wn = C �Wn for any grey set C , we have We then have

B�Wn = B +Un�Wn ≥ B + ε�Wn = B�Wn + ε.

Thus B and therefore B and A are infinite on Wn. Since Vn ∪Wn is dense in X ,
the set S =

⋂
(Vn ∪Wn) is co-meagre. If x ∈ S, then either x ∈ Wn for some n,

in which case A(x) = B(x) =∞, or x ∈ Vn for all n, in which case Un(x) = 0 for
all n and A(x) = B(x) as well, proving the first item.
For the second, assume that B is open, and that {x ∈ X : A(x) = B(x)} ⊇ S =⋂
Vn, where Vn ⊆ X are open and dense. Since B is open, B + 0Vn is dense in B,
so B + 0S is co-meagre in B, and a fortiori so is A. �
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We can now (state and) prove the Baire Category Theorem for grey sets. For the
proof, one essentially figures how to prove the classical Baire Category Theorem
inside aG� subset of a Polish spacewithout first proving that such a subset is a Polish
space itself, and transfers the argument (modulo a reduction based on Lemma 1.19)
to the grey setting.

Theorem 1.22. Assume that (X, d ) is a complete metric space and A 	 B 	 X ,
where B is G� (in X ) and A is co-meagre in B. Then A is dense in B.

Proof. We have B =
�
On with On 	o X , and we may assume that A =

�
An

where each An is open and dense in B. By virtue of Lemma 1.19, we may assume
that An = B +Un with Un 	o X . We may further assume that On =

�
k≤n Ok and

Un =
�
k≤n Uk , in which case A =

�
n On +Un.

To show that A is dense in B, we apply the criterion presented in Lemma 1.14.
Indeed, let V 	o X , and it will be enough to show that if inf(B + V ) < r then
inf(A+ V ) < r.
Let us now construct by induction a sequence of Vn 	o X such that inf

(Vn+B)<r, starting with V0 = V . Given Vn, and since An is dense in B, we have
r > inf(An + Vn), so there is xn ∈ X such that r > (An + Vn)(xn) ≥
(On+Un+Vn)(xn). For someMn > 0 big enough, defineVn+1 = Vn+Mnd (·, xn),
which is open aswell. Then r > (An+Vn)(xn) = (An+Vn+1)(xn) ≥ (B+Vn+1)(xn),
and the induction may continue.
SinceOn+Un+Vn is open, choosingMn big enough,wehave (On+Un+V )(y) ≤

(On + Un + Vn)(y) < r whenever d (y, xn) < 2r/Mn. We also observe that
d (xn+1, xn) < r/Mn , so choosing Mn+1 > 2Mn, the sequence {xn} is Cauchy,
converging to some y such that d (y, xn) < 2r/Mn for all n. Then (A+ V )(y) < r,
as desired. �
As explained in the introduction, the primary reason why we considered grey

sets is that they are useful in the topometric setting. We refer the reader to [3]
for details on topometric spaces and groups. We simply recall here that a Polish
topometric space is a triplet (Y, �, ∂) such that (Y, �) is a Polish space, ∂ is a metric
refining �, and ∂ is �-lower semi-continuous. We shall follow the convention that
in the context of a topometric space (Y, �, ∂), the vocabulary of general topology
refers to the topology �, while the vocabulary of metric spaces refers to ∂ (unless
qualified explicitly otherwise).
We now formulate a generalisation of the classical Kuratowski–Ulam Theorem

to this context. We consider a map 
 : X → Y , where X is a Polish space and Y a
topometric space. For A 	 X and y ∈ Y we need to define the fibres of X and of
A over y, in a manner which takes into account the topometric structure on Y .

Notation 1.23. Let (X, ∂) be a metric space. For a grey subset A 	 X we define
the ∂-thickening (A)∂ 	 X as the greatest 1-Lipschitz function lying below A, i.e.,

(A)∂(x) = inf
x′∈X

A(x′) + ∂(x, x′), (A)∂<r = {x : ∃x′A(x′) + ∂(x, x′) < r}.

When A ⊆ X is an ordinary set, which we identify with its zero-indicator, we obtain
(A)∂ = ∂(·, A) and (A)∂<r = {x : ∂(x,A) < r}.
In particular, A 	 (X, ∂) is 1-Lipschitz if and only if A = (A)∂ .

https://doi.org/10.1017/jsl.2014.60 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.60
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Notation 1.24. LetX be a topological space, (Y, ∂) ametric space, and
 : X → Y
a map. For A 	 X and y ∈ Y we define the fibre ofA over y, denotedAy 	 A 	 X ,
and the image of A, denoted 
A 	 Y , by

Ay(x) = A(x) + ∂(
x, y), (
A)(y) = inf

x=y
A(x).

In particular Xy(x) = ∂(
x, y). Combining the two, (
A)∂ 	 Y is the “infimum
over the fibre”, namely,

(
A)∂(y) = inf
x
A(x) + ∂(
x, y) = inf

X
Ay.

We remark that if ∂ is the “trivial” 0/∞ distance then we recover the usual definition
of the fibre of a set A ⊆ X over y, namely Ay = A∩ 
−1y (identifying a set with its
zero-indicator). In this case our result below specialises to the classical Kuratowski–
Ulam Theorem (formulated for an open map between Polish spaces rather than just
for a projection).

Definition 1.25. Let (X, �X ) be a topological space, (Y, �Y , ∂Y ) a topometric
space. We say that a map 
 : X → Y is topometrically open if for every openU ⊆ X
(equivalently, every U 	o X ) we have (
U )∂ 	o Y , i.e., (
U )∂<r ⊆ Y is open for
every r > 0.
We say that a topometric space (Y, �, ∂) is adequate if id : (Y, �) → (Y, �, ∂) is
topometrically open.

When ∂ is trivial this is the same as being open, and in particular id : (Y, �) →
(Y, �, ∂) is automatically topometrically open. In the general case, however, the latter
does not always hold. One checks that:
Lemma 1.26. Let (X, �, ∂) be a topometric space. Then the following are
equivalent:
(i) X is adequate, i.e., the map id : (X, �)→ (X, �, ∂) is topometrically open.
(ii) For every 1-Lipschitz A 	 X , the closure A is 1-Lipschitz as well.
(iii) Same, with interior instead of closure.
Theorem 1.27. Let (Y, �, ∂) be an adequate Polish topometric space, X a Polish
space, and 
 : X → Y a continuous map (in the topology �, by our convention).
Assume that 
 : X → Y is topometrically open, as per Definition 1.25. Then the
following conditions are equivalent, for a Baire-measurable A 	 X :
(i) The grey set A is co-meagre in X .
(ii) The set {y ∈ Y : Ay is co-meagre in Xy} is co-meagre in Y .
Proof. (i) =⇒ (ii). This easily reduces to the case when A is open dense in X , so
we only consider that case. Clearly, Ay is open in Xy . For U 	o X , define
ΩU =

(

(A+U )

)
∂
− (
U )∂ 	 Y, i.e., ΩU (y) = inf(Ay +U )− inf(Xy +U ).

By our assumption, ΩU is the difference of two open grey sets, and is therefore
G� . Consider now any V 	o Y . By assumption (V )∂ is open in Y as well, and so

−1(V )∂ = (V )∂ ◦ 
 is open in X . Since A is dense,
inf
Y

((

(A+U )

)
∂
+ V

)
= inf
X

(
A+U + 
−1(V )∂

)
= inf
X

(
U + 
−1(V )∂

)
= inf
Y

(
(
U )∂ + V

)
.
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Thus
(

(A + U )

)
∂
is dense in (
U )∂ , and it follows that ΩU is dense in Y .

Since X has a countable base, Ω =
�
U ΩU is co-meagre, and Ω=0 ⊆ {y ∈ Y :

Ay is dense in Xy}. Thus the latter is a co-meagre set.
(ii) =⇒ (i). Assume that A is Baire-measurable, satisfies the hypothesis, and yet

is not co-meagre, soU (A) is not dense, and neither is 12U (A). In other words, there
isV 	o X such that inf V < inf

(
V + 12U (A)

)
, andwemay assume that inf V = 0 <

r < inf
(
V + 12U (A)

)
. Let B = U (A)−. A, which is co-meagre, so by the implication

we have already established, the set C = {y : Ay and By are co-meagre in Xy} is
co-meagre. If y ∈ C then Ay+By2 is co-meagre inXy as well (or, equivalently,Ay+By
is co-meagre in 2Xy).
Since (
V )∂ 	o Y , we have infC (
V )∂ = infY (
V )∂ = 0. Therefore there exists

y ∈ C such that r > (
V )∂(y) = infX (V + Xy). Since Xy is G� (being closed),
Ay+By
2 is dense in Xy , so

r > inf
X

(
V + Ay+By2

)
≥ inf
X

(
V + 12U (A)

)
> r,

a contradiction. �
Let us mention an immediate application of this theorem.
Proposition 1.28. Let (X, �, ∂) be an adequate Polish topometric space. Assume

that A 	 U 	 X , where U is open and A is co-meagre in U . Then (A)∂ is co-meagre
in (U )∂ .
In particular, if A 	 X is 1-Lipschitz (relative to ∂), thenU (A) is also 1-Lipschitz.
Proof. Let B = A − U . Then B is co-meagre in X , which means in particular

that it is Baire-measurable. By Theorem 1.27 applied to id : X → X , the set C =
{x ∈ X : Bx is co-meagre in Xx} is co-meagre in X . For x ∈ C we have

(U )∂(x) = inf Ux = inf(U + Xx) = inf(U + Bx) = inf Ax = (A)∂ (x).

By Lemma 1.21, (A)∂ is co-meagre in (U )∂ .
Now, assume that A 	 X is 1-Lipschitz, equivalently A = (A)∂ . By definition

of U (A) we have U (A) =∗ A � U (A). By Lemma 1.21, A � U (A) is co-meagre in
U (A) and by the above

(
U (A) � A)

∂
is co-meagre in

(
U (A)

)
∂
. By Lemma 1.21

again, (
U (A)

)
∂
	∗ (
U (A) � A)

∂
	 (A)∂ = A.

By definition of U (A), we obtain
(
U (A)

)
∂
	 U (A). Equality ensues, and U (A) is

1-Lipschitz. �
Foregoing the grey terminology, the above proposition says that, if (X, �, ∂) is a

Polish topometric space such that (U )∂<ε is open for any open U and any ε > 0,
and A ⊆ X is co-meagre in some open U ⊆ X , then (A)∂<r is co-meagre in (U )∂<r
for all r. This fact is crucial for the proof of the topometric generalisation of Effros’
theorem presented at the end of this article, and we do not know how to prove
it without using the machinery of grey sets, in particular the grey version of the
Kuratowski–Ulam theorem.

§2. Grey subsets of completely metrisable groups. Throughout this section, let G
denote a completely metrisable topological group.We now introduce two operations
on grey subsets; the operation ∗ reminds one of convolution.
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1390 ITAÏ BEN YAACOVAND JULIEN MELLERAY

Definition 2.1. For two grey subsets A,B 	 G we define A−1, A ∗ B 	 G by
A−1(x) = A(x−1), A ∗ B(x) = inf

yz=x

(
A(y) + B(z)

)
.

Note that ∗ is associative and has 0{1G} as a neutral element. We observe that
for A,B ⊆ G , 0−1A = 0A−1 and 0A ∗ 0B = 0A·B . Thus, −1 and ∗ extend the group
operations of G , applied to subsets, to grey subsets (and should be thought of as
operations on subsets, rather than as operations on group elements). As expected,
we have, for all grey subsets A,B of G , that

(A ∗ B)−1 = B−1 ∗ A−1.

By extension, for x ∈ G we define xA = 0{x} ∗ A, namely xA(y) = A(x−1y),
so x0A = 0x·A, and similarly for Ax. We then obtain

A ∗ B =
⊔
x

(
A(x) + xB

)
=

⊔
x

(
Ax + B(x)

)
. (1)

Lemma 2.2. IfA 	o G and B 	 G then A−1 	o G , A ∗B 	o G and B ∗A 	o G .
Proof. The first assertion is obvious, the others are by (1) above. �
Proposition 2.3 (Pettis Theorem for grey subsets). LetA,B 	 G be grey subsets.
Then U (A) ∗U (B) 	 A ∗ B.
Proof. We first observe that U (A−1) = U (A)−1, U (xA) = xU (A), U (Ax) =
U (A)x, by continuity of the group operations. Let x ∈ G , and let Dx(y) =
U (A)(y) + U (B)(y−1x). Then Dx is open, and Dx 	∗ A + xB−1. It follows
that inf Dx ≥ inf(A+ xB−1), i.e., U (A) ∗U (B)(x) ≥ A ∗ B(x), as desired. �
Lemma 2.4. Let A 	 G be a nonmeagre Baire-measurable grey subset. Then
(A ∗ A−1)◦(1) = 0.
Proof. Let B = U (A). Since A is Baire-measurable and nonmeagre, we have
inf B = 0, thus B ∗ B−1(1) = 2 inf B = 0. By Proposition 2.3 we have B ∗ B−1 	
A ∗ A−1, and since B ∗ B−1 	o G , we obtain B ∗ B−1 	 (A ∗ A−1)◦. Thus
(A ∗ A−1)◦(1) = 0. �
The following is just a translation of the definition of a subgroup as a set to grey
sets.

Definition 2.5. A grey subgroup of G is a grey subset H 	 G satisfying the
following properties:

• infH = 0,
• H ∗H−1 	 H , i.e., H (x) +H (y) ≥ H (xy−1).
Assume that H is a grey subgroup. It follows that H (1) ≤ infxy=1H (x) +
H (y−1) = 2 infH = 0. Applying this to the second property we get H−1 =
1 ∗H−1 	 H ∗H−1 	 H , and thereforeH−1 = H = H ∗H . Finally, if H 	 G is
a grey subgroup then so is H , since then infH ≤ infH = 0 and
H (x) +H (y) = lim inf

x′→x,y′→y
H (x′) +H (y′) ≥ lim inf

x′→x,y′→y
H (x′y′−1) = H (xy−1).

The same argument with lim sup works for H ◦, with the caveat that infH ◦ need
not be zero.
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Lemma 2.6. Let H 	 G be a grey subgroup. Then the following are equivalent:
(i) infH ◦ = 0 (equivalently, H ◦ is a grey subgroup).
(ii) H is open in G .
(iii) H is clopen in G .

Proof. (i) =⇒ (ii). If H ◦ is a grey subgroup then H ◦(1) = 0. It follows that
H = H ∗H � H ∗H ◦ � H + 0 = H , so H = H ∗H ◦ is open.
(ii) =⇒ (iii). Assume H (x) > r for some x ∈ G and r ∈ R. Then U = H<H (x)−r
is open, and if z ∈ U then H (xz) ≥ H (x) −H (z) > r, so x ∈ xU ⊆ H>r . Thus
H is closed as well and therefore clopen.
(iii) =⇒ (i). SinceH = H ◦. �
Remark 2.7. What we call a grey subgroup of G is usually called a semi-norm

on G . For a grey subgroupH and a left-invariant pseudometric d on G (where we
allow infinite distance) define

dH (g, h) = H (g−1h), Hd (g) = d (1, g).

Then d �→ Hd andH �→ dH are inverses, yielding a natural bijection between grey
subgroups and left-invariant pseudometrics on G .
Notice also thatH 	 G is closed (open) if and only if dH is, and more generally,

dH = dH , and if H
◦ is a grey subgroup then d◦H = dH◦ .

Lemma 2.8. Let H 	 G be a nonmeagre Baire-measurable grey subgroup. Then
H is clopen.

Proof. By Lemma 2.4, (H ∗H−1)◦(1) = 0, i.e., H ◦(1) = 0, so H is clopen by
Lemma 2.6. �
In usual terminology, this lemma says that if a semi-norm H on a completely

metrisable topological group G is Baire-measurable and for any ε > 0 the set of g
such thatH (g) ≤ ε is nonmeagre, thenH must be continuous.

§3. The small density property.
Definition 3.1. Let G be a Polish group, H 	 G a grey subgroup. Let dH be

the corresponding left-invariant pseudometric, as per Remark 2.7. Then we define
the index [G : H ] to be the density character of dH , namely the least cardinal of a
dH -dense subset of G .

We observe that if H is an ordinary subgroup then this agrees with the usual
definition of index.Here we are going to be interested in the condition [G : H ] < 2ℵ0
(i.e., “H has small index”). Since the cofinality of 2ℵ0 is uncountable, the following
are equivalent:

(i) [G : H ] < 2ℵ0 .
(ii) For all ε > 0,G can be covered by fewer than continuummany left translates
ofH<ε .

(iii) For all ε > 0, a family of disjoint left translates ofH<ε has cardinal smaller
than the continuum.

Proposition 3.2. Let G be a completely metrisable group, and H be a Baire-
measurable grey subgroup of G . Assume also that [G : H ] < 2ℵ0 . ThenH is clopen.
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Proof. If G is not a perfect topological space then it is discrete and there is
nothing to prove, so we assume thatG has no isolated points. In view of Lemma 2.8,
it is enough to show that our assumptions imply thatH is not meagre. Assume for a
contradiction that there exists r > 0 such thatH<r is meagre. Since themap (x, y) �→
x−1y is surjective and open fromG2 toG , we obtain that {(x, y) : H (x−1y) < r} is
meagre in G2. Then the Kuratowski–Mycielski Theorem implies that there exists a
Cantor set K ⊆ G such that, for any x �= y ∈ K , one hasH (x−1y) ≥ r (see [9] for
the general version of this theorem that we use here, which is valid in any completely
metrisable perfect space). This contradicts our assumption on the index of H , and
we are done. �
Recall from [3] that a Polish topometric group is a triplet (G, �, ∂), where (G, �)
is a Polish group, ∂ is a bi-invariant metric refining � and �-lower semi-continuous.
The canonical example one should have inmindwhen thinking of this is the isometry
group of some Polish metric space (X, d ) (or, more generally, the automorphism
group of some Polish metric structure), endowed with the topology of pointwise
convergence and the supremum metric ∂(g, h) = sup{d (gx, hx) : x ∈ X}. Note
that any Polish topometric group (G, �, ∂) is adequate as a Polish topometric space.
Indeed, if U ⊆ G is an open set then

(U )∂<r =
⋃

∂(g,1)<r

gU

is open as well.
We also need the following fact.

Proposition 3.3. Let (G, �, ∂) be a Polish topometric group. Then ∂ is a complete
metric on G .

Proof. Denote by ∂u a metric generating the coarsest bi-invariant uniformity
refining �; it is well-known that ∂u is complete whenever G is a Polish group. Since
the uniformity generated by ∂ must be finer than the one generated by ∂u , we may
assume without loss of generality that ∂ ≥ ∂u . Let (gn) be a ∂-Cauchy sequence in
G . Then (gn) is ∂u-Cauchy in G , hence it must ∂u-converge to some g ∈ G . Pick
ε > 0, and letN be such that for any n,m ≥ N one has ∂(gn, gm) ≤ ε. Fixing n and
lettingm go to +∞ we obtain, since ∂ is �-lower semicontinuous, that ∂(gn, g) ≤ ε
for all n ≥ N . �

Definition 3.4. We say that a Polish topometric group (G, �, ∂) has the small
density property if wheneverH 	 G is a ∂-Baire-measurable grey subgroup of index
< 2ℵ0 thenH is open.

Remark 3.5. We do not call this property the small index property, because
even when ∂ is the discrete metric the small density property as defined above is
stronger than the usual small index property (which corresponds to left-invariant
ultra-metrics rather than left-invariant metrics).

We recall that a Polish topometric group (G, �, ∂) admits ample generics if, for
any integer n, there exists ḡ ∈ Gn such that ({kḡk−1 : k ∈ G})

∂
is co-meagre inGn

(see [3] for a discussion of this definition).
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Theorem 3.6. Let (G, �, ∂) be a Polish topometric group admitting ample generics.
Then G has the small density property.

Proof. Let H 	 G be a ∂-Baire-measurable grey subgroup of small index, and
let us show thatH is clopen. By Proposition 3.2,H is ∂-clopen.
We recall that

(H )∂ (x) = inf
y

(
H (y) + ∂(x, y)

)
= H ∗ ∂ = ∂ ∗H,

where for H ∗ ∂ we identify ∂ with the corresponding norm ∂(1, ·). Accord-
ingly, we define (H )n∂ with n∂ in place of ∂ , observing that (H )n∂ is also a
grey subgroup, and (H )n∂ � H , whereby H ∗ (H )n∂ = (H )n∂ . Also,

�
n(H )n∂ =

H
∂
= H .
By the Kuratowski–Mycielski Theorem,H cannot be meagre, that is,H<ε is not

meagre for any ε > 0. Assume, for a contradiction, that for some ε > 0 the set
B = G \ [

(H )∂
]
<ε
is nonmeagre in every open subset of G , and let A = H<ε/4.

Below, for x ∈ G and C ⊆ G we denote by Cx the set x−1Cx. By [3, Lemma 3.6]
we can find a mapping a ∈ 2� �→ ha ∈ G such that if a, b ∈ 2� are distinct then
∂
(
Aha , Bhb

)
< ε/4, i.e., ∂

(
Ahah

−1
b , B

)
< ε/4. It follows thatH (hah−1b ) ≥ ε/4 for all

a �= b, so [G : H ] = 2ℵ0 , a contradiction.
Thus, for all ε > 0, the set

[
(H )∂

]
<ε
is co-meagre in some nonempty open

set, so inf U
(
(H )∂

)
= 0. By Pettis’ Theorem, we have U

(
(H )∂

) ∗ U(
(H )∂

) 	
(H )∂ ∗ (H )∂ = (H )∂ , so inf(H )◦∂ = 0 and (H )∂ is a clopen grey subgroup. Since
(H )∂ � (H )n∂ � n(H )∂ , the latter implies (H )◦n∂(1) = 0 for all n, so (H )n∂ is a
clopen grey subgroup for all n. Since H =

�
n(H )n∂ , H is closed. Since H is also

nonmeagre, infH ◦ = 0, so H is clopen. �
Notice that [3, Theorem 4.7] follows from Theorem 3.6 via a straightforward

reduction to the case where the target group is metrisable, giving a more elegant
proof than the one appearing there. Conversely, Theorem 3.6 also follows from a
combination of Proposition 3.2 with [3, Theorem 4.7].

§4. A remark concerning grey subgroups of automorphism groups. We conclude
our discussion of grey subgroups with a natural situation in which open grey sub-
groups arise.We assume that the reader of this section is familiar with the formalism
of continuous logic ([2,6]).
LetM be a metric structure, G = Aut(M). IfM is a classical structure then

for every member a ∈ Meq , the stabiliser Ga is an open subgroup, and if M is
ℵ0-categorical then every open subgroup is the stabiliser of some (real or
imaginary) element. In the metric case, on the other hand, the stabiliser Ga
is usually not open in G , and again we encounter the need to consider grey
subgroups.

Definition 4.1. LetM be a metric structure,G = Aut(M). The (grey) stabiliser
of a ∈M , still denoted Ga , is defined by Ga(g) = d (a, ga).
The grey stabiliser is, by definition, an open grey subgroup, and the exact sta-

biliser is Ga,≤0. As in classical logic (e.g., [1, Theorem 1.6]), the converse holds for
ℵ0-categorical structures.
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Proposition 4.2. LetM be an ℵ0-categorical separable structure, G = Aut(M),
and let H 	o G be a real-valued open grey subgroup (namely, we exclude +∞ from
the range). Then there exists an imaginary a ∈Meq such thatH = Ga .
Proof. We may considerMN as a sort, equipped with the distance

d (b, c) =
∨
n

2−n ∧ d (bn, cn).

We fix a in this sort which enumerates a dense subset ofM. By homogeneity, the
set of realisations of p = tp(a) inM is exactly Ga. We observe that {Ga,<ε}ε>0 is
a base of neighbourhoods of the identity, so for every ε > 0 there exists �(ε) > 0
such that Ga,<�(ε) < H<ε .
Let ε > 0 and g, g ′, h, h′ ∈ G , and assume that d (ga, g ′a) and d (ha, h′a) are
smaller than � = �(ε/2). Then g−1g ′, h−1h′ ∈ Ga,<� ⊆ H<ε/2, whereby |dH (g, h)−
dH (g ′, h′)| < ε. Thus the map ϕ : Ga × Ga → R sending (ga, ha) �→ dH (g, h) is
well defined and uniformly continuous, and thus extends uniquely to a uniformly
continuous function ϕ : Ga × Ga → [0,∞]. By the Ryll–Nardzewski Theorem
[5, Fact 1.14], since ϕ is uniformly continuous and invariant under automorphism,
it is a definable pseudometric on the set defined by p (and therefore in particular
bounded). By [4], and since by ℵ0-categoricity the set defined by p is definable,
ϕ extends to a definable pseudometric on all of MN. (To recall the argument,
by the Tietze extension theorem we may extend ϕ to something definable on all of
MN ×MN, call it ϕ0(x, y), and then ϕ1(x, y) = supz�p |ϕ0(x, z) − ϕ0(y, z)| is a
definable pseudometric which agrees with ϕ on p.) Finally, with [b] denoting the
canonical parameter for ϕ(x, b),

H (g) = dH (g, 1) = ϕ(ga, a) = d
(
[a], [ga]

)
.

Thus H is precisely the grey stabiliser of [a]. �

§5. Topometric versions of two classical theorems. A basic but important tool
when studying Polish group actions is Effros’ theorem [7]: whenever G is a Polish
group acting continuously on a Polish space X , an element x ∈ X has a co-meagre
orbit if and only if Gx is dense and the map g �→ gx is an open map from G
to Gx. Combined with a theorem of Hausdorff, this implies immediately that Gx
must then be a dense G� . In particular, whenever a Polish group has a co-meagre
conjugacy class, this conjugacy class is a dense G� . It is of interest to extend these
results of Effros and Hausdorff to the topometric context, which we manage to do
below, under the assumption that our topometric spaces are adequate. In the proof
of Theorem 5.2, the attentive reader will notice the crucial use of Proposition 1.28,
which requires the use of grey sets. Even though this proposition seems to be used
in a trivial case, it appears (insofar as we can see) indispensable for the proof.
Let us first recall the notion of a strong Choquet game as well as some facts
regarding it. While Kechris [8] defined the strong Choquet game for a separable
metrisable space A working entirely inside A (denoted X there), for our purposes
it will be convenient to embed A is some Polish space X . Then the strong Choquet
game GA is as an infinite game where two players I and II take turns to play.
At step i :
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• Player I plays an open set Ui contained in Vi−1 (with V−1 = X ) and a point
xi ∈ Ui ∩ A.

• Player II plays an open set Vi containing xi and contained in Ui .
Player II wins the game if

⋂
Ui (which is equal to

⋂
Vi) intersects A. By [8,

Theorem 8.17], Player II has a winning strategy in GA if and only if A is G� in X
(i.e., A is Polish).
When A ⊆ B ⊆ X define a game GA,B which follows the same rules, only that

Player II wins if
⋂
Ui intersects B. Following the proof of [8, Theorem 8.17],

Player II has a winning strategy in GA,B if and only if there exists a G� set C such
that A ⊆ C ⊆ B.
Theorem 5.1 (TopometricHausdorffTheorem). LetY be aPolish space, (X, �, ∂)

be a Polish topometric space, and F : Y → X be a continuous map. Assume moreover
that F : Y → C is topometrically open for some F (Y ) ⊆ C ⊆ F (Y )∂ . Then there
exists C ⊆ D ⊆ F (Y )∂ which is G� in X .
In particular, under our hypotheses F (Y )

∂
is co-meagre in F (Y )

�
, and if F : Y →

F (Y )
∂
is topometrically open then F (Y )

∂
is G� in X .

Proof. It will suffice to prove that for every ε > 0, II has a winning strategy
in GC,B where B =

(
F (Y )

)
∂≤ε . We assume without loss of generality that I only

plays sequences of open sets with vanishing diameter with respect to some complete
compatible distance on X such that Ui ⊆ Vi−1.
The strategy will produce a sequence of open subsetsWi ⊆ Y and II will always

play open sets Vi ⊆ Ui such that C ∩Vi = C ∩Ui ∩
(
F (Wi)

)
∂<ε
(andW−1 = Y ).

Assume we are at turn i of the game, and I has just played (Ui , xi), so in particular
xi ∈ Vi−1 ⊆ (

F (Wi−1)
)
∂<ε
. Pick yi ∈ Wi−1 such that ∂

(
F (yi), xi

)
< ε, and

chooseWi open, containing yi and such thatWi ⊆Wi−1, arranging thatWi have
vanishing diameter with respect to some complete compatible distance on Y .
Then yi → y and

⋂
Wi = {y} in Y , while xi → x and

⋂
Ui = {x} in X . Since

∂ is �-lower semicontinuous we have ∂
(
F (y), x

) ≤ ε, so x ∈ B and we are done. �
Theorem 5.2 (Topometric Effros Theorem). Let (X, �, ∂) be an adequate

Polish topometric space and G a Polish group acting continuously on X by
�-homeomorphisms and ∂-isometries. Assume that x ∈ X is such that Gx is dense.
Then the following conditions are equivalent:

(i) Gx
∂
is G� .

(ii) Gx
∂
is co-meagre.

(iii) The map G → Gx∂ , g �→ gx, is topometrically open. For any open subset U
of G and any r > 0, (Ux)<r is open in Gx

∂
.

(iv) There exists y ∈ Gx∂ such that the map G → Gy, g �→ gy, is topometrically
open.

Proof. (i) =⇒ (ii). Since Gx is dense.
(ii) =⇒ (iii). Let 
 : G → X send g �→ gx. Fix a countable basis (On)n<� for
the topology of G . Recall that a continuous image of a Borel subset of a Polish
space is analytic and therefore Baire-measurable. Therefore, for any n the function
(
On)∂ is Baire-measurable and 1-Lipschitz (relative to ∂). By Proposition 1.28,
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Un = U
(
(
On)∂

)
is also 1-Lipschitz. Let Ω = {y : ∀n(
On)∂(y) = Un(y)}. This is

a �-co-meagre, ∂-closed subset. Also, for anyO 	o G , (
O)∂ � 0Ω 	o 0Ω.
Now, let B = {y : ∀∗g ∈ G gy ∈ Ω}. This set is G-invariant, �-co-meagre, and
∂-closed. The first point is obvious, the second follows from the Kuratowski–Ulam
theorem, and to see why the third holds assume that bi ∈ B and b ∈ X are such
that ∂(bi , b)→ 0. Then there exists a comeagre set of g ∈ G such that gbi ∈ Ω for
all i , and since Ω is ∂-closed we get gb ∈ Ω for all such g, i.e., b ∈ B.
It follows that Gx

∂
is contained in B; to conclude, it is enough to prove that for

all U 	o G (
U )∂ � 0B 	o 0B . To that end, let bi ∈ B converge to b ∈ B; there
exists g ∈ G such that gb ∈ Ω and gbi ∈ Ω for all i .
Since (
gU )∂ � 0Ω 	o 0Ω, we have lim sup(
gU )∂ (gbi) ≤ (
gU )∂(gb),
equivalently lim sup(
U )∂(bi) ≤ (
U )∂(b).
(iii) =⇒ (i). By Theorem 5.1.
(iii) =⇒ (iv). Obvious.
(iv) =⇒ (ii). By Theorem 5.1, withC = Gy, the setGy∂ is co-meagre inGy�. Since
Gy
∂
= Gx

∂
, we obtain that Gx

∂
is co-meagre in X . �

Since any Polish topometric group is adequate as a topometric space, we obtain
that in any Polish topometric group with ample generics the set of metric generic
elements is G� in Gn for all n. It is natural to wonder whether (Gx)∂ being
co-meagre is also equivalent to (Ux)∂ being open in (Gx)∂ for allU open inG .While
one implication follows immediately from the above result, further development of
“grey topology” is probably necessary in order to prove (or refute) the other.
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