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Water impact of a surface-patterned disk
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This study experimentally investigates the effect of a surface pattern applied to a flat disk
on the impact force during water entry. A macroscale mesh-like pattern with square holes
is applied to the bottom surface of a flat disk, and the shape of the pattern and the falling
speed of the disk are varied to find a universal parameter that characterizes the impact
force. When a surface-patterned disk impacts a free surface, air is trapped inside the holes,
and the subsequent compression and depressurization of the trapped air is accompanied
by a rise and fall in the impact force. Under the cushioning effect of the trapped air, the
peak of the impact force decreases and its period extends as the total volume of holes in
the surface pattern increases. These changes are independent of the specific shape of the
pattern. In contrast, the impulse exerted on the disk remains similar, regardless of the total
volume of holes and the pattern. We conduct a simple theoretical analysis based on the
added mass of the disk to estimate the impact force, and confirm the trends observed in
our experiments.

Key words: interfacial flows (free surface)

1. Introduction

The impact of a solid object on a free surface is of importance in ocean engineering, with
examples including ship slamming (Abrate 2011; Kapsenberg 2011), air-to-sea missiles
(May 1975), free-fall lifeboats (Ringsberg et al. 2017) and surface-piercing propellers
(Yari & Ghassemi 2016). The impact of a solid body on water is also observed in nature.
Basilisk lizards, as well as western and Clark’s grebes, support their weight as they run
on water by quickly slapping their feet on the water surface (Glasheen & McMahon
1996a; Hsieh & Lauder 2004; Clifton, Hedrick & Biewener 2015). Birds such as northern
gannets and kingfishers dive into water to catch prey (Chang et al. 2016; Crandell, Howe &
Falkingham 2019). These interesting biological behaviours have inspired the development
of water-running robots and shape-morphing aerial unmanned vehicles (Floyd et al. 2006;
Floyd & Sitti 2008; Siddall, Ortega Ancel & Kovač 2017).
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Because of rich fluid dynamics, the vertical impact of a solid object, primarily a sphere,
on the air–water interface has been studied extensively; for a review of the relevant
literature, see Truscott, Epps & Belden (2014). For example, at the initial moment of
impact, a horizontal jet with a velocity of up to 30 times the impact speed is formed
(Thoroddsen et al. 2004). For sufficiently large impact speeds, when a sphere continues
to descend below the free surface after impact, air is entrained behind the sphere, forming
an air cavity (Duez et al. 2007). The air cavity eventually pinches off near the free surface
or midway to the sphere (Aristoff & Bush 2009), and simultaneously a splash curtain
appears on the free surface (Marston et al. 2016). These phenomena also occur for other
geometries, such as wedges (Vincent et al. 2018) and disks (Bergmann et al. 2009; Gekle
& Gordillo 2010).

These complex fluid behaviours are closely related to the unsteady hydrodynamic force
exerted on an impacting solid object (Truscott, Epps & Techet 2012; Wang, Faltinsen &
Lugni 2019). Since the pioneering work of Wagner (1932), there have been significant
efforts to analyse the force that arises shortly after the free-surface impact. A variety of
analytical and numerical models based on potential flow theory have been proposed for the
impact force of the early phase; see Korobkin & Pukhnachov (1988) and references therein.
It is widely accepted that the impact force of the early phase is due to the added-mass
effect whereby the initially quiescent pool of water is accelerated by the entering
object (Korobkin & Pukhnachov 1988). Later, researchers used the matched asymptotic
expansion (Howison, Ockendon & Wilson 1991), nonlinear boundary element method
(Zhao & Faltinsen 1993), or higher-order terms in the Bernoulli equation (Korobkin
2004) to better predict the pressure associated with slamming wedges. Recently, the
Euler–Bernoulli beam theory was used to build a semianalytical model for a flexible
wedge entering the free surface (Shams & Porfiri 2015). In addition to theoretical
studies, experimental measurements of the impact force have been conducted. Multiple
pressure transducers were used to determine the pressure distribution on the surface of
a wedge, with a successive rise in pressure found to be accompanied by the climbing
of water along the wedge (Yettou, Desrochers & Champoux 2006). Rather than using
the pressure distribution, the impact force on the body was directly measured using a
force sensor. It was revealed that the maximum impact force upon water entry occurs
before the submergence of one body length for both spheres (Moghisi & Squire 1981) and
wedges (Vincent et al. 2018). The pressure field on the surface of a wedge has also been
reconstructed from the velocity field obtained by particle image velocimetry (Jalalisendi
et al. 2015; Shams, Jalalisendi & Porfiri 2015).

In contrast to a wedge or sphere, solid structures with a flat bottom surface, such as plates
or disks, do not gradually become wet during water entry. Instead, the entire bottom surface
impacts the water within a very short duration, and the pressure rises simultaneously over
the entire bottom surface, which results in a steep peak in the impact force. Experiments
conducted by Ma et al. (2016) showed that a plate impacting a free surface incurs a peak
pressure at its centre and approximately half this value near its edge. Interestingly, for a
structure with a flat bottom, a thin layer of air is trapped between the flat bottom and the
water surface (Verhagen 1967; Ermanyuk & Ohkusu 2005; Mayer & Krechetnikov 2018).
By virtue of the trapped air, the peak pressure for a flat plate, as measured experimentally,
is smaller than the value predicted theoretically in the absence of air, which is known as
the air-cushioning effect (Verhagen 1967). This air-cushioning effect has been quantified
for a disk impacting shallow water by comparing the impulsive motion of a floating disk
and a free-falling disk (Ermanyuk & Ohkusu 2005). The impact load acquired by the
pressure probe is smaller for the free-falling disk as a result of the air-cushioning effect.
Furthermore, Okada & Sumi (2000) measured the pressure on an impacting plate by
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varying the inclination angle with respect to the free surface from 0◦ to 4◦, and showed
that the air-cushioning effect starts to diminish at a specific inclination angle.

Strong hydrodynamic loading during the early phase of water impact may cause severe
damage to a structure. To reduce the peak impact force and thus prevent structural damage,
several approaches have been proposed for wedges, slender bodies and flat plates. For
wedges, the impact force decreases as the wedge angle becomes smaller (Vincent et al.
2018). Regarding axisymmetric slender bodies with different nose geometries pointing
downward, those with ogive noses experience much smaller impact forces than those
with flat noses (Bodily, Carlson & Truscott 2014). Mathai, Govardhan & Arakeri (2015)
reported a reduction in peak pressure with a concave-nosed body, the result of air trapped
inside the concave hole. In addition to a change in object shape, the conditions surrounding
an impacting object were varied. For a sphere placed inside a downward columnar jet
of water, so that the sphere and water jet fall together into a quiescent pool of water,
the impact force on the sphere is less than that of a sphere falling without a water jet
(Speirs et al. 2019). The peak pressure on a plate impacting aerated water is much smaller
than that impacting still water, because air bubbles extend the period over which shock
loading is applied to the plate (Ma et al. 2016). The presence of a cylinder underneath
the free surface also induces a pressure drop in the pileup region of an impacting wedge
(Jalalisendi, Benbelkacem & Porfiri 2018).

In this study, we introduce another approach for reducing the peak impact force
for a solid object with a flat bottom surface: a disk with a macroscale mesh-like
surface pattern. The use of the mesh-like pattern as a means of lowering the peak
of the hydrodynamic loading has, to the best of our knowledge, not previously been
reported. From measurements of the impact force obtained with a force sensor, we
analyse which geometrical parameters of the surface pattern are critical in determining
the impact force, and identify the underlying physical mechanisms by examining the
fluid behaviour underneath the pattern using high-speed visualization. To support our
arguments, theoretical analysis is also conducted in order to predict the force at the instant
of water entry. Although microscale surface patterning that alters the wettability of the
surface is expected to be ineffective in diminishing the impact force of a flat-bottomed
surface (Bodily et al. 2014), the application of a macroscale surface pattern may lead to a
significant reduction in the impact force.

2. Experimental set-up

A water tank of dimensions 45 cm × 60 cm × 45 cm was filled with tap water to a depth
of 32 cm for the water entry of a surface-patterned disk. The disk was initially held by
an electromagnet and then released to fall freely (figure 1a). The disk was attached to a
long rectangular rigid rod of length 25 cm, which was connected to a force sensor (Mini40
IP68, ATI Industrial Automation, Inc.). The force sensor was mounted beneath a long rigid
bar that was parallel to the free surface (black-dashed box in figure 1a, falling unit). The
impact speed U is defined as the velocity of the disk at the moment of impact upon the
free surface, calculated as U = (2gH)1/2, where H is the initial height of the disk bottom
above the free surface. After impacting the free surface, a bumper prevented the disk from
hitting the bottom of the water tank; the bumper does not affect the measurement of the
impact force.

For a mesh-like surface pattern, disks of thickness h = 2, 3 and 4 mm and diameter
D = 30 and 50 mm were laser cut from an acrylic plate and perforated with square holes
(figure 1b). Here, the edge of the disk remained as a rim of 2 mm to enclose the surface
pattern. Different surface patterns were obtained by varying the size d of the square holes
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Figure 1. (a) Schematic diagram of experimental set-up. (b) Geometry of a surface-patterned disk. Square
holes on the disk are positioned regularly with an identical distance r between the holes.

and the distance r between the holes. The distance r was chosen to be either 1.8, 2.8
or 3.8 mm, and the hole size d was selected such that the ratio d/r varied in the range
0.5–6. The perforated disk (grey part in figure 1b) was then bonded to a flat acrylic disk
of the same diameter (black part in figure 1b) to produce a surface-patterned disk. The
total thickness of the perforated disk and the flat disk was kept constant as 7 mm for all
experimental cases. The dimensions and impact speeds of the surface-patterned disks are
listed in table 1.

The impact force was measured by the force sensor, with signals acquired through a
data acquisition board (PCIe-6321, National Instruments) at a sampling rate of 40 kHz. At
the moment of impact, a high-speed camera (FASTCAM SA-Z, Photron, Inc.) recorded
images at 20 000 frames per second. The camera captured the front and bottom views of
the impacting disk and the surrounding air–water interface. For the bottom view, a mirror
was placed under the water tank, and a reflected image was recorded (figure 1a). The force
sensor and the camera were synchronized so that the generation of the impact force could
be related to the fluid behaviour beneath the disk.

3. Results and discussion

3.1. Reduction in impact force
A body falling on a free surface experiences an impact force that peaks for a short duration.
General force profiles for a flat disk (without a surface pattern) and a surface-patterned
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D (mm) r (mm) d (mm) h (mm) U (m s−1)

50 1.8 2.2, 4.2, 6.2, 8.2, 10.2 2 1.71
50 2.8 2.2, 3.2, 6.2, 9.2, 12.2, 15.2 2 1.71
50 3.8 2.2, 4.2, 6.2, 8.2, 10.2, 12.2, 14.2, 16.2 2 1.71
50 1.8 2.2, 4.2, 6.2, 8.2, 10.2 2 0.99
30 1.8 2.2, 4.2, 6.2 2 1.71
30 2.8 2.2, 3.2, 6.2 2 1.71
30 3.8 2.2, 4.2 2 1.71
30 1.8 2.2, 4.2, 6.2 2 2.21
30 2.8 2.2, 3.2, 6.2 2 2.21
30 3.8 2.2, 4.2 2 2.21
50 1.8 2.2, 4.2, 6.2, 8.2, 10.2 3 1.71
50 1.8 2.2, 4.2, 6.2, 8.2, 10.2 4 1.71

Table 1. Geometric variables D, r, d and h (figure 1b) and impact speed U of surface-patterned disks.

disk are shown in figure 2. Here, a 5 mm-thick flat disk of diameter D = 50 mm was
used. For the surface-patterned disk, a 2 mm-thick perforated disk (r = 1.8 mm and
d = 4.2 mm) with the same D was attached to the flat disk, giving the total thickness
of 7 mm. They were dropped from a height of H = 15 cm, resulting in an impact speed
of U = 1.71 m s−1. Compared with the weight of the entire falling unit, the difference
in weight between the flat disk and the surface-patterned disk is negligible, and thus it
is assumed that the falling units have the same momentum. Here, t = 0 is designated as
the instant of free-surface impact, and the time at which the maximum impact force Fmax
occurs is denoted by tpeak. The flat disk experiences Fmax = 193.8 N at tpeak = 0.575 ms,
while the surface-patterned disk yields Fmax = 92.1 N at tpeak = 0.750 ms (figure 2). The
Fmax value of the surface-patterned disk is less than half that of the flat disk, and the
peak appears at a later time. That is, the surface pattern notably reduces the maximum
impact force. Although these two disks have different thicknesses, the comparison of
the maximum impact forces is not affected by the disk thickness. We confirmed that the
maximum impact force for the flat disk did not change when its thickness was increased to
7 mm. Furthermore, the acrylic disk of thickness 5 mm was rigid enough to avoid elastic
deformation affecting the maximum impact force.

After the peak, the force profile shows fluctuations for both the flat and surface-patterned
disks (figure 2). Owing to the limitations of our experimental set-up, the force sensor
picks up oscillations in the rod arising from the impulsive load. That is, the fluctuations
do not originate from flow phenomena such as hydrodynamic loading as a result of
reflected shock waves. Residual oscillations after the peak impact force were also reported
by Vincent et al. (2018), who measured the impact forces on wedges and noted that
oscillations were due to the drop mechanism of the model. Because the initial peak of
the impact force is our primary interest, subsequent fluctuations after the initial peak are
not considered in the analysis of the magnitude and duration of the impact force.

The impact force was measured five times for each surface-patterned disk, and the
average of the maximum impact force is presented in figure 3. In figure 3(a), the value
of Fmax decreases with d for the same r (the same colour in figure 3a), with D = 50 mm,
h = 2 mm and U = 1.71 m s−1 kept constant. The total area of the holes in the surface
pattern, Ahole, becomes larger as the side length d of the holes increases, and the increase in
Ahole reduces the maximum impact force Fmax. Furthermore, the Fmax values for different
surface-patterned disks are similar as long as they have similar Ahole, despite different
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Figure 2. General impact force profiles for (a) a flat disk (D = 50 mm) and (b) a surface-patterned disk (D =
50 mm, r = 1.8 mm, d = 4.2 mm, h = 2 mm) impacting a free surface at U = 1.71 m s−1. The impact duration
timp is defined as the time interval during which the impact force exceeds 0.2Fmax and is discussed in § 3.4.
High-speed images for the water entry of the two disks are provided in the supplementary movie 1 available at
https://doi.org/10.1017/jfm.2021.123.
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Figure 3. Maximum impact force Fmax for different surface-patterned disks with D = 50 mm at U =
1.71 m s−1 as a function of Ahole. Here Fmax for a 5 mm-thick flat disk is located at Ahole = 0 in black solid
circles (•). (a) Cases with the same r are shown in the same colour; h = 2 mm in all cases. (b) Cases with the
same h have the same shape: circles, h = 2 mm; five-pointed stars, 3 mm; six-pointed stars, 4 mm. For detailed
information on the dimensions, see table 1.

pattern details. In other words, the maximum impact force seems to be determined by
the total area of the holes, regardless of the shape of the pattern. Here, the flat disk
is considered as a disk with no holes, Ahole = 0 (see the black solid circle in figure 3).
Compared with Fmax for the flat disk, which is 188.3 N, the surface-patterned disks have
Fmax values that could be as low as 79.3 N (a 58 % reduction) (figure 3a). The attachment
of a surface pattern to a flat disk consistently reduces the maximum impact force, and the
magnitude of this reduction becomes greater with increasing Ahole.

Additional experiments were conducted by changing the hole depth h for a given Ahole
to clarify whether the reduction in Fmax is simply due to a decrease in the area that is in
contact with the free surface, Apattern (grey area in figure 1b, (πD2)/4 = Apattern + Ahole),
or is caused by some complex flow phenomena that are induced by the holes. Although the
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Figure 4. Coefficient of maximum impact force, Fmax/ρwcUA, versus dimensionless total volume of holes,
Vhole/D3. The extreme case with the maximum hole volume is denoted by the black cross symbol (×) for each
of h = 2, 3 and 4 mm; the disk image in the figure is for h = 3 mm. The cases of a 5 mm-thick flat disk, shown
in black, are located at Vhole/D3 = 0. The dashed line is a theoretical prediction from (3.14) derived in § 3.3
for the surface-patterned disks.

surface-patterned disks have the same d and r (and thus the same Ahole), Fmax decreases
with the increase in h (figure 3b). A reduction in the maximum impact force of up to 42 %
is achieved as h increases from 2 to 4 mm for the same surface pattern (and the same
Ahole). In other words, figure 3 demonstrates that both Ahole and h are important geometric
parameters of the surface-patterned disks that determine Fmax.

To address the combined effect of Ahole and h, the maximum impact forces are plotted
versus Vhole/D3 for various surface-patterned disks, where Vhole(= Aholeh) is the total
volume of the holes created by the surface pattern (figure 4). Here, the coefficient of
maximum impact force is introduced as Fmax/ρwcUA, where ρw = 998 kg m−3 is the
density of water, c = 343 m s−1 is the speed of sound in air, U is the impact speed and
A = (πD2)/4 is the frontal area of the disk. This non-dimensionalization comes from the
theoretical approach for the free-surface impact of a flat-bottomed body. To predict the
slamming pressure of a flat plate, von Kármán (1929) used momentum conservation to
suggest that pmax = ρwcwU, in which the pressure rise propagates at the speed of sound
in water, cw. In a later study, Verhagen (1967) considered the effect of a thin layer of air
trapped between the flat plate and the free surface at the moment of impact, and modified
the relation to pmax ∼ ρwcU, where c is the speed of sound in air. In figure 4, the maximum
impact force coefficients Fmax/ρwcUA collapse onto a single monotonically decreasing
curve with respect to the dimensionless total volume of the holes, Vhole/D3.

Let us consider the case of an extremely large hole. For special cases where d is very
close to D, only a 2 mm rim remains with a single large hole inside, giving the maximum
hole volume for given disk diameter D and hole depth h; e.g. the disk in the inset of
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figure 4. For each of h = 2, 3 and 4 mm (D = 50 mm, U = 1.71 m s−1), the case with
the maximum hole volume corresponds to each of the three black cross symbols located
in 0.02 < Vhole/D3 < 0.06 (figure 4). The values of Fmax/ρwcUA in these extreme cases
follow the same trend as those for the mesh-like surface-patterned disks. Note that the disk
with the maximum value of Vhole/D3 for given values of D and h has a flat surface inside
the rim, and the only difference from the flat disk with Vhole/D3 = 0 is the existence
of the rim. Interestingly, despite this similarity in shape, the values of Fmax/ρwcUA are
much smaller than those of the flat disks; compare two groups of data coloured black
between Vhole/D3 = 0 (flat disk) and 0.02 < Vhole/D3 < 0.06 (disk with the maximum
hole volume) in figure 4.

Figure 4 reveals that, regardless of the shape of the pattern, the total volume of the holes
created by the surface pattern, Vhole/D3, characterizes the reduction in maximum impact
force, Fmax/ρwcUA, in the case of a surface-patterned disk. To support this argument, we
tested other regular and irregular surface patterns and obtained consistent experimental
results; see the Appendix. In addition to the experimental measurements, the trend in
figure 4 will be established by theoretical analysis in § 3.3.

3.2. Air entrapment
In this section, based on flow visualization, we present a qualitative explanation of why the
maximum impact force on a surface-patterned disk decreases as the total volume of holes
in the surface pattern increases. The air bubbles trapped inside the holes at the beginning
of the impact process are mainly responsible for this result. From the visualization of
the bottom and side of a disk impacting a free surface, we can observe the trapping of
air inside the holes and identify the subsequent complex behaviour of the air bubbles
(figure 5 and supplementary movies 2 and 3). After the moment of impact, the trapped
air becomes visible as it escapes from the holes (figures 5aiii,aiv and 5bii,biii). As the
disk descends farther inside the water, vented air bubbles remain beneath the disk, moving
radially towards the edge of the disk. From the side view, the radial motion of the bubbles
is clear; a bubble inside the red circle is tracked and observed to move to the edge of the
disk in figure 5(biv–bvi). When the bubble reaches the edge of the disk, it joins the air
cavity that begins at the disk edge and forms behind the disk; the bubble inside the blue
circle in figure 5(biv,bv) disappears in figure 5(bvi).

For the correlation between the generation of impact force and the motion of trapped air
bubbles during the initial impact phase, the force profile is analysed in accordance with
the corresponding images of a surface-patterned disk (figure 6a). At the instant of impact
(figure 6ai) and during the steep rise in the impact force (figure 6aii,aiii), air is compressed
inside the holes. As the impact force reaches its maximum and begins to diminish, air
bubbles start to escape from the edges of each hole (figure 6aiv). Thereafter, the bubbles
continue to be vented from the holes (figure 6av,avi).

To elucidate the dynamics of the air bubbles inside the holes, an advanced optical
set-up is required for the clear visualization of the bubbles. Alternatively, in this study,
we conjecture the characteristic motion of the trapped air bubbles (figure 6b) based on
our experimental observations (bottom view) and the results of previous studies. As the
disk continues to descend through the water immediately after the impact (figure 6bi),
the patterned part (grey colour in figure 6b) acts locally as a flat plate of width r. It
is well known that the pinning of a contact line is universally observed during cavity
formation behind an impacting body (Truscott et al. 2014). Similar to the initial stage of
air-cavity and splash formation in the impact of a flat plate (Mayer & Krechetnikov 2018),
the pinning of the contact line at the corner of the pattern occurs upon impact, as shown
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Water impact of a surface-patterned disk

(ai) (aii) (aiii)

(bi) (bii) (biii)

(aiv) (av) (avi)

(biv) (bv) (bvi)

Figure 5. Visualization of air bubbles beneath a surface-patterned disk upon water entry in (a) bottom view
and (b) side view: D = 50 mm, r = 3.8 mm, d = 4.2 mm, h = 2 mm, and U = 1.71 m s−1. In the bottom view,
the focal plane of the images is set near the free surface. Thus, in panels (av, avi), the images become blurred
after the disk has passed the focal plane. See supplementary movies 2 and 3. The times are (ai) t = 0.00 ms,
(aii) t = 0.45 ms, (aiii) t = 1.15 ms, (aiv) t = 1.80 ms, (av) t = 11.90 ms, (avi) t = 19.65 ms, (bi) t = 0.35 ms,
(bii) t = 1.25 ms, (biii) t = 4.00 ms, (biv) t = 9.25 ms, (bv) t = 15.00 ms, (bvi) t = 20.60 ms.

in figure 6(bii,biii). Simultaneously, the water displaced by the patterned part moves into
the hole, and therefore the air inside the hole becomes compressed. When the air pressure
inside the hole reaches a certain value, the pressurized air penetrates the contact line at the
corner of the pattern (figure 6biv). Afterwards, the air is depressurized and flows out of
the gaps at the edge of the holes (figure 6bv), as observed in the bottom view (figure 6a).
Once a significant volume of the trapped air has escaped from the hole, the hole is filled
with water (figure 6bvi).
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Contact line pinning

Air vent

Air bubbles

Figure 6. (a) Profile of impact force for a surface-patterned disk (D = 50 mm, r = 1.8 mm, d = 10.2 mm,
h = 2 mm and U = 1.71 m s−1) and corresponding images of the bottom surface focusing on four holes at
the disk centre (bottom view). (b) Schematic diagrams of the dynamics of air bubbles inside the holes. The
grey block and the white area denote a surface pattern and a single hole, respectively. Subpanels (i–vi) in panel
(a) correspond to subpanels (i–vi) in panel (b). See supplementary movie 4 for panel (a).

When the air bubble penetrates the contact line and vents out of the hole, it mostly
escapes through the side that is farther from the centre of the disk, as demonstrated in
figure 6(aiv–avi) (magnified views of the four holes at the disk centre). For a flat disk,
the pressure at the centre of the surface is greater than that at the edge (Okada & Sumi
2000; Ma et al. 2016). Similarly, for our model, we may assume that the pressure on the
surface is not uniform, but decreases radially from its centre. Thus, as the pressurized air
overcomes the water pressure inside the hole, the air bubble starts to vent through the side
farther from the centre, where the pressure is lower.

The characteristic behaviour of trapped air bubbles in a surface-patterned disk (figures
5 and 6) differs notably from that of a flat-bottomed structure. It is well known that, when
a flat-bottomed structure impacts a free surface, a thin layer of air becomes trapped and is
broadly distributed. Verhagen (1967) confirmed this trapping of a thin layer of air below a
flat plate using high-speed images, and considered the compressibility of air to explain the
peak pressure exerted on the plate. The behaviour of the trapped layer of air beneath the
flat plate was clearly visualized, with initial touchdown at the edge and collapse of air from
the edge to the centreline (see Mayer & Krechetnikov (2018), figure 24). Similar dynamics
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Water impact of a surface-patterned disk

were also observed for a flat disk in which the trapped air layer had a circular shape and
collapsed toward the centre of the disk (see Ermanyuk & Gavrilov (2011), figure 4).

The impact force exerted on a surface-patterned disk is the spatial integral of pressure
over the entire frontal area of the disk. This frontal area of the disk can be decomposed
into Apattern and Ahole (figure 1b). The pressure over Ahole compresses the trapped air,
imposing a pressure on the disk until the air eventually vents out at some point during
the impact process. The compression of air contributes to a reduction in peak pressure,
and therefore disks with a greater Ahole (and Vhole) generally yield a reduced peak force
for the same model conditions (figures 3 and 4). The role of confined air in reducing the
peak pressure was also described by Mathai et al. (2015), who found that a concave-nosed
body exhibited a smaller peak pressure than a flat or convex-nosed body because of the
presence of trapped air. In summary, our systematic experimentation has revealed that the
compression and depressurization of trapped air bubbles during the initial impact phase
leads to the rise and fall of the impact force and accounts for a reduction in the peak impact
force.

3.3. Theoretical prediction of impact force
Although the previous sections described the effects of a surface pattern and trapped
air inside the holes based on force measurements and flow visualization, theoretical
analysis is also necessary to provide quantitative predictions of how the impact force
is affected by the volume of holes on a surface-patterned disk. Previous studies on the
water impact of a flat-bottomed body addressed the preimpact deformation of the free
surface by the approaching body (Verhagen 1967; Ermanyuk & Ohkusu 2005; Mayer &
Krechetnikov 2018). The deformation of the free surface enables the entrapment of a thin,
but widespread, air layer at the instant of impact, producing the air-cushioning effect.
However, in our analysis of a surface-patterned disk, the preimpact deformation of the
free surface is assumed to be negligible because of its minor magnitude; the volume of
the entrapped air layer between the disk bottom surface and the free surface is so small
compared with the total volume of the holes. That is, the free surface is assumed to be flat
before the impact.

When the surface-patterned disk impacts the free surface, air is trapped inside the holes
(figure 6). The impact force experienced by the surface-patterned disk is the spatial integral
of the pressure of the water that the disk contacts as well as that of the trapped air inside
the holes. Let phole be the pressure on the holes, ppattern be the pressure on the pattern
surface and p0 be the atmospheric pressure. Then, the upward force F exerted on the disk
is

F =
∫

phole dAhole +
∫

ppattern dApattern − p0A = p̄holeAhole + p̄patternApattern − p0A,

(3.1)

where p̄hole and p̄pattern denote the mean pressure over the surface area for the holes and the
patterned part, respectively. Here, we assume that the air pressure is uniform inside each
hole and the water pressure on the patterned surface changes linearly between two nearby
holes. Accordingly, the relation between p̄hole and p̄pattern is given as p̄pattern = p̄hole = p̄,
and the upward force F reduces to

F = (p̄ − p0)A. (3.2)

After the instant of impact, water enters the hole and compresses the trapped air.
Although the trapped bubbles exhibit complex behaviour, we simplify the decrease in
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Uv
(b)(a)

x(t)
h

Uv –          ẋ
Ahole

A

Figure 7. Schematic diagram after impact. (a) After the impact, air is trapped and compressed inside the hole.
The mean depth of water penetration inside the hole is denoted as x(t). (b) Added mass of the disk is pushed
downward with an effective speed of Ueff (= Uv − Aholeẋ/A).

volume of the trapped air at each hole as an increase in the mean water penetration x(t) with
respect to the bottom surface of the pattern (figure 7a) and assume that x(t) is uniform in all
holes of the disk. Without a surface pattern, water on the disk–water interface accelerates
to a downward speed of Uv , the same as the speed of the disk, soon after the impact.
However, for a surface-patterned disk, some portion of the water moves upward into the
holes through Ahole at a speed of ẋ(t) relative to the disk. That is, the interface in contact
with the surface pattern moves downward with a speed of Uv , and the interface in contact
with air in the holes moves downward with a speed of Uv − ẋ. The spatially averaged
effective speed Ueff of the water on the interface is then

Ueff = [(A − Ahole)Uv + Ahole(Uv − ẋ)]
A

= Uv − Ahole

A
ẋ. (3.3)

In other words, in comparison with the speed of the disk Uv , the effective (net) downward
speed of water on the free surface is Uv − Aholeẋ/A due to the existence of the holes
(figure 7b).

The peak impact force is generally explained in terms of the added mass of water that is
accelerated by a solid object. The added mass of a flat disk upon water entry is expressed
as (ρwD3)/6 (Glasheen & McMahon 1996b). In this study, however, the presence of
the surface pattern may alter the fluid behaviour beneath the disk, as discussed in § 3.2.
Therefore, we express the added mass of the surface-patterned disk as kρwD3, where the
unknown constant k will be assigned later. With (3.2), the equation of motion for the added
mass becomes

(p̄ − p0)A = kρwD3 d
dt

(
Uv − Ahole

A
ẋ
)

= −kρwD3 Ahole

A
ẍ. (3.4)

Because the falling unit is heavy and the phase for the first peak of the impact force is
very short, typically O(1 ms) (figure 2b), the impact speed Uv of the disk is assumed to
be constant as U during the impact phase: dUv/dt = dU/dt = 0. The initial conditions
are x(0) = 0 and ẋ(0) = UA/Ahole because the water initially has zero speed: U −
Aholeẋ(0)/A = 0.

According to Verhagen (1967), air entrapped between a falling plate and a deformed
free surface becomes compressed even before impact. Although we neglected the free
surface deformation before the impact, air inside the holes may be compressed before
the impact. Let a new variable p̄c denote the pressure of air inside the holes right at the
moment of impact. Because the air inside the holes is compressed very quickly as water
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Water impact of a surface-patterned disk

penetrates, from p̄c to p̄ in (3.4), the adiabatic relation p̄chγ = p̄(h − x)γ holds. Then,
p̄ = p̄c(1 − x/h)−γ ≈ p̄c(1 + γ x/h), and (3.4) becomes

(p̄c − p0) + γ p̄c

h
x + kρwD3

A
Ahole

A
ẍ = 0. (3.5)

Solving (3.5) with the initial conditions, we obtain

x(t) = − p̄c − p0

γ p̄c/h
+ p̄c − p0

γ p̄c/h
cos(ωt) + A

Ahole

U
ω

sin(ωt), (3.6a)

ẋ(t) = − p̄c − p0

γ p̄c/h
ω sin(ωt) + A

Ahole
U cos(ωt), (3.6b)

where

ω =
(

γ p̄c/h
(kρwD3/A)(Ahole/A)

)1/2

. (3.7)

Substituting (3.6a) into (3.4), the impact force F is

F(t) = kρwD3 Ahole

A

(
p̄c − p0

γ p̄c/h
ω2 cos ωt + A

Ahole
Uω sin ωt

)
. (3.8)

To determine the added-mass coefficient k, the impulse I imposed on the
surface-patterned disk is computed by integrating F(t) over impact duration, t = 0–T:

I =
∫ T

0
F dt = kρwD3 Ahole

A

(
p̄c − p0

γ p̄c/h
ω sin ωT + A

Ahole
U(1 − cos ωT)

)
. (3.9)

As will be discussed in § 3.4, this impulse should be equal to that imposed on a flat disk
at the instant of impact (Iflat = (ρwD3U)/6). Because the impulse should be independent
of T and the time history of the impact force during impulse duration looks like the first
half-period of a harmonic function according to our experiment (figure 2b), T = π/ω is a
likely theoretical prediction of the impulse duration. The impulse I is then given by

I =
∫ π/ω

0
F dt = 2kρwD3U, (3.10)

which results in k = 1/12; I should be equal to Iflat (= (ρwD3U)/6).
When seen by an observer fixed on the ground, the free surface, which is initially in

a stationary state, is accelerated by the disk to an effective downward speed of 2U(=
U − Aholeẋ(π/ω)/A) at t = T(= π/ω). When seen by an observer riding on the disk, the
free surface approaches the observer with a speed of U at t = 0 and moves away from the
observer with a speed of U at t = T(= π/ω). In this sense, the role of the air bubbles inside
the holes may be described as a spring. Before impact, the spring (air bubble inside a hole)
absorbs a loading by an object (water) with an incoming speed U relative to the spring,
and at the end of the impact phase the object (water) moves in the opposite direction with a
speed U relative to the spring. Because the speed of the disk is U in the ground reference,
the effective downward speed Ueff of the water eventually should become 2U in the ground
reference. Thus, the equivalence of impulse between the flat disk and the surface-patterned
disk implies that the added mass (ρwD3)/12 of the surface-patterned disk is half that of
the flat disk with no surface pattern, (ρwD3)/6.

According to (3.8) and the relation between F and T such that F(T) = F(π/ω) = 0,
p̄c should be equal to p0. This relation can also be obtained using our experimental data
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Figure 8. (a) Mean absolute percentage error between experimental and theoretical values of the maximum
impact force Fmax as a function of p̄c/p0. (b) Comparison between experimental and theoretical values of the
maximum impact force coefficient Fmax/ρwcUA for p̄c/p0 = 1.

for maximum impact force. The maximum impact force corresponds to the maximum
amplitude of the solution in (3.8), and the maximum impact force coefficient Fmax/ρwcUA
is expressed as

Fmax

ρwcUA
=

[(
p̄c − p0

ρwcU

)2

+ γ p̄c

12ρwc2
D3

Vhole

]1/2

. (3.11)

To determine p̄c from our experimental data, the mean absolute percentage error
is evaluated for a given p̄c (figure 8a), which is defined as Σn

i=1|(Fmax,exp,i −
Fmax,theo,i)/Fmax,exp,i|/n, where n is the total number of experimental cases and Fmax,exp,i
and Fmax,theo,i are the experimental and theoretical values, respectively, of the maximum
impact force for each case i. In figure 8(a), the mean absolute percentage error is smallest
at p̄c/p0 = 1, which indicates that (3.11) is best fitted with our experimental data when
p̄c = p0 (figure 8b).

Interestingly, the relation p̄c = p0 shows that the air inside the gap between the free
surface and the surface-patterned disk is not compressed, and maintains the atmospheric
pressure before impact, unlike for the flat disk with no pattern. For the flat-disk case, the air
in the gap begins to be compressed when the radial velocity at the rim of the disk is equal to
the speed of sound before impact. Thus, the air pressure at the instant of impact increases
significantly beyond p0 (Verhagen 1967). However, for the surface-patterned disk, the holes
inside the surface pattern buffer the pressure increase of air between the disk and the free
surface. The pressure inside the gap changes little before impact and can be approximated
as p0. Note that p̄c = p0 means the air remains uncompressed before impact and does
not contradict our previous argument that the air becomes compressed like a spring after
impact.

With p̄c = p0, (3.6a), (3.8) and (3.11) are simplified as follows:

x(t) = A
Ahole

U
ω

sin(ωt), (3.12)

915 A52-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

12
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.123


Water impact of a surface-patterned disk
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Figure 9. Time history of the impact force for a surface-patterned disk: (a) Vhole/D3 = 0.014 (D = 50 mm,
r = 1.8 mm, d = 4.2 mm, h = 2 mm and U = 1.71 m s−1); (b) Vhole/D3 = 0.025 (D = 50 mm, r = 1.8 mm,
d = 6.2 mm, h = 3 mm and U = 1.71 m s−1). The red dashed line is given by (3.13) with a phase shift that
matches the phase of the peak.

F(t) = 1
12

ρwD3Uω sin ωt, (3.13)

Fmax

ρwcUA
=

(
γ p0

12ρwc2

)1/2 (
Vhole

D3

)−1/2

. (3.14)

Although (3.12) and (3.13) are expressed in the form of an oscillation, the equations are
only physically meaningful until the penetration height x returns to zero at t = T(= π/ω).
After t = T , x is negative in (3.12), which means that the air has escaped from the holes,
and our analysis becomes invalid.

The time history of the impact force acting on the disk is compared between the
theoretical prediction (3.13) and the experimental measurement for two different cases
(figure 9). For comparison, the peak of the theoretical curve is positioned at the same x
value (time) as that of the experimental curve. The theoretical prediction matches well
with the experimental data if arbitrary phase shift is applied to the theoretical curve of
(3.13). The phase shift is necessary because the rise in the experimental impact force
is more gradual and lasts longer. The theoretical profile is symmetric with respect to its
peak, whereas the profile obtained experimentally is asymmetric. Our theoretical approach
might not capture important interface dynamics that determine the impact force at the
early rise phase of the impact force. Future research should examine exactly how trapped
air bubbles behave in the holes of a surface pattern and improve the current theoretical
model to account for the asymmetric time history of the impact force. Furthermore, the
maximum impact force coefficient (3.14) provides the dashed line in figure 4. Although
we made several assumptions to simplify the problem, (3.14) is in good agreement with
most of the experimental data for surface-patterned disks.

3.4. Impact duration and impulse
We now consider the impact duration and impulse to examine the water impact of a
surface-patterned disk from the perspective of momentum transfer. In the experimental
results, the impact duration timp is defined as the time during which the impact force
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exceeds 0.2Fmax before and after its peak (figure 2b), and the impulse I is calculated by
integrating the impact force over the impact duration (see the shaded area in figure 2b).
Because it was difficult to determine, with the necessary accuracy, the time at which the
impact force becomes non-zero from the experimental results, a threshold was adopted to
obtain the impact duration, and this was varied to find an appropriate value. The computed
impulse was similar when the threshold value was between 0.1Fmax and 0.3Fmax, but
decreased sharply beyond 0.4Fmax. The main arguments in this section are not affected
when the threshold is between 0.1Fmax and 0.3Fmax, and so 0.2Fmax was chosen to define
timp. Because of the difficulty in specifying an exact contact time in water impact problems,
previous studies on the water entry of solid objects have tended to compute the impulse
exerted on the objects using different time ranges (Huera-Huarte, Jeon & Gharib 2011;
Ma et al. 2016; Speirs et al. 2019). In that the impulse refers to momentum loss by water
impact, the dimensionless impulse is obtained by dividing the impulse by the momentum
of the falling unit at impact, MU. Here M is the total mass of the falling unit (dashed box
in figure 1a), and this is set to be M = 1.3 kg, regardless of which surface-patterned disk
is used, because each disk accounts for less than 2 % of the mass of the falling unit.

In contrast to Fmax/ρwcUA (figure 4), the dimensionless impulse I/MU is not strongly
affected by Vhole/D3 (figure 10a). That is, while the size of the disk is critical for
the impulse, the shape of the surface pattern itself has no significant effect. For
surface-patterned disks with D = 50 mm, the values of I/MU are mostly within a narrow
range between 0.015 and 0.021, regardless of the shape of the surface pattern and the
depth of the holes. Moreover, surface-patterned disks with D = 30 mm undergo much
smaller momentum loss than those with D = 50 mm, and exhibit an almost constant
I/MU ≈ 0.005. Note that I/MU for the flat disk (Vhole/D3 = 0) is also within the range
of the surface-patterned disks in figure 10(a), which validates our approach using I = Iflat
to determine the added-mass coefficient k in § 3.3. The value of I/MU depends on the
disk diameter D rather than Vhole/D3. For a disk with larger D, a greater volume of water
per unit disk area is displaced and accelerated by the impact, leading to an increase in
the momentum loss. A similar result was reported by Glasheen & McMahon (1996b).
Note that the impulses in the present study (0.0098 N s ≤ I ≤ 0.045 N s) lie in the same
range as the results of Glasheen & McMahon (1996b), who used flat disks with diameters
between 25.4 and 61.4 mm and impact velocities from 0.562 to 3.11 m s−1, which cover
the ranges of D and U in our experimental models (table 1).

The impact duration timp defined above for the experimental results corresponds to T =
π/ω theoretically, according to our analysis in § 3.3: F(0) = F(π/ω) = 0 from (3.13).
The impulse during the period t = 0–π/ω is I = (ρwD3U)/6 in (3.10). The corresponding
dimensionless impulse I/MU(= ρwD3/6M) is approximately 0.016 and 0.003 for
D = 50 mm and 30 mm, respectively, which slightly underestimate the experimental
measurements (figure 10a). Nevertheless, (3.10) can capture the aforementioned trend
based on our experimental results: I/MU(= ρwD3/6M) is independent of Ahole and Vhole,
but is affected by D for a given mass of the falling unit.

From (3.13), the maximum impact force coefficient is expressed in terms of the impact
duration timp(≈ T = π/ω) as

Fmax

ρwcUA
= 1

3

(
timp

D/c

)−1

. (3.15)

For the same impulse (same D and U), the maximum impact force is inversely proportional
to the impact duration. As predicted by (3.15), for our experimental data, Fmax/ρwcUA
depends solely on the dimensionless impact duration timp/(D/c), and seemingly collapses
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Figure 10. (a) Dimensionless impulse I/MU versus Vhole/D3 for two different disk diameters, D = 50 mm and
30 mm. (b) Maximum impact force coefficient Fmax/ρwcUA versus dimensionless impact duration timp/(D/c).
In panels (a,b), the dashed line shows the theoretical prediction, I/MU = ρwD3/6M and (3.15). The notation
of the symbols is the same as in figure 4.

onto a single curve of (3.15) for all surface patterns (d, r and h), disk diameters D and
impact velocities U considered in this study (figure 10b). That is, the application of a
surface pattern to the disk can reduce Fmax/ρwcUA by increasing timp/(D/c).

In figures 4 and 10(b), we find that Fmax/ρwcUA decreases inversely with Vhole/D3 and
timp/(D/c), respectively. From (3.14) and (3.15),

timp

D/c
=

(
4ρwc2

3γ p0

)1/2 (
Vhole

D3

)1/2

, (3.16)

and the correlation between Vhole/D3 and timp/(D/c) is clearly shown in figure 11(a). A
larger volume of trapped air inside the holes monotonically extends the impact duration.
While timp/(D/c) is approximately 3 for the flat disks (Vhole/D3 = 0), it can increase up to
7 for the surface-patterned disks. Here, the theoretical curve for the surface-patterned disks
underestimates the impact duration obtained from the experiment. This underestimation
occurs because the impact force rises more moderately than predicted by the theoretical
model as demonstrated in figure 9, and thus the theoretical impact duration serves as a
lower bound for the experimental results. Regarding the time duration of the rise phase of
the impact force (trise in figure 9), the values of the experimental measurements are greater
than the theoretically predicted values, whereas they exhibit much less discrepancy for the
time duration of the fall phase (tfall in figure 9).

To further examine the relation between the impact duration and the volume of
trapped air inside the holes, we selected three experimental models with D = 50 mm
and different values of Vhole/D3: figure 11(b) for Vhole/D3 = 0.008 (r = 2.8 mm, d =
3.2 mm, h = 2 mm); figure 11(c) for Vhole/D3 = 0.018 (1.8 mm, 8.2 mm, 2 mm);
figure 11(d) for Vhole/D3 = 0.027 (1.8 mm, 8.2 mm, 3 mm). We measured the time at
which the volume of the air bubbles that had escaped from the holes near the centre of
the disk after the depressurization process reached a maximum from the visualization
images (figure 11b–d); t/(D/c) = 0 at the instant of impact. For the case of Vhole/D3 =
0.008, it takes t/(D/c) = 6.52 for the trapped air to be vented. For the other values of
Vhole/D3 = 0.018 and 0.027, the venting of the trapped air is delayed: t/(D/c) = 7.89 and
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(a) (b) (c) (d)

t/(D/c) = 0 t/(D/c) = 0 t/(D/c) = 0

t/(D/c) = 6.52 t/(D/c) = 7.89 t/(D/c) = 8.92

Vhole/D3

0 0.01 0.02 0.03 0.04
0

1

2

3

4
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8

9
t im

p/
(D

/c
)

Figure 11. (a) Dimensionless impact duration timp/(D/c) as a function of Vhole/D3. The notation of the
symbols is the same as in figure 4. The dashed line is given by (3.16). (b–d) Comparison of time at
which the volume of the air bubbles that have escaped from the centre holes reaches a maximum for
three surface-patterned disks with Vhole/D3 = 0.008, 0.018 and 0.027, respectively (D = 50 mm and U =
1.71 m s−1).

8.92, respectively. Although the time required for venting differs for each hole because
of the non-uniform spatial distribution of pressure over the disk and the resultant spatial
variation in the dynamics of air bubbles through the holes, a hole with a greater volume
generally requires a longer time for the trapped air to be maximally vented. During the
prolonged venting period, the trapped air inside the holes functions to cushion the impact,
thereby extending the impact duration.

Using the intermediate parameter timp/(D/c), we can now interpret the result in figure 4,
where the increase in Vhole/D3 leads to the monotonic decrease in Fmax/ρwcUA. Neither
the existence of the surface pattern nor its shape changes the magnitude of the impulse
(figure 10a). Therefore, an extended impact duration would lead to a decrease in the
maximum impact force because the impulse remains unchanged (figure 10b). Moreover,
the amount of trapped air determines the impact duration (figure 11a). Increasing the
volume of holes in the surface pattern allows more air to be trapped upon water impact,
which extends the impact duration and subsequently reduces the maximum impact force
(figure 4).

4. Concluding remarks

In this study, the water entry of a surface-patterned disk has been investigated to examine
how the surface pattern affects the physical process of impact. During the initial phase,
the sudden rise and fall of the impact force is synchronized with the compression and
depressurization of the air bubbles trapped inside the holes that form the surface pattern.
The air bubbles inside the holes contribute to a notable reduction in the peak impact force.
The peak impact force is determined by the total volume of holes created by the surface
pattern, and scales with (Vhole/D3)−1/2. The impulse imposed on the disk during the initial
phase remains nearly constant for different disk diameters, irrespective of the volume and
shape of the surface pattern. Because of the cushioning effect of the trapped air bubbles,
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the impact duration of the surface-patterned disk is greater than that of the flat disk, and
scales with (Vhole/D3)1/2.

For mechanical systems that plunge into the air–water interface or undergo slamming
by water, a strong impact often causes structural damage. The results of this study suggest
that the implementation of macroscale mesh-like surface patterns might be a practical
approach for reducing this damage. In future work, we plan to investigate the effect of
surface patterns on solid objects other than flat disks and explore their potential application
in naval structures.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.123.
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Appendix. Surface-patterned disks of arbitrary shapes

For surface-patterned disks, we experimentally and theoretically showed that Fmax/ρwcUA
was determined by Vhole/D3, regardless of the shape of the pattern (figure 4). To further
support this result, we consider three types of surface patterns other than the regular square
holes used throughout this study (figure 12a). The models were fabricated using the same
procedure described in § 2, and the diameter of the disk and the depth of the pattern were
kept constant at D = 50 mm and h = 2 mm. Type 1 is composed of regular triangular and
hexagonal holes with different lengths and distances. Here, the definitions of d and r in
figure 1(b) are used with the subscripts tri and hex. For the triangular holes, three models
were manufactured using dtri = 3, 4, 5 mm and rtri = 6.8, 5.1, 3.3 mm, respectively.
Likewise, three models with hexagonal holes were prepared: dhex = 6.4, 8.1, 10.4 mm and
rhex = 2, 3, 2 mm, respectively. Type 2 contains rectangular holes of arbitrary sizes that
are distributed randomly, and two models are presented in figure 12(a). Type 3 is a simple
pattern that has a single round hole at the centre with a different hole diameter dround. Four
models were made using dround = 10, 20, 30, 40 mm. For all models, the impact speed
was set to be U = 1.71 m s−1 by dropping the disks from H = 15 cm.

For types 1 and 2 with distributed holes, the maximum impact force coefficient
Fmax/ρwcUA is in good agreement with the theoretical curve presented in figure 4
(figure 12b). Notably, even for type 3 with a single hole, the theoretical model can capture
the general trend of the experimental results: monotonic decrease in Fmax/ρwcUA with
Vhole/D3. However, for type 3, Fmax/ρwcUA is distinctly smaller than the theoretically
predicted value when dround = 10 mm (Vhole/D3 = 0.0013). When Vhole/D3 is sufficiently
large, the volume and cushioning effect of air inside the holes outweigh those of air inside
the gap between the bottom surface of the pattern and the free surface, and the free-surface
deformation is negligible. However, for the flat-disk case Vhole/D3 = 0, the free-surface
deformation just before the impact cannot be neglected, hence our theoretical model is
not applicable to the flat disk. In the same way, for very small Vhole/D3 cases, the effect
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(b)(a) Type 1

Type 2

Type 3

rtri
rhex

dhex
dtri

Square holes (r = 3.8 mm)
Triangular holes (Type 1)
Hexagonal holes (Type 1)
Irregular rectangular holes (Type 2)
Single round hole at the centre (Type 3)

dround

Figure 12. (a) Three types of surface patterns. All disks have the same D = 50 mm and h = 2 mm.
(b) Maximum impact force coefficient Fmax/ρwcUA versus dimensionless total volume of holes Vhole/D3 for
the three pattern types. As a reference, disks with regular square holes (r = 3.8 mm) from figure 4 are included.
The dashed line is given by (3.14).

of the free-surface deformation becomes important, and our theoretical model tends to
overestimate the impact force.

In addition, one of the basic assumptions of our theoretical approach is that holes are
distributed uniformly in the surface pattern and quantities such as pressure and penetration
depth are uniform through the holes. Thus, in the intermediate range of Vhole/D3, the
single-hole cases with dround = 20 and 30 mm (Vhole/D3 = 0.005 and 0.011) exhibit a
larger deviation from the theoretical curve, compared with the cases with distributed hole
patterns with similar values of Vhole/D3 (figure 12b). Meanwhile, the single-hole case
with dround = 40 mm (Vhole/D3 = 0.020) shows the better agreement with the theoretical
model. In this case, the hole diameter is so large that the disk has a narrow rim, which is
similar to the disk in the inset of figure 4, and the assumption regarding the distributed
hole pattern is valid.
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