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Parametrically excited solitary waves emerge as localized structures in high-aspect-
ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimen-
tal characterization of the hydrodynamics of these waves using particle image
velocimetry. We show that the underlying velocity field of parametrically excited
solitary waves is primarily composed of a subharmonic oscillatory component. Our
results confirm the accuracy of Hamiltonian models with added dissipation in
describing this field. Remarkably, our measurements also uncover the onset of a
streaming velocity field which we show to be as important as other crucial nonlinear
terms in the current theory. Using vorticity equations, we show that the streaming
pattern arises from the coupling of the potential bulk flow with the oscillating
boundary layers on the vertical walls. Numerical simulations provide good agreement
between this model and experiments.
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1. Introduction
Parametric instabilities in spatially extended systems can generate waves by their

resonance with an external driving force, providing a universal mechanism to generate
structures in dissipative systems. In hydrodynamics, these structures satisfy a simple
rule: energy losses due to viscous effects are compensated by external energy injection,
e.g. by means of vertical vibrations. This balance can create extended or solitary
structures that remain stable as long as the system is driven by the external force.
In particular, solitary waves emerge in high-aspect-ratio free surfaces subject to
vertical vibrations as a result of exciting the system at twice the frequency of the
first transverse mode. They become stable only after perturbing the free surface.
These waves keep the sloshing motion features of the first transverse mode, but
rather than involving the whole surface, their motion is highly localized in the
longitudinal direction (Wu, Keolian & Rudnick 1984). This solitary wave is usually
referred as a non-propagating hydrodynamic soliton or a parametrically excited solitary
wave. In contrast to classical hydrodynamic solitons, the spatial envelopes of these
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Velocity field in parametrically excited solitary waves 591

structures are stable and do not propagate. Remarkably, this behaviour can be found
in several hydrodynamic systems: oscillons in the Faraday configuration (Arbell &
Fineberg 2000) or solitary waves in vibrated Hele-Shaw cells (Rajchenbach, Leroux
& Clamond 2011) display spatial envelopes with similar spatiotemporal features.

Parametrically excited solitary waves are modelled in terms of the parametric
dissipative nonlinear Schrödinger equation (pdNLSe), derived by Miles (1984b).
This equation captures the minimum requirements for parametrically sustained
one-dimensional solitary structures. Hence, its scope goes far beyond hydrodynamics
(see e.g. Barashenkov, Bogdan & Korobov 1991; Denardo et al. 1992). Recent
studies have been focused on providing an exhaustive analysis of the pdNLSe using
mathematical and numerical techniques. Experiments have also been used for this
purpose (see Zhang, Wang & Tao 2007; Clerc et al. 2011; Gordillo et al. 2011).
Despite all of this focus, fundamental issues such as the validity of the approximations
that yield the pdNLSe have remained unaddressed. Systematic comparisons between
predictions and measurements are rare (Chen, Tu & Wei 1999). Furthermore, all
of the experimental characterizations that can be found in the literature have been
achieved using a single technique, i.e. by tracking the free surface, a measurement
useful for outlining solitary-wave stability and interaction laws but blind to potential
subsurface phenomena. This is a critical issue, since most steps involved in the
pdNLSe derivation rely strongly on hypotheses from fluid dynamics. It is thus
fundamental to uncover the velocity field beneath the surface for a comprehensive
experimental analysis of parametrically excited solitary waves.

In this article, we present experimental results concerning parametrically excited
solitary waves with a focus on the hydrodynamics. We have measured the velocity
fields that support the localized cross-waves using particle image velocimetry (PIV).
The article is organized as follows. In § 2, we outline the pdNLSe theoretical model.
In § 3, we briefly describe the experimental set-up. A summary of our most significant
experimental results can be found in § 4. Finally, discussion and conclusions, including
comparisons with pdNLSe theoretical predictions, are given in § 5.

2. Theory

Consider a fluid layer of depth d in an infinite channel of breadth b. The channel
is oriented along the x axis (walls at y=±b/2 and z=−d) and is forced to oscillate
vertically at frequency 2ω and acceleration amplitude Γ0. The vertical acceleration of
the channel is accordingly Γ (t)=−Γ0 cos 2ωt. Let us assume that ω approaches ω01,
the first-transverse-mode frequency, so the (0, 1) mode is parametrically excited. The
linear theory of gravity waves for inviscid flows provides a good estimation for the
(0, 1)-mode frequency, ω01 = √gkτ , where g is the acceleration of gravity, k = π/b
is the wavenumber and τ ≡ tanh kd. The parametric forcing can thus be characterized
in terms of two dimensionless parameters: the detuning ν = (ω2/ω2

01 − 1)/2 and the
normalized acceleration amplitude γ = Γ0/(4g).

Free-surface waves in constant-depth inviscid flows are known to be Hamiltonian
(cf. Miles 1977). This can be used as a point of departure for deriving amplitude
equations in such systems. However, realistic set-ups are not conservative, and external
forcing is required to create such structures. In any case, although viscous effects are
neglected a priori in Hamiltonian formulations, the addition of linear dissipation in
amplitude equations seems to be sufficient for modelling slightly viscous flows (Miles
1976). The reason is simple: in this kind of flow, the motion is close to inviscid
everywhere except in the boundary layers. Energy is thus dissipated without affecting

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.416


592 L. Gordillo and N. Mujica

the general features of the waves (cf. Miles 1967). For instance, the decay rate for
the (0, 1) mode, α01, can be estimated from boundary layer analysis (Miles 1984b).
In our problem, this provides an extra dimensionless parameter, the damping rate µ=
α01/ω01.

Using the stated hypotheses, it can be shown rigorously that the first transverse
mode in an infinite channel can be modelled with (Miles 1984b)

i (∂Tψ +µψ)= νψ + 2 |ψ |2 ψ + ∂XXψ + γψ, (2.1)

which is the pdNLSe. It should be noticed that this equation is written in terms of
the dimensionless variables T = ω01t and X = b−1/2

s kx, where t stands for time, x for
the longitudinal spatial coordinate and bs = [1+ kd(1− τ 2)/τ ]/4. The complex field
ψ(X, T) contains the slow spatiotemporal modulation of the first transverse mode. In
general, the deformation at the free surface, η(x, y, t), and the velocity potential inside
the fluid, Φ(x, y, z, T), are related to ψ(X, T) by

η (x, y, t) = Re{asψ (X, T) exp iωt} sin ky, (2.2)

Φ (x, y, z, t) = Im{asψ (X, T) exp iωt} g sin ky cosh k (z+ d)
ω01 cosh kd

, (2.3)

where a2
s = 128k−2/(6τ 2 − 5+ 16τ−2 − 9τ−4).

Just like their propagating counterparts, non-propagating hydrodynamic solitons
arise from a subtle balance between linearities, nonlinearities and dispersion.
Parametrically excited solitary waves can be found by assuming solutions of the
form ψ(X, T)= ρ(X)e−iθ . Straightforward calculations show the onset of a subcritical
instability for γ >µ and ν < 0 with two families of solutions. One family of solutions
is always unstable, whereas the other one, given by

ψ (X, T)=±iδ sech [δ (X − X0)] ei/2 sin−1 (µ/γ ), (2.4)

is stable whenever γ 2 < ν2 + µ2, and provided that δ2 = −ν + (γ 2 − µ2)1/2 (see
Laedke & Spatschek 1991). The free parameter x0 comes out from a constant
of integration and represents the position of the centre of mass of the envelope.
Additionally, (2.4) consists of two solutions with opposite sign. This is consistent
with experimental observations of a sort of soliton polarity, a crucial feature for pair
interactions (Wang & Wei 1994; Wang et al. 1996; Clerc et al. 2009). Equation (2.1)
also supports cnoidal and dnoidal families of solutions (cf. Miles 1984b; Umeki
1991). Furthermore, a change of sign in its nonlinear cubic term gives rise to the
kink-type solutions observed by Denardo et al. (1990). This is achieved, for instance,
by decreasing the depth of the fluid layer (see also Miles 1984b, pp. 455–456).

3. Experimental set-up
We ran our experiments in an acrylic basin attached to an electromagnetic shaker

(see figure 1). The trough of length l = 19.05 cm and breadth b = 2.54 cm was
filled with an aqueous solution to a depth d = 2.00 cm. The aqueous solution
contained 2 ml of Photoflo to improve wall wetting (Wu et al. 1984), as well as a
small amount of KBr (13 % in mass concentration) to increase the fluid density. The
solution density matched that of the PIV particles, 1.1 g cm−3, so that particle settling
became noticeable only after several hours (kinematic viscosity was also reduced by
approximately 15 %, cf. Lide, 2004). The acceleration of the basin was registered
using a piezoelectric accelerometer and a lock-in amplifier referenced externally to
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FIGURE 1. (Colour online) General scheme of the set-up. Solitary waves can be created in
the basin fluid after injecting energy through vertical vibrations. The fluid is seeded with
fluorescent particles and illuminated by a vertical laser sheet moveable in the y direction.
PIV digital processing allows us to measure the velocity field in the x–z plane at fixed ys.

the input shaker signal. Parametrically excited solitary waves were observed when the
system was accelerated vertically as Γ (t) = −Γ0 cos(2πft), at frequencies f slightly
below 11 Hz and acceleration amplitudes Γ0 of approximately 0.1g. The frequency
threshold was very close to double the experimental first transverse-mode frequency,
f0,1 = 5.49 Hz, which was obtained by measuring the linear surface response using a
capacitive sensor and a spectrum analyser in frequency-sweep mode (for more details,
cf. Gordillo 2012).

The PIV particles inside the fluid (carboxy-modified acrylate resin, � = 15 µm)
were illuminated using a double-pulsed Nd:YAG laser (70 mJ per pulse) and a laser
sheet generator. We placed the latter on a linear translational stage so that the sheet
position along the fluid layer y could be easily adjusted. The laser sheet thickness
inside the fluid was 2 mm. We remark that illumination from the bottom is the
only type compatible with PIV and measurement requirements. Unfortunately, due
to the back and forth sloshing of the solitary waves (see the zoomed window in
figure 1), the free surface reflected a huge amount of light in the y direction. To
avoid this, we used fluorescent PIV particles (absorption and emission peaks at 550
and 580 nm respectively) and blocked reflections with a longpass optical filter whose
cutoff matched the light-source wavelength (532 nm).

Images were acquired using a high-speed camera providing an imaging region
of 2560 pixels × 512 pixels (20.0 cm × 4.0 cm). We synchronized the laser double
pulses (1t = 10 ms) with the motion of the solitary wave at a fixed phase θs.
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594 L. Gordillo and N. Mujica

Since the solitary wave sloshed at f /2 and at a fixed phase with respect to the
shaker input signal, the latter signal was used as the reference. The frames were
acquired synchronously with the laser pulses. Each run consisted of 200 image
pairs for fixed sheet position ys and solitary-wave phase θs. A set of 36 different θs

values were analysed throughout the full solitary-wave cycle. Furthermore, 10 laser
sheet positions ys across the fluid layer were analysed for a fixed phase, θs = π, at
which the free-surface deformation was zero and the velocity was maximal on the
front wall.

Image processing was performed using our own Matlab code with classical
PIV digital techniques. As the image sequences included a moving boundary,
we required an automatic algorithm for boundary detection. We achieved this by
using a Radon-transform-based method from Sanchis & Jensen (2011) on averaged
same-phase samples. Similarly, background and illumination issues were corrected
using statistics-based images. The calculated boundaries were then used for creating
binary masks, which in turn were used in a multi-pass interrogation PIV scheme.
The minimum interrogation-window size was 16 pixels × 16 pixels (1.25 mm ×
1.25 mm). The results presented here were averaged over the 200 samples in the
correlation-function space to improve the signal-to-noise ratio.

4. Results

As a consequence of the pulsed-laser synchronization, the image sequences are
composed of a series of double fast snapshots (1t = 10 ms) captured every soliton
period (1t′ = 2/f ). This temporal scheme provides sets of time-resolved velocity
fields for a fixed phase between the external forcing and the soliton oscillation.
By tuning this phase, the velocity field during the whole cycle can be found. The
resulting velocity field u = (u, v, w) is mainly oscillatory in time, similar to those
of stationary waves. However, the temporal scheme provides more information. A
simple inspection of sequences shows that after one cycle, seeding particles do not
return to their position from the preceding cycle. If one frame is skipped such that
the temporal scheme is stroboscopic, it is easy to notice that particles are constantly
streamed. The effect of this streaming velocity field u= (u, v,w) becomes perceptible
in particle trajectories only after one or several cycles. In this sense, the instantaneous
velocity field u can be considered as the sum of two components: the oscillatory part,
ũ= (ũ, ṽ, w̃), and the streaming one, u.

In figure 2, we depict the velocity field inside the bulk of a parametrically excited
solitary wave at the phase θs = π. Figures 2(a) and (2b) display respectively the
instantaneous and streaming velocity fields in the x–z plane for a fixed ys=−1.07 cm.
The driving frequency and amplitude for these waves were f = 10.9 Hz and Γ0 =
0.096g. The solitary-wave envelope is in the centre of the basin (x0 = 0 in (2.4)).
Corresponding movies can be viewed in the supplementary material available online
at http://dx.doi.org/10.1017/jfm.2014.416.

In figure 3, we include side views (y–z plane) of the velocity field captured at the
same phase θs =π. For this sequence, the basin was rotated by 90◦ in the x–y plane
(the axes remained fixed to the basin). To obtain a full view of the velocity field,
we used a half solitary wave pinned at x0 = l/2 instead of a centred one. Due to the
refraction of rays of light on the free surface, the uppermost region of solitary waves
centred at x0= 0 cannot be observed in the images. Recalling that half solitary waves
exist in a particular region of parameter space, the frequency and amplitude of the
external driving were suitably adjusted to f = 10.97 Hz and Γ0= 0.127g. Figures 3(a)
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FIGURE 2. (Colour online) Front view (x–z plane) of the velocity field of a solitary
wave whose envelope is centred at x = 0 and θs = π. Only the central region of the
trough is shown. The laser sheet is placed at ys = 1.07 cm. (a) Instantaneous velocity
field. (b) Streaming velocity field and out-of-plane velocity gradient ∂yv (in colours). The
scale of the arrows in each figure is also displayed.
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FIGURE 3. (Colour online) Side view (y–z plane) of the velocity field of a half solitary
wave pinned at a lateral wall at θs = π. The laser sheet was placed at xs = 9.23 mm.
(a) Instantaneous velocity field. (b) Streaming velocity field and out-of-plane vorticity ωx
(in colours).

and (3b) display the corresponding instantaneous and streaming velocity fields. For
both fields, the position of the laser sheet was xs= 9.23 cm. With this side view, the
zoomed images (1280 pixels× 1600 pixels in a 2.8 cm× 3.5 cm window; minimum
interrogation window: 16 pixels × 16 pixels, i.e. 0.35 mm × 0.35 mm) allow us to
resolve the menisci formed at the front and back walls. In the image, the white
background represents regions occupied by the fluid. See the supplementary movies.

4.1. Instantaneous velocity field
The instantaneous velocity field inside the bulk of the parametrically excited solitary
wave is comprised primarily of an oscillatory part. Before analysing any data, the
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uniform velocity due to the driving of the basin was subtracted so that the velocity
fields were in a frame of reference fixed to the basin. The front view of the velocity
field shows that the motion is highly localized in the envelope of the structure with
velocity magnitudes decreasing by one order of magnitude from the centre to the
side walls of the trough. The magnitude of the velocity also increases on approach
to the free surface, which is a general feature of gravity waves in uniform depth
containers. These two spatial features can be observed throughout the entire cycle of
the solitary wave: the direction of the arrows is largely time independent, i.e. only the
magnitudes oscillate in time. Thus, a single-phase snapshot, as in figure 2(a), provides
a representative example of the velocity distribution in the x–y plane. Furthermore,
a quick inspection of the instantaneous velocity field in other planes by means of
moving the laser sheet shows that the spatial and temporal features in the x–z plane
are the same. Only the module of the arrows is reduced as one approaches the vertical
centre of the basin.

This feature is in agreement with the velocity fields obtained from side views of the
trough (y–z plane), as depicted in figure 3(a). The temporal features from this view
match those from the x–z plane: a field with static orientation and time-oscillating
magnitudes. The snapshots also display that particles move from the positive side of
the y axis to the negative side as the free surface exhibits its characteristic sloshing
motion. As expected, the magnitude of this motion increases when approaching the
free surface.

4.2. Streaming flow
In contrast to the instantaneous velocity field, the streaming flow does not oscillate.
By changing the phase of the light pulses with respect to the solitary-wave cycle,
we observed that the field is essentially steady across the bulk of the fluid. An
example of the velocity field in the x–z plane is shown in figure 2(b). The phase
and ys position of the illuminated plane are the same as for figure 2(a). It should be
noticed that compared with the maximal instantaneous velocity, these magnitudes are
around 20 times smaller. In this phase, we can observe that the particles are pushed
downward and outward from the solitary-wave core. Higher magnitudes are observed
in the centre of the channel rather than close to the free surface. The velocity field
suggests an important out-of-plane velocity gradient (see the colours in figure 2b).
Particles are streamed into the plane at the top and out of the plane at the bottom.
The opposite occurs in the centre of the basin (ys= 0), where particles move upward
everywhere.

To clarify the general structure of the streaming motion of particles, the y–z
view is very useful. The velocity field in figure 3(b) shows a pair of vortex-like
structures aligned with the x axis. As observed in the x–z view, particles are streamed
downward at the front and back walls (y = ±b/2) and upward in the centre of the
trough. Streaming near both menisci is hard to resolve since particle images are
subject to a high shear in this region. The vorticity, defined as usual as ω ≡ ∇ × u,
displays a noticeable out-of-plane component (shown in colours in figure 3b) and is
highly localized near the front and back walls. The vorticity core is pinched to the
meniscus and slightly pushed back by the walls as z decreases.

5. Discussion and conclusions
5.1. Comparison with predicted results

Generally speaking, the model of Miles (1984b), based on Hamiltonian equations
and linear dissipation, satisfactorily predicts the deformation of the free surface of
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FIGURE 4. (Colour online) Surface fitting results of the potential model (5.1) for solitary
waves. For visualization, surfaces are collapsed onto single master curves (symbols) which
are then compared with fitted models (dash-dotted lines). (a) Maximal and minimal
oscillatory vertical velocity w−w in the (x, z) plane. The fitting parameters for the upper
curve are A = 2.41 ± 0.04 cm s−1, Kx = 0.373 ± 0.002 cm−1, Kz = 1.36 ± 0.01 cm−1,
X0 = −0.06 ± 0.01 cm, and those for the lower curve are A = −2.59 ± 0.04 cm s−1,
Kx = 0.344± 0.001 cm−1, Kz = 1.24± 0.01 cm−1, X0 =−0.08± 0.01 cm. (b) Oscillatory
horizontal velocity v − v in the (y, t) plane. The fitting parameters are A = 7.61 ±
0.02 cm s−1, f = 5.492 ± 0.005 Hz, Ky = 1.21 ± 0.01 cm−1, Φ0 = −1.543 ± 0.004. The
vertical velocity of the basin is also displayed.

parametrically excited solitary waves (see Clerc et al. 2009; Gordillo et al. 2011).
We now compare this model with the velocity field inside the bulk of solitary waves.
According to Miles’ theory, the velocity of the fluid underneath the free surface is
irrotational and satisfies ũ= ( ũ, ṽ, w̃)=∇Φ. The potential is given by

Φ (x, y, z, t)= ±asδg sin ky cosh k (z+ d) cos θs(t)
ω01 cosh kd cosh

[
δb−1/2k (x− x0)

] , (5.1)

where θs(t)=ωt+ 1
2 sin−1 (µ/γ ). Equation (5.1) can be used to predict the components

of the velocity field. Thus, a simple way to test the accuracy of the model is to fit
it to the experimentally measured velocity field. To reduce the high dimensionality
of the set of dependent variables (three for space and one for time), we fixed two
dependent variables and applied a surface fit using the cftool function in Matlab on
the remaining two.

In figure 4(a), we display the results for the oscillatory vertical velocity w̃=w−w
in the x–z plane. Here, y is fixed at ys= 1.07 cm and t corresponds to the two phases
at which the velocities are maximal and minimal, i.e. θs={0,π}. For visualization, we
collapsed the PIV experimental data for eight different z values (−1.5< z< 0.5 cm)
into two master curves. This was done by dividing the data by the z-dependent part of
∂zΦ, i.e. sinh[Kz(z+ d)]. The curves should then be represented by a function f (x)=
A sech Kx(x− X0). Variables in capital letters are fitted parameters.

A similar comparison for the temporal evolution of the velocity field of a half
parametrically excited solitary wave is displayed in figure 4(b). In this case, we
analysed the oscillatory horizontal velocity from the side views, ṽ = v − v, in
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terms of the time t and the horizontal coordinate y at a fixed depth z = −0.44 cm
(the x position is again fixed at xs = 9.23 mm). For visualization, the surface in
the (y, t) space was collapsed onto a single master curve by diving the velocity
profiles by the y-dependence part ∂yΦ, i.e. cos[Kyy]. A set of 80 curves in the range
−0.64 < y < 0.64 cm were used for this purpose. According to (5.1), the velocity
should be well fitted by f (x)= A cos(2πFt −Θ0). The vertical velocity of the basin
is also plotted, displaying the parametric nature of the instability.

Figures 4(a) and (4b) provide compelling evidence that the potential-velocity model
describes well the oscillatory part of the velocity field. The hyperbolic secant profiles
reproduce with excellent accuracy the velocity distribution along the solitary wave.
The fitted values for maximal and minimal vertical velocity w̃= (w−w) of figure 4(a)
show good agreement. In general, the fitted values for Ky and Kz match the crosswise
wavenumber k = π/b = 1.24 cm−1. Accordingly, experimental measurements for the
half solitary wave show a crosswise standing wave profile that oscillates harmonically
at twice the driving period.

5.2. Parametric streaming
At this point, Miles’ model seems to satisfactorily reproduce the experimental data, at
least when comparisons with experimental data are made after subtracting the mean
streaming velocity field from the instantaneous one. This important step of processing
is vital for the agreement displayed in figure 4(a,b). Although Miles’ model for
Hamiltonian flows can yield some sort of streaming for higher-order terms (see
Gordillo 2012), these corrections remain potential (i.e. ω = 0) across the whole bulk
of the fluid. Hence, the model is blind to streaming flows with vorticity distribution
such as the one that parametrically excited solitary waves support. Even more striking
is the fact that the streaming flow is so significant. Using (2.3) and the formulae
for the pdNLSe parameters, we can estimate the following values from experimental
data: ψ ∼ 10−1 and ν ∼ µ ∼ γ ∼ 10−1. Meanwhile, the ratio between the streaming
and the potential velocities is w/w≈ 10−1. This means that the corrections due to the
coupling of streaming and potential flow are ψ3 and, consequently, as important as
the higher-order term in (2.1), which is responsible for the highly localized envelope
of the parametrically excited solitary wave. The question naturally arises of what the
physical origin of the parametric streaming is.

5.2.1. A simple model for parametric streaming
The physical origin of streaming in parametric flows has been widely studied

in a slightly different domain: acoustic flows. Streaming occurs because oscillatory
boundary layers transfer vorticity to the bulk of the fluid. The induced streaming
velocity field is independent of the viscosity of the fluid µ∗ and does not vanish as
µ∗→ 0. This is a consequence of the singular limit of the Navier–Stokes equation
at high Reynolds number. Streaming in parametric instabilities was first visualized
by Douady (1990) using Kalliroscope particles in a Faraday-instability configuration.
To the best of our knowledge, quantitative measurements of the streaming field
in a parametric instability have never been reported. Theoretical analysis on this
subject is also rare and has addressed the bottom and free-surface boundary layers
(Longuet-Higgins 1953; Martín & Vega 2005). Since parametrically excited solitary
waves must be supported between two vertical walls, we are sceptical about their
applicability to our set-up.
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To understand how vorticity is induced in the bulk through the streaming flow, we
analyse the Navier–Stokes equation for vorticity (ν∗ is the kinematic viscosity of the
fluid),

∂tω+∇× (u×ω)= ν∗∇2ω, (5.2)

which is complemented with the incompressible flow equation ∇ · u = 0. Following
our experimental results for the bulk, we assume that the field u and the vorticity
ω are comprised of two terms: a leading-order oscillatory part and a second-order
streaming (steady) part. Since the oscillatory part of the bulk vorticity ω̃ is derived
from a potential velocity field ũ, it follows that ω̃ = 0. Indeed, if (5.2) is integrated
during a cycle, the nonlinear terms coupling the oscillatory and the streaming flow
also vanish. The equation for the streaming vorticity across the bulk then reads

∂tω+ (u · ∇)ω− (ω · ∇) u= ν∗∇2ω. (5.3)

The first term represents a slow temporal evolution of the streaming vorticity and
is dominant over the neglected nonlinear terms. In contrast to the calculations in
Martín, Martel & Vega (2002) for slowly propagating waves in unbounded basins,
our oscillatory flow does not couple with the streaming one in the bulk through a
Stokes drift term. Coupling is exclusively achieved via the boundary layers along
the rigid walls and the free surface, which require a completely separate analysis
using boundary layer techniques. A suitable analysis for a rigid wall subject to
an external tangential velocity field oscillating at ω can be found in Batchelor
(2000, pp. 358–361). The theory predicts shear layers of extent δν ∼√2ν/ω. In our
experiments, this quantity (δν ≈ 20 µm) is two orders of magnitude smaller than the
spatial features of the potential flow (b= 2 cm), which is consistent with oscillatory
boundary layer hypotheses. The theory also predicts that if the outer oscillatory
velocity can be written as Re{ũout exp[iωt + iϕ]} (the amplitude ũout and phase ϕ
may have spatial dependence), the spatial asymptotic matching condition on the outer
streaming velocity is (cf. Gordillo 2012)

uout =− 1
4ω

{(
ũout
· ∇
)

ũout + 2
(
∇ · ũout) ũout + 3

[(
ũout
· ∇
)
γ
]

ũout}
. (5.4)

In practical terms, the coupling at the boundary layers arises from the convective
nonlinear terms, which are quadratic and allow steady resonances of the form
∼exp(iωt) × exp(−iωt). It should be noticed also that both outer velocities, uout

and ũout, are tangential to the wall in agreement with impermeability boundary
conditions. Remarkably, the induced streaming velocity does not depend at all on
the kinematic viscosity, which is a direct consequence of the singular limit of the
Navier–Stokes equations as the Reynolds number Re−→∞.

For a free surface subject to an external oscillatory velocity field, the boundary layer
analysis provides a different type of result: instead of imposing an outer tangential
streaming field as in (5.4), the constraint applies to the tangential-stress condition,
which should be zero. In terms of the velocity field, the spatial asymptotic matching
condition can be written as

∂

∂n
uout
‖ = 0, uout

⊥ = 0, (5.5a,b)

where the second equation comes from the impermeability condition at the free
surface. Remarkably, (5.3)–(5.5), together with the mass conservation equation for
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the streaming part, ∇ · u= 0, constitute an independent set of dynamic equations for
the streaming velocitiy and vorticity in the bulk. The coupling with the dominant
oscillating flow only appears in asymptotic matching conditions on the boundaries,
i.e. (5.4), which can now be regarded as classical boundary conditions.

The previous analysis can be applied for any type of three-dimensional oscillatory
potential flow. For parametrically excited solitary waves, the problem can be simplified
further: the slight dependence of the solution along the x direction (see e.g. the
velocity in figure 2) suggests that the streaming field is dominated by y–z components,
i.e. u≈ (0, v, w), and that the vorticity’s main component lies along the x direction,
i.e. ω ≈ ωi. The configuration can thus be considered as two-dimensional (the x
dependence can be considered as a simple slow modulation of the two-dimensional
problem). Considering a stream function Ψ such that (0, v, w) = ∇ × (Ψ i), the
problem can be written as

∂tω+ ∂zΨ∂yω− ∂yΨ∂zω= ν∇2ω, (5.6)
ω=−∇2Ψ. (5.7)

The spatial asymptotic matching conditions for the parametrically excited solitary
wave can be easily obtained from (2.3), (5.4) and (5.5). For the rigid boundaries, we
obtain Dirichlet boundary conditions for the tangential velocities

v|z=−d = − 3
4ω
∂yΦ∂yyΦ

∣∣∣∣
z=−d

=−3a2
s |ψ |2 ωk

8
sin 2ky
sinh2 kd

, (5.8)

w|y=±b/2 = − 3
4ω
∂zΦ∂zzΦ

∣∣∣∣
y=±b/2

=−3a2
s |ψ |2 ωk

8
sinh 2k (z+ d)

sinh2 kd
, (5.9)

for the bottom and the front and back walls respectively. On the other hand, the zero-
tangential-stress condition on the free surface is satisfied with the Neumann boundary
condition for the tangential velocity

∂zv|z=0 = 0. (5.10)

The impermeability conditions on the wall and the free surface fix Dirichlet boundary
conditions for all the normal components of velocity along the boundaries,

w|z=−d = v|y=±b/2 =w|z=0 = 0. (5.11)

Equations (5.6)–(5.11) are the same as those of a two-dimensional driven-cavity
problem with a static free surface at z= 0. The front, back and bottom boundaries can
be thought of as a series of moving belts with time-steady but spatially non-uniform
velocities.

To solve the system of partial differential equations (PDEs) in the domain
Ω = {(y, z) | |y| < b/2, −1 < z < 0}, we implemented a numerical routine similar
to that proposed in Tannehill, Anderson & Pletcher (1997, pp. 650–652). The routine
is a time-marching algorithm that uses a classical finite-difference scheme for elliptic
PDEs. At each time step n:

(a) the stream function Ψ (n) in the bulk is solved using Poisson’s equation (5.7) and
the vorticity at the previous step, ω(n−1), via a succesive over-relaxation method
(SOR);
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(b) the stream function along the boundaries, Ψ (n)|∂Ω , is fixed to zero, enforcing mass
conservation (boundaries are streamlines throughout);

(c) the vorticity along the boundaries, ω(n)|∂Ω , is obtained at second-order precision
using the boundary conditions (5.8)–(5.11) and the previously calculated values
for Ψ (n);

(d) the vorticity ω(n) in the bulk is calculated using the vorticity-transport equation
(5.6) and the vorticity at the previous step, ω(n−1), by means of a forward Euler
scheme.

The numerical simulations were run on a 128× 201 uniform mesh, which fits the
half of the domain Ω (ω and Ψ are antisymmetric along the axis y= 0, so ω|y=0 =
Ψ |y=0 = 0). The kinematic viscosity used for simulations, ν∗ = 0.85 cSt, was chosen
to match the value of the KBr aqueous solution described in § 3. The values for k,
d and ω are obtained from formulae in § 2, while the factor as|ψ | in (5.8) and (5.9)
was estimated from the contact-line maximal height in images, i.e. as|ψ | = 0.59 cm.
The initial condition was chosen to be Ψ (0)=ω(0)= 0. Finally, we fixed the time step
at 1t= 4.5 µs, after checking that the solutions converge as 1t−→ 0.

In figure 5(a–d), we display our results from numerical simulations: the out-of-
plane vorticity ω and a set of streamlines are shown as time t evolves (results for the
y< 0 plane are used for building a solution in the whole domain Ω using the Ψ –ω
symmetry properties). As shown in figure 5(a), after just a few time steps, the vorticity
is rapidly introduced into the fluid bulk from two sources: (i) the contact-line points,
i.e. (y, z) = (±b/2, 0), and (ii) the half-bottom centres, (y, z) = (±b/4, −d). The
main stream is due to the former, which impose two large counter-rotating eddies
that carry fluid particles downward along the walls, and then upward along the cavity
centre. The other stream, due to the bottom boundary layer, also consists of two
counter-rotating eddies, but carries fluid in the other direction. This stream is very
weak compared with the main one, and its size is smaller. The direction of this weak
stream (upward velocity in the stationary-wave node at y= 0) is consistent with the
experimental observations in Douady (1990) for Faraday waves in large basins and
the theoretical results in Longuet-Higgins (1953) for periodic basins. As time evolves
from figures 5(a) to (5c), vorticity is continuously diffused toward the bulk until the
solution converges to a steady state in figure 5(d). During this process, the centres of
the main counter-rotating eddies (at which Ψ is maximal or minimal) drift slowly to
the centre of the basin while their outer streamlines increase in size. Meanwhile, the
weak bottom eddies shrink continuously into thin layers.

When compared with experimental results, i.e. the vorticity in figure 3(b) and the
particle tracks (streamlines) in figure 5(d), the parametric streaming model seems to
fit the observed results well. The direction of the streaming is correctly predicted, as
well as the apparent overturning of the bottom boundary layers observed by Douady
(1990). The vorticity distribution, including the high-shear regions near the contact
line, is also quantitatively close to the experimental outcome. However, there are still
some differences, e.g. the experimental streamlines are more pinched to the contact
line in the early stages of the vorticity evolution (see figure 5b). The asymmetry in
the streaming pattern may be due to slight differences in the roughness of the vertical
walls (this should be controlled better in further experiments). We think that these
finer differences could be due to (i) the lack of a meniscus in the simulated domain
Ω , (ii) the three-dimensional character of the parametrically excited solitary wave and
(iii) the neglect of the oscillating contact line. While the features (i) and (ii) could
be solved using more complex numerical codes, (iii) requires one to address a more
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FIGURE 5. (Colour online) From (a) to (d): out-of-plane vorticity and streamlines for
the parametric streaming model at several times t. The dimensions of the cell, the fluid
parameters and the cross-wave parameters match those of the side-view experiments
without any fitting parameter. In (d), the stationary state of the vorticity-transport equations
is shown. In (e), we display the particle tracks obtained by averaging a series of
stroboscopic images in the steady streaming state. Particle tracks can be considered as
experimental streamlines.

fundamental hydrodynamical problem: to understand and be able to predict boundary
layer streaming near oscillatory contact lines. In any case, it is very surprising to see
that the simple model that we propose is able to capture the main features of the
streaming flow in spite of the advancing and receding menisci phemenon.
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5.2.2. Parametric streaming in the pdNLSe
A natural question that follows is why Miles’ model and the pdNLSe have been

so successful in describing parametrically excited solitary waves despite the fact that
they do not consider the streaming we observe in our experiments. Theoretical works
on this subject can give us some important clues. Martín et al. (2002) considered
the problem of finding an amplitude equation for two-dimensional Faraday waves
starting from the Navier–Stokes equation in a laterally unbounded fluid. The resulting
amplitude equation is similar to that obtained from Hamiltonian formulations (Miles
1984a) except for an integral term that accounts for the coupling between streaming
and the Faraday waves. This term does not generate a major change in the general
dynamics of the amplitude equation although it is vital to explain drift instability
in Faraday waves (Martín et al. 2002). For parametrically excited solitary waves,
although the calculations are considerably more complex, streaming coupling should
provide corrections to the as factor, defined after (2.2) and (2.3), without modifying
the dynamics of the pdNLSe. However, it is hard to establish the scope of this
coupling term for further bifurcations. In order to meet the challenge of explicitly
incorporating parametric streaming in the amplitude equation for parametrically
excited solitary waves, we should attempt first to find a closed-form solution of the
§ 5.2.1 nonlinear model in terms of the local value of ψ .

Acknowledgements
We thank R. Silva, C. Pinochet and A. Espinosa for technical support. We

acknowledge also S. Waitukaitis for revising the English manuscript. We are grateful
to E. Knobloch and M. Clerc for fruitful discussions. The research was supported by
the CONICYT grants AIC 43 and ANR 38 ProCoMedia. L.G. acknowledges Conicyt
fellowships 57080094 and 24100131, and the AXA Research Fund.

Supplementary movies
Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2014.416.

REFERENCES

ARBELL, H. & FINEBERG, J. 2000 Temporally harmonic oscillons in Newtonian fluids. Phys. Rev.
Lett. 85 (4), 756–759.

BARASHENKOV, I. V., BOGDAN, M. M. & KOROBOV, V. I. 1991 Stability diagram of the phase-
locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys.
Lett. 15, 113–118.

BATCHELOR, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
CHEN, W., TU, J. & WEI, R. 1999 Onset instability to non-propagating hydrodynamic solitons. Phys.

Lett. A 255 (4), 272–276.
CLERC, M. G., COULIBALY, S., GORDILLO, L., MUJICA, N. & NAVARRO, R. 2011 Coalescence

cascade of dissipative solitons in parametrically driven systems. Phys. Rev. E 84 (3), 036205.
CLERC, M. G., COULIBALY, S., MUJICA, N., NAVARRO, R. & SAUMA, T. 2009 Soliton pair

interaction law in parametrically driven Newtonian fluid. Phil. Trans. R. Soc. Lond. A 367,
3213–3226.

DENARDO, B., GALVIN, B., GREENFIELD, A., LARRAZA, A., PUTTERMAN, S. J. & WRIGHT, W. B.
1992 Observations of localized structures in nonlinear lattices: domain walls and kinks. Phys.
Rev. Lett. 68 (1), 1730–1733.

DENARDO, B., WRIGHT, W. B., PUTTERMAN, S. J. & LARRAZA, A. 1990 Observation of a kink
soliton on the surface of a liquid. Phys. Rev. Lett. 64 (1), 1518–1521.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.1017/jfm.2014.416
https://doi.org/10.1017/jfm.2014.416


604 L. Gordillo and N. Mujica

DOUADY, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383–409.
GORDILLO, L. 2012 Non-propagating hydrodynamic solitons in a quasi-one-dimensional free surface

subject to vertical vibrations. PhD thesis, Universidad de Chile, Santiago.
GORDILLO, L., SAUMA, T., ZÁRATE, Y., ESPINOZA, I., CLERC, M. G. & MUJICA, N. 2011 Can

non-propagating hydrodynamic solitons be forced to move? Eur. Phys. J. D 62 (1), 39–49.
LAEDKE, E. W. & SPATSCHEK, K. H. 1991 On localized solutions in nonlinear Faraday resonance.

J. Fluid Mech. 223, 589–601.
LIDE, D. R. 2004 Handbook of Chemistry and Physics, 85th edn. Chemical Rubber Company Press.
LONGUET-HIGGINS, M. S. 1953 Mass Transport in Water Waves. Phil. Trans. R. Soc. Lond. A

245, 535–581.
MARTÍN, E., MARTEL, C. & VEGA, J. M. 2002 Drift instability of standing Faraday waves. J. Fluid

Mech. 467, 57–79.
MARTÍN, E. & VEGA, J. M. 2005 The effect of surface contamination on the drift instability of

standing Faraday waves. J. Fluid Mech. 546, 203–225.
MILES, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297, 459–475.
MILES, J. W. 1976 Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419–448.
MILES, J. W. 1977 On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153–158.
MILES, J. W. 1984a Nonlinear Faraday resonance. J. Fluid Mech. 146, 285–302.
MILES, J. W. 1984b Parametrically excited solitary waves. J. Fluid Mech. 148, 451–460.
RAJCHENBACH, J., LEROUX, A. & CLAMOND, D. 2011 New standing solitary waves in water. Phys.

Rev. Lett. 107 (2), 024502.
SANCHIS, A. & JENSEN, A. 2011 Dynamic masking of PIV images using the Radon transform in

free surface flows. Exp. Fluids 51 (4), 871–880.
TANNEHILL, J., ANDERSON, D. & PLETCHER, R. 1997 Computational Fluid Mechanics and Heat

Transfer, 2nd edn. Taylor & Francis.
UMEKI, M. 1991 Parametric dissipative nonlinear Schrödinger equation. J. Phys. Soc. Japan 60 (1),

146–167.
WANG, W., WANG, X., WANG, J. & WEI, R. 1996 Dynamical behavior of parametrically excited

solitary waves in Faraday’s water trough experiment. Phys. Lett. A 219, 74–78.
WANG, X. & WEI, R. 1994 Observations of collision behavior of parametrically excited standing

solitons. Phys. Lett. A 192 (1), 1–4.
WU, J., KEOLIAN, R. & RUDNICK, I. 1984 Observation of a non-propagating hydrodynamic soliton.

Phys. Rev. Lett. 52 (1), 1421–1424.
ZHANG, L., WANG, X. & TAO, Z. 2007 Spatiotemporal bifurcations of a parametrically excited

solitary wave. Phys. Rev. E 75 (3), 036602.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.416

	Measurement of the velocity field in parametrically excited solitary waves
	Introduction
	Theory
	Experimental set-up
	Results
	Instantaneous velocity field
	Streaming flow

	Discussion and conclusions
	Comparison with predicted results
	Parametric streaming
	A simple model for parametric streaming
	Parametric streaming in the pdNLSe


	Acknowledgements
	References




