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Abstract

Aims: To verify the accuracy of two common absorbed dose calculation algorithms in comparison to Monte
Carlo (MC) simulation for the planning of the pituitary adenoma radiation treatment.

Materials and methods: After validation of Linac’s head modelling by MC in water phantom, it was verified in
Rando phantom as a heterogeneous medium for pituitary gland irradiation. Then, equivalent tissue-air
ratio (ETAR) and collapsed cone convolution (CCC) algorithms were compared for a conventional three small
non-coplanar field technique. This technique uses 30 degree physical wedge and 18 MV photon beams.

Results: Dose distribution findings showed significant difference between ETAR and CCC of delivered dose
in pituitary irradiation. The differences between MC and dose calculation algorithms were 6.40 ± 3.44% for
CCC and 10.36 ± 4.37% for ETAR. None of the algorithms could predict actual dose in air cavity areas in
comparison to the MC method.

Conclusions: Difference between calculation and true dose value affects radiation treatment outcome and
normal tissue complication probability. It is of prime concern to select appropriate treatment planning
system according to our clinical situation. It is further emphasised that MC can be the method of choice
for clinical dose calculation algorithms verification.
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INTRODUCTION

The main objective of radiation therapy is to
deliver the maximum possible dose to the target

tumor with minimum dose to the normal
surrounding tissues.1 To achieve this aim, a
good understanding is needed from the dose
distribution in irradiated tissue and most
importantly, experimental verification of dose
distribution. During the actual radiation treat-
ment planning in clinics, dose distribution is
calculated by treatment planning systems (TPS).
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Any deviation between calculated dose distribu-
tion and true value would lead to change in
patient’s dose that would have an important
effect on the quality and effectiveness of the
radiotherapy treatment.

Some methods of dose calculation algorithms
are not enough accurate in term of dose
calculation due to electron disequilibrium at
radiation small field boundaries or at the
inhomogeneities interfaces.2–5 It is known that
the Monte Carlo (MC) is the most accurate
method for dose calculation6–10 and with the
advancement of computer technology, dose
calculation algorithms based on the MC method
has found the necessary potential for dose
calculation. But, due to the time consuming
process of the full MC calculations and some of
the limitations in speed of computers,11 it is still
impossible to use full MC in routine clinical
calculations for heavy traffic radiotherapy
departments. However, it is still the most
powerful technique for verification of other
calculation algorithms in TPS’s engines.12–14

In the present work, we compared two dose
calculation algorithms employed in CorePLAN
TPS for the special clinical case of pituitary
adenoma. The algorithms are equivalent tissue-
air ratio (ETAR) and collapsed cone convolu-
tion (CCC) which are routinely used in TPS of
our radiotherapy departments. The project
divided in to two parts: (1) Validation of MC
model in homogeneous and heterogeneous
volumes and, (2) Comparison of ETAR and
CCC algorithms with MC as a gold standard.
After validation of simulated head of the medical
linear accelerator (Linac) in water phantom, it
was used for pituitary gland irradiation in
Rando (human-like) phantom.

MATERIALS AND METHODS

MC simulations

The EGSnrc15 user code BEAMnrc16 was used
to model an 18 MV beam from a Varian 2100C/D
(Varian Medical Systems, Palo Alto, CA, USA).
The Linac was modelled with different compo-
nent modules (CM). Table 1 shows components
and their materials. The schematic geometries of

the CMs are shown in Figure 1. The 3D image
was created by EGS_WINDOWS17 program.

The incident electron beam was modelled by
ISOURC 5 19 module. This source is a circular
beam with 2D Gaussian distribution of particles.
ECUT and PCUT parameters which are used to
define the global electron and photon cutoff
energies were set to 0.7 and 0.01 MeV. Also,
Electron Range Rejection with ESAVE value of
0.7 MeV in the target and ESAVE-GLOBAL 5
2 MeV and Directional Bremsstrahlung Splitting
with NBRSL 5 750 were used to minimise the
simulation time.

Phase Space data were created for open
10 3 10 cm2 photon beam and the percentage
depth dose (PDD) and profiles of measured
and simulated data were used for verification
of the beam energy and full width at half
maximum (FWHM) of the incident electron
beam in 30 3 30 3 30 cm3 water phantom using
DOSXYZnrc code.18

The method introduced by Sheikh-Bagheri
and Rogers19 were used to drive the best
estimates for the energy and FWHM of the
incident electron beam. For comparison
between calculations and measurements, all
curves were normalised to the center of each
dose profile and for the PDD curve to the depth
of maximum dose. This procedure is suggested
by Pemler et al.20 for MC calculated dose
distributions of single electron fields. Differences
between the calculated and measured curves of
dose profiles were explained in terms of dose
difference and distance to agreement (DTA) in
millimetre (mm) for the low and high dose
gradient areas, respectively.

Table 1. Used CMs for Linac modelling in BEAMnrc code

Linac component CM Material

Target SLABS Tungsten (W) and copper (Cu)
Primary collimator CONESTAK Tungsten (W)
Flattening filter FLATFIL Tantalum (Ta) and iron (Fe)
Ion chamber CHAMBER Kapton
Mirror MIRROR Mylar
Jaws JAWS Tungsten (W)
Wedge PYRAMIDS Steel

Abbreviation: CM, component modules.
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For both of the Rando phantom and patient
studies, CT images were used by CTcreate
program to make *.egsphant file to be irradiated
by ISOURC 5 8 in DOSXYZnrc code.

Radiation treatment planning

The study was done on the Rando phantom as
well as on a real clinical case CT images. Initially,
the dose distribution in pituitary gland was
calculated by means of ETAR implemented in
CorePLAN (Seoul C&J Inc., www.coreplan.com)
treatment planning software for radiotherapy. The
two other dose algorithms were CCC and MC
programs (BEAMnrc and DOSXYZnrc codes).
The dose calculation algorithms were compared
for two lateral parallel opposed and one fronto-
occipital 458 oblique 3 3 3 cm2 18 MV photon
fields employing 308 physical wedges. Figure 2
shows the plan for Rando phantom and the
patient.

Dose distributions

In MC simulation, dose distributions were
calculated with DOSXYZnrc and the results
of MC were cross validated by film dosimetry.

For this purpose, both two radiographic (Kodak
EDR2) and radiochromic (Gafchromic EBT2)
films were used to obtain planar dose distribu-
tions in Rando phantom study. All films scanned
with Microtek 9800XL scanner. Gafchromic
EBT2 films scanned 24 hours after irradiation.21

As the pituitary gland is placed in third level
of Rando phantom (see Figure 3),22,23 dose
distributions were obtained for the surfaces between

Figure 2. The axonometric image of treatment plan for Rando

phantom and patient shows three non-coplanar 18 MV photon

beams (two lateral parallel opposed and one fronto-occipital fields).

Figure 1. Schematic geometry of modelled Linac. 2D view created by BEAMnrc and 3D view created by EGS_WINDOWS.
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levels 2 and 3, 3 and 4, and finally 4 and 5. All
measurements were repeated three times.

RESULTS

Validation of MC

For validation of MC simulation, results were
tuned against measurements in water phantom
and finally, the incident electron beam with
energy of 18.2 MeV and 1.5 mm FWHM
showed the best match with measurements.
Figure 4 shows PDD and dose profile for above
mentioned energy and FWHM. For PDD
curve; dose difference was below 1%, and for
dose profile; dose difference and DTA were
0.97 ± 0.65% and 1.71 ± 1.08 mm for open field
and 1.23 ± 1.09% and 1.79 ± 0.96 mm for wedged
field, respectively.

Evaluation of MC simulation in Rando
phantom

Simulated Linac head was evaluated against EBT2
and EDR2 film dosimetry in heterogeneous
Rando phantom for the pituitary critical region

where it is impossible to do in vivo dosimetry.
This part of the study was performed to estimate
the accuracy and compatibility of modelling
within a heterogeneous mimicking human head
phantom.

Overall, the mean difference between MC
and film measurements were 4.93 ± 0.87%
for all of the levels. The differences were
4.62 ± 1.37% for EBT2 and 5.03 ± 0.49% for
EDR2 film dosimeters. Also, we found 1.2%
difference between EBT2 and EDR2 results.

Results of the patient study

The final purpose of this study was evaluation of
ETAR and CCC dose calculation algorithms in
small size complex radiation wedged fields. The
MC simulation was used as the gold standard
to be compared with the various algorithms.
Figure 5 shows the results of the radiation
treatment planning using MC method, ETAR
and CCC dose calculation algorithms.

The average dose calculation differences
between MC and proposed algorithms (CCC

Figure 3. Rando phantom. The pituitary gland is in third level.22,23
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Figure 4. Percentage depth dose (PDD) and dose profiles for open field and 308 wedged field for E 5 18.2 MeV and full width

at half maximum (FWHM) 5 1.5 mm in water phantom.

Figure 5. The plans of three diffferent methods of dose calculation are compared: (a) collapsed cone convolution (CCC), (b) equivalent

tissue-air ratio (ETAR) and (c) Monte Carlo simulation. The planning was performed on the patient CT data after voxelisation.
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and ETAR) were 6.40 ± 3.44% (3.8–10.3%) and
10.36 ± 4.37% (5.5–13.9%), respectively.

DISCUSSION

Dose calculation algorithms in TPS have an
important role in radiation treatment outcome.
Any inaccuracy in predicting dose distribution
in target volume can also change the patient
quality of life. So, it is important to find the
suitable algorithm for dose calculation customised
to the departmental demands and irradiation
fields. New algorithms which commonly used
in TPSs, beside of their improvements in
calculation, may have appreciable inaccuracies
in some clinical situations such as small fields,
electron disequilibrium and interfaces between
different densities.7

In this study, the differences between CCC
and ETAR algorithms were compared with MC
simulation and experimental film dosimetry
results. The study was done on the Rando
phantom and a real clinically diagnosed case of
pituitary adenoma.

Results of simulated head in water phantom
showed that the best match between simulated
results and measurement data will appear when
The optimum energy and FWHM of incident
electron beam is obtained to be 18.2 MeV
and 1.5 mm, respectively, those are well in the
range of other researchers in previous MC
studies.19,24–26

There are several recommendations for eval-
uate the accuracy of dose calculations in various
areas with high or low dose gradients.27–32 Our
results for open and wedged fields in water
phantom were in agreement with the values
recommended by Venselaar et al.27 for dose
profiles. The differences between measured and
simulated results were also ,2% that is situated
well within the recommended level in related
studies for PDD curves.12,19,27,33

Evaluations in Rando phantom study showed
4.93 ± 0.87% for all of the EBT2 and EDR2
levels in comparison to the MC simulation. This
difference was ,7% of the discrepancy reported

by Brualla et al.34 and was more than Dobler
et al.35 results which reported 3% difference
between MC and film dosimetry in hetero-
geneous medium. There would be two reasons
for this difference; the first one can be the gaps
between the different levels of Rando phantom
which is created after placing the film between
them. The gap is larger for EDR2 film because
of its cover thickness. The gap affects the dose
distribution on the film, while its effect is not
existed during MC calculation.

The second reason may arise from the
different electron densities on the various tissues
interface region. In high density tissues such as
bone the number of the secondary electrons
increases per photon interaction that is well
considered by MC simulation power. When a
film is placed between the levels of the
phantom, because the film density is equal to
the soft tissue density, this may lead to a lower
dose impartation to the cavity that finally causes
disagreement between MC and film dosimetry.

Film dosimeters have uncertainties pertinent
to several factors such as non-uniform thickness
of the sensitive layer, temperature effects,
scanner uncertainty and its warm up effect.36–38

There was 1.2% difference between EBT2 and
EDR2 films. EDR2 films are light sensitive and
are cut in a dark room and under safe light,
however, it may be better to consider the effect
of low level light. Also, EDR2 film processing
may have remarkable effects on the readout
while there is no need for processing with
EBT2 films.

Present findings showed about 6.4% differ-
ence for CCC algorithm and about 10.3% for
ETAR algorithm in comparison to MC simula-
tion. Chow et al.39 evaluated the anisotropic
analytical algorithm and CCC in heterogeneous
phantom for tangential photon beam. They
showed that the mean dose differences between
MC and CCC was about 4.6% for 15 MV
photon beam with 7 3 7 cm2 field size. Polednik
et al.40 in a comparison between pencil beam
and collapsed cone algorithms in an anthropo-
morphic phantom, reported that there is about
6% difference between collapsed cone algorithm
calculations and measurements. Our results are
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close to their findings and also Calvo et al.41

results which reported about 5.6% differences
for CCC in comparison with MC.

Figure 5 shows that MC is superior concern-
ing dose absorption within a non-homogenous
volume, especially, in the bone–fat (brain tissue)
interface. There is pronounced change in dose
distribution after skull that can effectively
modify the dose distribution in the pituitary
adenoma and the difference is larger for ETAR
method. In fact, the ETAR algorithm uses the
ratio of two tissue-air ratio (TAR) for inhomo-
geneity correction and in definition, TAR is
ratio of absorbed dose in a given depth in
absorbent material to the same depth in a small
air region in electron equilibrium situation.
Therefore, this algorithm assumes that there is
electron equilibrium in all points. So, in bone-
air and/or tissue interfaces which there is an
imbalance in electron equilibrium, ETAR will
have fault in dose calculations.42 Also, ETAR
only considers primary and scattered photons
and does not consider the secondary electrons.
Hence, it cannot evaluate the electron disequi-
librium.12,43–47 While, CCC models electron
transport and will predict the effects of electron
disequilibrium in heterogeneous interfaces.48

Our results showed that CCC algorithm as a
model based dose calculation algorithm, have a
better agreement with MC simulation in
pituitary radiation treatment and the results of
this study confirms the previous studies.49–54

In conclusion, as differences between algo-
rithms may have effects on quality of treatment,
it is important to evaluate algorithms to choose
the best one for use in clinical situations. MC
method is a great evaluation tool for comparison
of clinical dose calculation algorithms.
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