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Abstract

In this article, we propose three-dimensional antenna systems for determining the position of
electromagnetic radiation source at an unknown location. Received signal power at different
antennas and position of radiation source are used as training data for Artificial Neural
Network (ANN). It is found that, a well-trained ANN is computationally efficient and capable
of predicting the unknown location of the source, from the received power pattern. Two
multi-antenna systems with geometry in three dimensions, namely the cube and frustum,
are considered in this paper. Further, test results of the proposed method for random posi-
tions of electromagnetic source, spanning a hemisphere, are presented for the geometries
considered.

Introduction

Indoor and outdoor source localization at RF frequencies has a wide range of applications in
both civilian and military domains [1,2]. In [3], a method for locating RF sources using power
measurements from a network of stationary sensors and a moving sensor is presented.
Real-time-location of sensors or objects based on passive RFID Tags is presented in [4].
A cell phone localization system for search and rescue operations in outdoor environments
is presented in [5]. Another application of RF localization is tracking Low Earth Orbit
(LEO) satellites in fixed ground station applications [6,7]. Accurate localization of UAV
(Unmanned Aerial Vehicle) is a challenging research problem and critical to many civilian
and military applications [8,9].

Many localization techniques have been reported in the literature. They include techniques
based on time of arrival (TOA), time difference of arrival (TDOA), received signal strength
(RSS), angle of arrival (AOA), and direction of arrival (DOA). Time-based positioning systems
(TOA/TDOA) use the signal propagation time to determine the distance between transmitter
and receiver. TOA-based systems use the actual signal propagation time between transmitter
and receiver to determine the target position using trilateration [10]. TDOA-based systems use
the difference of signal travel times between the receivers to determine the target location [11].
For example, the TDPA algorithm proposed in [12] uses a technique based upon the intersec-
tions of hyperbolic curves defined by the time differences of arrival of received signals. This
approach is an approximation of the maximum likelihood estimator using transforms
which convert the non-linear TDOA estimate equations into linear equations. RSS-based
systems estimate the distance by measuring the energy of the received signal and determine
the target position using trilateration [13,14]. The method in [3] achieves the goal of RF source
localization using power measurements from a sensor network. The stationary sensor network
is used first to provide initial rough estimates of the positions of unknown RF sources. This is
followed by a moving sensor, guided by the probability distribution of the unknown source
locations, which refine the initial estimates and provide a more accurate source location.
Another RSS technique is presented in [15] and the performance of different algorithms for
estimating the mobile location system based on RSS is studied. In this work, RSS is measured
and collected by mobile stations using the downlink control channels from different base
stations. Since RSS will vary with mobile location, mapping is unique and can be utilized to
identify the mobile location. Further, [15] compares the accuracy of the RSS measurement
using various algorithms with Cramer–Rao bound.

On the other hand, AOA / DOA-based systems measure the angles between the source and
the receiver antenna arrays. The position of the target is determined using these angles based
on triangulation. A filtering approach for source localization problem is presented in [16],
where filters utilizing the advantages of both RSS and AOA methods to deal with the
non-line-of-sight condition RE implemented. A similar approach for RF source localization
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in the absence of line-of-sight signal reception is presented in [5].
This method is also based on both RSS indicator and DOA meas-
urement parameters using the reflection model of signals from
obstacles. The reflection angle and the distance between the RF
source and the receiver is calculated using the reflection path
model based on the signal strength. RF source localization is
achieved in [5] by intersecting two locus of possible locations
which can be estimated by the UAVs. DOA algorithms are
based upon efficient processing of the signals that are received
by a sensor array. Array signal processing for DOA based on para-
metric algorithms such as MUSIC [17] and ESPRIT [17–21] can
provide closed-form solutions for DOA estimation. The method
in [17] uses an RF source localization and tracking system
based on DOA estimation using ESPRIT algorithm and compares
the results using DOA obtained from MUSIC algorithm. This
method explores the usage of high-resolution smart antennas in
conjunction with frequency switching and selection technologies.

In this paper, we present three-dimensional (3D) antenna sys-
tems combined with ANN for determining the DOA of an electro-
magnetic source based on RSS approach. Two multi-antenna
systems with geometry in three dimensions, namely the cube and
frustum, are considered for arranging antenna elements which
receive signals from the source. Since ANN is used for signal pro-
cessing in the proposed method, we can harness the generalization
capability and flexibility of ANN [22] for source localization.
We further implement Support Vector Machine- (SVM) and
Gradient Boosting Trees-based regression instead of ANN to
evaluate the performance of the proposed system. We conclude
that the ANN-based system is computationally efficient when com-
pared to SVM- and Gradient Boosting trees-based approaches. The
proposed system determines the polar angle θ and the azimuth
angle f of the source using a single 3D antenna array. Hence,
the proposed system is easy to deploy when compared to existing
methods based on uniformly spaced linear and planar antenna
arrays for DOA determination. Also traditional AOA methods
have to extract both amplitude and phase of the induced voltages
in individual antenna elements. However, in the proposed method,
we only have to deal with received signal amplitudes which increase
the computational efficiency. It is also well known that, in AOA
estimation methods such as MUSIC in the case of linear and planar
arrays, for smaller number of elements, the achievable angle reso-
lution in detection also becomes smaller. However, the proposed
method overcomes this limitation due to 3D arrangement of the
antenna elements. It is also well known that mutual coupling
between antennas is more when the direction of maximum gains
of antenna elements in a multi-antenna array is similar. On the
other hand, in the proposed 3D antenna system, the direction of
maximum radiation of each antenna is different, yielding smaller
mutual coupling between elements.

This paper is organized as follows: The proposed method based
on 3D antenna system is described in section “DOA estimation
based on three-dimensional antenna systems”. The system model
is described in section “System model”. Section “Numerical
results” presents numerical results, that show the performance
of the proposed method. The paper is concluded in
section “Conclusion”.

DOA estimation based on three-dimensional antenna
systems

For optimum performance of DOA algorithms using 2D antenna
arrays, the signals on antenna elements must be uncorrelated and

decoupled from each other. However, in practice, antenna
elements in 2D antenna systems have a finite size and uniform
illumination. Therefore, there exists finite mutual coupling
between antenna elements, which leads to sub-optimal perform-
ance for algorithms such as MUSIC and ESPRIT [23]. On the
other hand, for applying mutual coupling compensation techni-
ques in baseband signal processing, the antenna systems must
be experimentally characterized. It is shown in [24] that, mutual
coupling of transmit antenna arrays and receive antenna arrays
is two separate problems and mutual coupling in antenna arrays
will depend on the AOA. Therefore, applying suitable compensa-
tion techniques in DOA estimation algorithms is extremely
challenging for 2D receive mode multi-antenna systems.

The proposed method for localization of an unknown source
consists of arranging single or multiple antenna elements on dif-
ferent faces of a 3D object. The RSS measured on each antenna of
the 3D antenna system varies with the location of the source. This
is because, the antenna gains of each antenna toward the direction
of the electromagnetic source are different. Therefore, when the
electromagnetic source changes the position, the pattern of RSSs
on different antennas changes. This change in the pattern can
be utilized to identify the direction of the source. The structure
and position of the antenna elements in the 3D antenna geometry
are chosen such that, at least, one of the antenna elements in the
3D antenna system must be illuminated for all the possible DOA
of the signal. The most significant advantage of the proposed
approach is that, this method results in reduced mutual coupling
between the antenna elements. This is due to the reason that, the
antenna elements in the 3D antenna system are not located on a
plane unlike the 2D antenna systems. Another criteria for choos-
ing the 3D antenna geometry is that, the mutual coupling and
hence correlation between the signals in antenna elements is as
small as possible.

Geometries and antenna configurations we considered in this
paper are depicted in Fig. 1. They are the cube-based antenna sys-
tem as shown in Fig. 1(a) and frustum-based antenna system as
shown in Fig. 1(b), respectively. Although the selection of geom-
etry is not restrictive in the proposed approach, we used both cube
and frustum in our study because, the illumination properties of
the cube and frustum are different. Further, we used microstrip
patch antennas [25,26] on all the sides of the geometry considered
except for the base as they offer the advantage of an easy arrange-
ment on all the faces of the cube and frustum. Due to the ground
plane of patch antennas, there is very less radiation underneath
each face of the cube and frustum. It is also well known, there
is an excellent agreement between empirical formulas of radiation
pattern of patch antennas and electromagnetic simulators as well
as experiments.

System model

We determine the power received on each antenna element on the
face of the cube and frustum. At first, we define the global
co-ordinate axes with origin at the center of the 3D solid figure.
Along with this, local axes for each antenna with the center of
each antenna as origin are defined. Radiation pattern of each
antenna is determined with respect to the local axes of that
particular antenna.

Assume a radiation source located at the global co-ordinates
(θ, f). We need to estimate the signal power from this source
received in all five antennas of the antenna system. This requires
the radiation pattern of each antenna, which essentially provides
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the gain of each of the receiving antenna in the direction (θ, f),
see Fig. 1. For this, we need to translate the source co-ordinates
(θ, f) to local coordinates of each antenna Ak, say (xk, yk, zk),
k = [1:5]. Therefore, we can compute the direction of source
for each antenna as (u(k)A ,f(k)

A ) using the local coordinate
system of each antenna. For our simulation studies, we used
microstrip patch antenna as the antenna candidate. Hence, we
can use the empirical expressions of electric fields given in [26]
written as,

E u(k)A

( )
=
sin kW sin u(k)A sinf(k)

A /2
( )

kW sin u(k)A sinf(k)
A /2

( )

× cos kL sin u(k)A cosf(k)
A /2

( )
cosf(k)

A

(1)

where L and W are the effective length and width of the patch
antenna respectively, u(k)A is the elevation angle of the antenna,
and k is the free-space wavenumber, given by 2π/λ [26].
Similarly, radiation pattern of the patch antenna as a function

of azimuth angle f(k)
A is given by,

E f(k)
A

( )
=−

sin kW sin u(k)A sinf(k)
A /2

( )

kW sin u(k)A sinf(k)
A /2

( )

× cos kL sin u(k)A cosf(k)
A /2

( )
cos u(k)A sinf(k)

A

(2)

The receiving antenna gain for antenna k can therefore be
written as,

G(k)
R = E u(k)A

( )2
+E f(k)

A

( )2
(3)

Hence, received signal power at each antenna from the electro-
magnetic source located at (θ, f) can be computed using the
Friis transmission equation [27] as,

P(k)
R = P(k)

T G(k)
T G(k)

R
l

4pr(k)

( )2

(4)

where r(k) is the distance between the source and the antenna Ak.
Thus, the received power in all antennas located on different
faces of the cube and frustum can be found. Now, power at all
the antennas distributed over various faces of the cube or frustum
and the corresponding positions of the source can be used as train-
ing input and output of an ANN. The trained ANN can be used to
predict the direction of the electromagnetic source based on the
power measured on antenna elements of the antenna system.

It is to be noted that, for training, the radial distance of source
r(k) in (4) can be made constant. This is because of the fact that,
the structure dimensions are very small compared to the radial
distance and normalized power in all the antennas becomes inde-
pendent of the distance. This crucial assumption requires us to
only generate a set of random positions for constant r(k).

For studying the performance of the proposed localization
method, a set of data (θi, fi), i = [0:N] is generated randomly,
where N represents the number of training samples. The power
received in the antenna elements of the cube- and frustum-based
antenna systems is determined for each training sample using (4).
The ANN is trained using the received powers on each antenna
element as inputs and corresponding (θi, fi) as outputs of
ANN. The trained ANN with resultant weights is used for evalu-
ating the accuracy of the proposed system. For the development of
ANN, we used an open source program, Fast Artificial Neural
Network Library (FANN) [28]. We tested different algorithms
for training the ANN, such as, QPROP (quick propagation) and
RPROP (resilient back propagation). Due to faster convergence,
we selected RPROP as our training algorithm. Thus, positions
and corresponding power pattern can be used as training data
for ANN. The multi-antenna system configured to ANN, once
trained, can process the received power pattern of different anten-
nas corresponding to various source locations, enabling us to
predict the source co-ordinates from the RSSs.

It is to be noted that, any machine learning technique for regres-
sion based on supervised learning can potentially be applied for the
proposed application. Some widely used machine learning meth-
ods for supervised learning other than ANN are SVMs [29, 30],
Logistic Regression [31], Naive Bayes [32], Random Forests [33],
Bagged Trees [34], and Boosted Trees [35]. Based on 11 test pro-
blems and eight different performance metrics, it is shown in

Fig. 1. Multiple antennas distributed over cube and frustum geometries for locating a
radiating source. (a) Cube geometry. (b) Frustum geometry.
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[36] that Bagged Trees, RandomForests, andANNgave the best aver-
age performance. It is also observed in [36] that SVM and newer
methods such as Boosted Trees outperform ANN by applying cali-
bration and tuning after training. However, this requires more com-
putations. Hence, we implemented SVM- and Gradient Boosted
Trees-based regression using the python package Scikit-Learn [37],
to evaluate the performance of the proposed system.

Since the test data for ANN is generated by simulation, for
increased accuracy, we must consider experimental uncertainties
in the proposed system such as mutual coupling between the
elements and channel characteristics between the electromagnetic
source and individual antenna elements. Although, we used sim-
plified formulas which are reasonably accurate, we can increase
the accuracy in test data by deploying electromagnetic simulators
which have evolved in its capability and accuracy over the years.
Different numerical methods are embedded in electromagnetic
simulators and designer can compare them for confidence in
simulated results. Therefore, simulation-based approach to gener-
ate data sets for ANN will be accurate. Also the localization appli-
cations considered in the proposed method have a simple line of
sight channel models. On the other hand, if we deploy the system
in complex indoor or outdoor environments, we can derive the
channel models experimentally and incorporate the channel mod-
els thus derived to generate reliable training and validation data
for ANN.

Numerical results

Received power pattern for cube-based geometry

In our first study, we arranged the antennas in a cubical geometry
as shown in Fig 1(a). The received power pattern in the multiple
antennas is studied for various source locations, corresponding to
different θ and f.

The variation in RSS in antennas A1, A2, and A3, when the
source moves from f equal to 0 to 360° in a plane where θ = 45°,
is shown in Fig. 2. As we can see in Fig. 2, received signal power
in antenna A1 is maximum at f equal to zero. Signal power
decreases and touches zero around f equal to 72°. Again received
power in A1 increases gradually and reaches a maximum value and
sharply declines to zero and continues in that level until f becomes

close to 290°. Received power in A1 exhibits a sharp shoot followed
by a decline again. Then power rises gradually and forms a local
peak whenf reaches 360°. Received power in antennaA2 is initially
at zero, but follows the same pattern like A1. Figure 3 illustrates the
variation in signal power in antennas A4 and A5 as the source
moves from f value equal to 0 to 360° in a theta plane θ = 45°.
As seen in Fig. 3, antenna A5 is always illuminated since it is located
at the top face of the cube. On the other hand, Antenna A4 shows a
behavior similar to antennas A1, A2, and A3 since they are located
on the side faces of the cube. Hence, antennas, Ak, k = [1:4] receive
power for half of the cycle and cut-off for the other half. Variation
pattern is same for side antennas but it is exhibited in different
stages of the cycle. As we can see from Figs 2 and 3, received signal
power is different in all the antennas for the same source location as
it depends on the direction angle. Therefore, RSS in the multi-
antenna system forms a predictable pattern according to the
position of the source. Also, we can conclude that the received
power pattern is unique for each source location.

Figure 4 shows the variation in received signal power in anten-
nas with respect to θ for constantf. The range of θ is from 0 to 180°
such that source points are located in a hemisphere. We can see
from Fig. 4 that the power received in top antenna A5 is the max-
imum when θ is equal to zero. Received power gradually decreases
and touches zero around θ equal to 45°. Again it increases and then
drops back to zero at θ equal to 90°. Side antennas A1 and A2 are
exposed to the same signal power throughout the cycle. Initially
the RSS is less and increases to the maximum at θ equal to 90°.
After this peak, the power gradually decreases to zero. Antennas
A3 and A4 are completely cut-off and they do not receive any signal
throughout this cycle. From Fig. 4, we can infer that signal strength
varies drastically across antennas in this simulation. Antennas A3

and A4 are totally cut-off and not receiving any signal since their
orientation is in the opposite hemisphere. Antennas A1 and A2

are receiving similar signal strength as they are equidistant and
equally inclined to the source at all positions. Antenna A5 is able
to enhance the uniqueness of the RSS pattern as its pattern is
different from rest of the antennas.

Above two simulation studies give us the confidence that RSS
pattern in the multi-antenna array system is unique for any source
location and these data can be used to train an ANN enabling the
system to predict the source location.

Fig. 2. Received antenna power in Antennas 1, 2, and 3 when the source moves in a
θ = 45° plane for cube-based antenna geometry.

Fig. 3. Received antenna power in Antennas 4 and 5 when the source moves in a
θ = 45° plane for cube-based antenna geometry.

International Journal of Microwave and Wireless Technologies 89

https://doi.org/10.1017/S1759078719000886 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078719000886


Accuracy of the proposed system for cube-based geometry

The performance of the proposed system is evaluated for cube-
based geometry. The ANN is trained using the power patterns
corresponding to the randomly generated (θ, f). Figure 5 shows
the variation of ANN prediction error (Root Mean Square Error
(RMSE)) as the complexity of the neural network is increased
in terms of the number of neurons. We started experimenting
the ANN with 12 neurons, but as we can see from Fig. 5 that
RMSE ≈ 0.6 for many neurons. As we increase the number of
neurons, RMSE decreases to below 0.2 for 15 neurons. After 35
neurons, the reduction in RMSE is not significant and approxi-
mately remains almost constant.

The prediction accuracy of the neural network is studied by
varying the number of training points and the complexity of
the neural network. Fig. 6 shows the prediction error of the neural
network with different sizes of training data. As we can see from
Fig. 6, that prediction error of the neural network is high when
the number of training points is less. As we increase the size of
training data, prediction error decreases. For instance, when
ANN is trained with 35,000 data points, RMSE reduces to
below 0.09. Therefore, we can conclude that, the prediction

error not only depends on the number of neurons but also
depends on the size of training data. From both Figs 5 and 6,
we can conclude that, the prediction accuracy of ANN is definitely
improved by increasing the training data size and by increasing
the complexity or hidden layers of the neural network in terms
of the number of neurons. Table 1 gives 20 samples of actual
and predicted source co-ordinates when the source is moving
in a random cloud. This simulation is carried out with ANN
which is modeled using 35,000 training points and with 50
neurons.

Fig. 5. Prediction accuracy versus complexity of ANN in terms of number of neurons
for cube-based geometry.

Fig. 4. Received antenna power when the source moves in a f = 45° plane for cube-
based antenna geometry.

Fig. 6. Prediction accuracy versus size of ANN training data for cube-based geometry.

Table 1. Actual and predicted source locations in radians with ANN for cube
geometry

No Actual(θ) Est(û) Actual(f) Est(f̂)

1 0.86 0.99 5.82 5.71

2 0.79 0.75 3.92 3.54

3 1.30 1.37 0.91 0.76

4 1.35 1.35 3.40 3.46

5 0.94 1.11 6.07 5.86

6 0.72 0.83 5.75 5.69

7 0.65 0.66 2.60 3.28

8 0.43 0.45 2.76 2.61

9 1.48 1.42 1.34 1.34

10 1.12 1.10 0.93 0.60

11 1.12 1.36 3.25 3.36

12 1.22 1.32 6.01 6.08

13 0.24 0.24 4.56 4.55

14 0.29 0.28 3.75 4.05

15 0.92 1.09 3.32 3.46

16 1.42 1.41 1.46 1.34

17 0.81 0.75 4.09 4.01

18 1.44 1.39 1.40 1.35

19 1.38 1.44 0.12 0.20

20 1.17 1.15 4.53 4.78
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Received power pattern for frustum based geometry

Above simulations are repeated for antennas arranged on frustum
geometry as shown in Fig. 1(b). In frustum-based antenna geom-
etry, four side antennas are placed on the tilted surfaces which
form the faces of the frustum. For a fair comparison, frustum
and cube dimensions are defined in such a way that both have simi-
lar height and dimensions of base. Figure 7 shows the variation in
received power in antennas A1, A2, and A3, when the source moves
corresponding to f spanning from 0 to 360° in a theta plane
(θ = 45°). We observe a ripple power pattern in all the antennas
throughout the cycle of f variation. It is also observed that though
the signal strength is different in antennas for same source location,
they appear to be more close. Figure 8 illustrates the variation in
signal power in antennas A4 and A5 as the source moves from f
value equal to 0 to 360° in a theta plane. As seen in Fig. 8, antenna
A5 is always illuminated since it is located at the top face of the
cube. Power in A4 is initially zero as f changes from zero to
180°. Then the signal strength increases and reaches a local peak
and declines to zero as f reaches 360°. As we can see from Figs 7
and 8, received signal power is different in all the antennas for

the same source location. These characteristics are similar to the
results what we have seen in the cube-based geometry, see Figs 2
and 3. But in the case of frustum, we observe that more number
of antennas are exposed to the signal from the radiating source
in any given direction. Signal power in antennas appears to be
more correlated due to the slanting position of antennas resulting
in the more signal exposure.

Figure 9 shows the variation in received signal power in anten-
nas with respect to θ in a f plane. We conclude that geometrical
nature of frustum makes the received power in multi-antenna
system more correlated.

Accuracy of the proposed system for frustum-based geometry

We generate random training points for ANN and compare the
results between cube-based and frustum-based geometries.
Table 2 gives 20 samples of actual and predicted source location
co-ordinates when the source is moving in a random cloud.
This simulation study is carried out with ANN which is modeled
using 35000 training points and with 50 neurons.

Figure 10 shows the comparison between cube and frustum in
terms of the complexity of neural network. In Fig. 10, we see that
RMSE is almost the same for both geometries when the complex-
ity of ANN is less, but the difference gets higher as the number of
neurons is increased. Cube-based system is able to bring down the
prediction error below 0.09 using an ANN with 30 neurons. But
frustum-based antenna system fails to reduce the error below 0.15
even at much higher number of neurons in ANN. We can con-
clude that prediction becomes easier with cube-based antenna
geometry as we increase the complexity of ANN. This is because,
frustum geometry has more signal exposure in all directions com-
pared to cube-based antenna system, resulting in more correlated
signals in all antennas for frustum compared to the cube-based
system.

Performance comparison

We compare the accuracy and computational runtime of the pro-
posed ANN-based method with SVM using different kernels and
Gradient Boosting Trees methods using the python package
Scikit-Learn [37]. Table 3 compares the prediction RMSE of θ

Fig. 7. Received antenna power in Antennas 1, 2, and 3 when the source moves in a
θ = 45° plane for frustum-based antenna geometry.

Fig. 8. Received antenna power in Antennas 4 and 5 when the source moves in a
θ = 45° plane for frustum-based antenna geometry.

Fig. 9. Received antenna power when the source moves in a f = 45° plane for
frustum-based antenna geometry.
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and f using different regression methods. The table also com-
pares the computational runtime of each method to obtain the
mentioned accuracies. As we can see from Table 3, the runtimes
are lower for ANN. On the other hand, SVM and Gradient
Boosted methods provide greater accuracy when compared to
the ANN method, but at the cost of higher runtime. Of the
SVM-based methods, Radial Basis function kernel provides in
general higher accuracy with higher runtime. When comparing
with SVM-based methods, Boosted Trees method provides higher

accuracy and better runtime. From Table 3, we can conclude that,
the proposed ANN-based method provides optimum accuracy
with lower runtime when compared to other regression methods.

We further compare our numerical results with the experi-
mental results of [17]. The study of [17] extends a temporal
domain ESPRIT frequency estimation algorithm for the estima-
tion of azimuth and elevation angle. A maximum tracking error
of 11 degrees is reported using Kalman-based tracking. The
error is calculated as the difference between estimated DOA and
MUSIC algorithm-based DOA. As we can see from Table 3, the
proposed system provides accuracies comparable with the experi-
mental results of [17] using different regression methods.

Conclusion

A new method for identifying the location of an electromagnetic
source using 3D antenna array systems was proposed and tested
in this paper. The ANN-based system was able to predict the
source location using RSS pattern in antennas. Two geometries
for generating RSS data are considered, namely the cube-based
and the frustum-based multi-antenna system. From the simulated
results, we can conclude that the proposed method has higher
accuracy for the cube-based antenna system compared to that
of frustum.
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