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Abstract
We introduce a method for scaling two datasets from different sources. The proposed method estimates a

latent factor common to both datasets as well as an idiosyncratic factor unique to each. In addition, it offers

a flexible modeling strategy that permits the scaled locations to be a function of covariates, and efficient

implementation allows for inference through resampling. A simulation study shows that our proposed

method improves over existing alternatives in capturing the variation common to both datasets, as well as

the latent factors specific to each.We apply our proposedmethod to vote and speechdata from the 112thU.S.

Senate.We recover a shared subspace that alignswitha standard ideological dimension running from liberals

to conservatives, while recovering the words most associated with each senator’s location. In addition, we

estimate aword-specific subspace that ranges fromnational security to budget concerns, and a vote-specific

subspace with Tea Party senators on one extreme and senior committee leaders on the other.

Keywords: multidimensional scaling, principal component analysis, U.S. Senate

1 Introduction
Increasingly, political scientists confront not just large amounts of data but different types of data.

For example, political actors will o�en generate text data and vote data (e.g., Lauderdale and

Clark, 2014); countries may have sets of qualitatively distinct attributes, such as political, social,

and economic indicators (e.g., Coppedge et al., 2015); the same survey questions may be given to

different groups of actors (e.g. Shor andMcCarty, 2011); campaign contributionsmay flow from the

same actors to both state and federal candidates (Bonica, 2014). In each case, the researchermust

analyze data on different attributes for the same actors (say, tweets and votes from legislators,

Barbera 2016), or the same attributes but on different actors (say, surveys given to both legislators

and the mass public, Bafumi and Herron 2010).

As a first pass, the data from different sources may simply be pooled and scaled (Quinn, 2004;

Hoff, 2007; Jackman and Trier, 2008; Murray et al., 2013). Pooling suffers, although, when one

dataset has much more information, swamping the information from the other set. Combining

data from different sources creates even more subtle theoretical and empirical issues. Jessee

(2016) illustrated the underlying problem rather elegantly. Using survey data for citizens and

legislators, he showed that scaled locations can vary as the relative numbers of individuals from

two samples are pooled and used to estimate ideological positions. The problem arises because

the different groups give different weights to each question, and it generalizes to the problem of

how to weight data coming from two different sources.

Existing approaches have addressed, but not quite solved, the issue of how to weight different

types of data. For example, Kim et al. (2018) develop a choice-theoretic model for combining

words and votes, but a tuning parameter that balances the proportion of information coming from

each source is not estimated within the model. The strength of this earlier work is grounding the
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estimates inachoice-theoreticmodel andestimating idealpoints. As explainedbelow, themethod

presented in this paper resolves the issue of how to optimally weight two data sources.1 In doing

so, it eschews a formal choice-theoretic model, which allows it to extend to any two data sources,

at the cost of returning scaled locations rather than estimated ideal points.

Authors like Hobbs (2017) combine information from multiple text sources using a version of

canonical correlation analysis (e.g., Hastie et al., 2013, Sec. 3.7), a method closely related to ours.

Themethod advanced by Hobbs (2017), though, is tailored to short bursts of speech and does not

offermeans of inference. Similarly, WeightedMultidimensional Scaling (WMDS) (Borg et al. (2013);

Borg and Groenen (2005)) combinesmultiple dissimilarity matrices to recover a single underlying

dimension (see also Jacoby, 1986, 2009). WMDS, though, returns only locations for the observa-

tions and not for the outcomes, that is votes or words, on which the observations are measured.

This issue also plaguesmethods that must pre-select, rather than estimate, ideologically charged

words (Groseclose and Milyo, 2005; Gentzkow and Shapiro, 2010; Martin and Yurukoglu, 2017).

We develop a general framework for combining data frommultiple sources. Themethod,Multi-

Dataset Multidimensional Scaling (MD2S) simultaneously scales two datasets, decomposing the

data into three separate factors: one spanning a latent space common to both datasets, and two

idiosyncratic subspaces—one per dataset. For example, combining votes and words on the same

actors, MD2S estimates three latent scales. The first is a joint scale informed by both words and

votes. The second is informed by words, but contains no information from votes. Likewise, the

third is informed by votes, but not words.

We build offwork in statistics and education focusing on recovering the correlation and shared

factors acrossmultiple surveys or exams (Tucker, 1958; Browne, 1979; Anderson, 1989; Klami et al.,

2013; Bach and Jordan, 2005; Gupta et al., 2011; Tipping and Bishop, 1999). This model, “Inter-

Battery Factor Analysis,” is precisely the model described above. We offer a likelihood-based

method for optimally weighting the information coming from the two sources, allow the user

to include covariates in estimating the scaled locations, and derive and implement an efficient

algorithm for estimation.

The advances of our proposed method are fourfold. First, we recover scaled locations for

both observations (say, legislators) and features (say, text and votes). Estimating, for example,

which words anchor a dimension’s extremes greatly facilitates interpretation. Second, we allow

for inference on the number of latent dimensions. Distinguishing a dimension that is signal from

one that is noise is a perennial problem, o�en unaddressed, in the scaling literature. To this end,

we implement a permutation test to distinguish a given dimension from noise. Our third advance

is in terms of estimation. Building on insights first advanced in Aldrich and McKelvey (1977), we

implement an efficient estimation routine that performs well when the number of attributes

grows large, as with text data where the researcher has a document-term matrix with counts on

thousands of n-grams for each speaker. Inference on the scaled locations for both shared and

idiosyncratic subspaces is performed via bootstrapping. Finally, scaled locations are modeled as

a function of covariates. This facilitates conducting inference on whether or how scaled locations

relate to covariates of interest, giving a principled way to explore the estimated latent scales with

substantive information.

We illustrate the method’s use and efficacy through a simulation exercise and an empirical

application. We show in the simulation study that MD2S recovers a shared and idiosyncratic

dimensions more accurately than existing methods that combinemultiple datasets, especially as

the number of attributes grows large.We then apply it to roll call votes and floor speech in theU.S.

Senate, where there has been a long interest by congressional scholars on recovering legislators’

latent scales. Our shared first dimension aligns with the standard ideological dimension running

1 By “optimal,” wemean that we estimate the factors that maximize the joint likelihood of the two datasets.
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from liberals to conservatives recovered using only roll-call votes (e.g., Poole, 2005). By combining

senators’ votes and floor speech, we recover the selected words that differentiate Senators on

this dimension, mostly on economic terms. Additionally, we further differentiate senators by

recovering a word-specific subspace that ranges from national security to budget concerns, and a

vote-specific subspace with Tea Party senators on one extreme and senior committee leaders on

the other.

2 Motivation and Use Cases
To illustrate the basic problem and insight, consider the case where we observe two different

streams of data, votes in a roll call matrix and word counts in a document-term matrix, that are

observed on the same actors. As is common in text data, assume that we have many more words

than votes. Were we to simply join the two datasets and estimate a single scale, it would be

closer to thewords-only scaling than the votes-only scaling. Thewords containmore information,

but we are not interested in all of the word data. We are most interested in the word data that

contribute to explaining the joint variation in both types of data. We could conduct multiple

analyses a�er reweighting the matrix, to find a suitable balance between words and votes in the

scalingprocedure as inKimet al. (2018), but this sidesteps theproblemof relativeweighting rather

than solving it.

MD2S solves this problem by returning three factors from the two datasets. The first is a joint

factor, estimated to explain the largest amount of variance common tobothdatasets. Thenext two

are idiosyncratic factors, unique to each data source and uncorrelated with the common factor:

Votes Words

Shared IdiosyncraticIdiosyncratic

This model is the Inter-Battery Factor Analysis (IBFA) model of Tucker (1958). Applied to the

words and votes example, the shared factors are scaled locations for legislators jointly informed

by both words and votes. The idiosyncratic word factors are informed by words but not votes.

Colloquially, these factors give locations on issues legislators talk about but do not vote on.

Similarly, the idiosyncratic vote factors give locationson issues legislators voteonbutdonot speak

about. Partitioning theobserveddatasets into these threegroupsaddsnuance to scaling, allowing

estimated locations to vary across different sets of observed behaviors. Importantly, if there is in-

truth no joint information between the twodatasets, themodel collapses onto just scaling the two

datasets separately.

As noted above, MD2S builds on this model in several regards: estimating the number of

latent dimensions, providing an efficient and effective estimation algorithm for a large number

of attributes, andmodeling the scaled locations with covariates.

Use Cases and Scope.
If the data come froma single source, or the researcher is willing to ignore the problemof one data

sourceoverwhelming theother, thena standardprincipal componentsor factor analysis shouldbe

utilized. There may be several cases, although, where the researcher may wish to model the two

Ted Enamorado et al. ` Political Analysis 214

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.24


different data sources. Our interest in this method was motivated by combining text and votes,

where the sheer volume of the textual data may overwhelm the vote data. Beyond this particular

case, the method’s use fall into two broad categories: combining datasets and contrasting them.

Combining datasets may involve bringing auxiliary information to bear on a problem. For

example, roll call votes are not informative in legislatures with strong party systems or in the

presence of pressures for unanimous or lopsided voting, so words can be used to differentiate

amongmembers (for more, see Kim et al., 2018; Kellerman, 2012). Relatedly, one data sourcemay

not have sufficient signal to generate a reliable scale, so a second data source can help leverage

the first (e.g., Hobbs, 2017). Combining the two sources offers an additional benefit. Placingwords

and actors in the same space, as in our applied example, allows the researcher to use the selected

features to characterize the substantive meaning of each dimension.

Bridging across different actors is another form of combining data. Jessee (2016) highlighted

the problem of weighting data from different sources when bridging across different sets of

respondents (e.g., Lewis and Tausanovitch, 2015; Tausanovitch and Warshaw, 2013; Shor and

McCarty, 2011; Bafumi and Herron, 2010). If the two groups have different item discrimination

parameters, simply pooling the two sets generates ambiguity in their ideal point estimates.

The estimates will vary based on either the amount of information or based on the number of

respondents, in the two sets.2

A third instance for combining datasets comeswhen constructing indices. Consider the impres-

sive set of measures for cross-national political, civic, and institutional comparison assembled by

Coppedgeet al. (2015). Generating an indexbyaggregating from finer to coarsermeasures requires

a method that is not sensitive to the number of items at each level.

A second use of the method is for contrasting the two information sources. This approach

differs from methods that only uncover a single scale; we discuss these methods in more detail

below. MD2S offers the ability to isolate a set of factors based off whether they are informing

both datasets, or exclusively one or the other. With data on word usage on the same individuals

before and a�er an event of interest, three sets of factors can be recovered: a factor common

to variation in word usage both before and a�er, one unique to word usage before the event,

and one unique to information a�er the event. Examples of this analysis involve contrasting

Twitter data (Barbera, 2016), transcripts of Federal Open Market Committee Meetings before and

a�er a transparency shock (Hansen et al., 2018), or Weibo microblogs before or a�er censorship

(Hobbs andRoberts, 2018). Ourmethodoffers a structuredwayof separatingout a common factor,

allowing the researcher to estimate how latent factors vary across the two datasets.

3 The Proposed Method
For a each observation i ∈ {1,2, . . . ,N }, and covariate j ∈ {1,2, . . . ,K(m)} in datasetm ∈ {1,2}, we

denote the realized outcome as y ∗
(m)i ,j

. Therefore, the outcome data matrices take the following

form:

Y∗(m) =



y ∗
(m)1,1

y ∗
(m)1,2

· · · y ∗
(m)1,K(m)

y ∗
(m)2,1

y ∗
(m)2,2

· · · y ∗
(m)2,K(m)

.

.

.
.
.
.

. . .
.
.
.

y ∗
(m)N ,1

y ∗
(m)N ,2

· · · y ∗
(m)N ,K(m)



(1)

making Y∗
(m)
of size N ×K(m). Note that K(1) and K(2) (the number of features of each dataset) may

notbeequal. For example, the ith rowof thedataset1, denotedby thevectorY ∗
(1)i ,•

,maybeavector

2 Section B.1 in the Supplemental Appendix presents and discusses a simulation-based example of how our method can be
used for bridging.
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of K(1) word counts uttered by legislator i, while the corresponding row in dataset 2, denoted by

Y ∗
(2)i ,•

may be a set of K(2) observed roll call votes for the same legislator.

We assume that each matrix Y∗
(m)

is on a common scale. This may be due to a natural scale,

suchasbinary votedata, columnsmaybenormed tohave sample standarddeviationone, or some

othermethodmay be used to place all columns of Y∗
(m)
on a common scale (e.g., Quinn, 2004; Hoff,

2007; Murray et al., 2013). The important point for our method is that all columns of Y∗
(m)

be on a

common interval scale. While eachmatrix must be on a common scale, the two separatematrices

may be on different scales. For example, Y∗
(1)
may word counts and Y∗

(2)
roll calls.

3.1 The Model
In practice, as the intercept is rarely of interest, we preprocess the matrices by double-centering

them, so that the row-mean, column-mean, and grand mean is zero. We denote the double-

centeredmatrices as Y(m).3 Thus, wemodel Y(1) and Y(2) in terms of their latent factors as4

Y(1) = ZSL(1)W
⊤
(1)+Z(1)D(1)B

⊤
(1)+Ω(1) (2)

Y(2) = ZSL(2)W
⊤
(2)+Z(2)D(2)B

⊤
(2)+Ω(2). (3)

We will refer to the N ×QS matrix ZS as the shared subspace and the N ×Q (m) matrix Z(m) as

the idiosyncratic subspace. ZS contains latent locations on the shared subspace in columns for

each of the QS dimensions. Similarly, each column of Z(m) contains the latent locations in the

idiosyncratic subspace forQ (m) latentdimensions.L(m) isQS ×QS non-negative,diagonalmatrixof

loadings for the shared subspace. We assume that the twomatrices L(1) and L(2) are proportional,

so any difference between them is attributable to the relative scales across data sources Y(m).W(m)

is a K(m) ×QS matrix of factors for the shared subspace for dataset Y(m). D(m) is a Q (m) ×Q (m)

diagonal matrix of loadings for the idiosyncratic subspace, and B(m) is the K(m) ×Q (m) of factors

for the idiosyncratic subspace. The N × K(m) matrix Ω(m) is of mean-zero, independent, and

equivariant noise.

We have modeled each observed data matrix Y(m) in terms of a shared subspace ZS and indi-

vidual subspaces Z(m). The researcher may believe, although, that the estimated scaled locations

may vary systematically with some set of known covariates available for theN observations in the

data. As in Roberts et al. (2014), we allow the scaled locations to take the following form:

ZS = XSβS +ΩZS , (4)

Z(m) = X(m)β(m)+ΩZ(m) , form ∈ {1,2}, (5)

where XS and X(m) are matrices of size N × FS and N × F(m), respectively. These matrices of

covariates structure the systematic factors of ZS and Z(m). The matrices need not be the same

for each subspace, so one set of covariates could structure the shared subspace and another

the idiosyncratic ones.5 The N ×Q (m) matrix ΩZ(m) and the N ×QS matrix ΩZS are of mean-zero,

independent, and equivariant noise.

3 The maximum likelihood estimates for the intercept terms are the sample analogs (Tipping and Bishop 1999), that is, the
double-centering matrix with each element the row-mean plus the column-mean, less the grand mean. See Poole and
Rosenthal 1997 for a discussion of double-centering. Regarding imputatingmissing values, anymethod could be used; we
simply imputemissing values by iteratively double-centering thematrix but requiring that allmissing data have value zero.

4 We chose notation consistent with Murphy (2012) and Klami et al. (2013). We denote all observed outcomes as Y(m) instead
of Y and X.

5 Recovering estimates of βS ,β(m) requires that there be no linear dependence in the covariates and there be more
observations than covariates, but the same covariates can be fit to each dimension and subspace.
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In the estimation algorithm, we recover the matrices of parameters βS (of size FS ×QS ) and

β(m) (of size F(m)×Q (m)) iteratively given Equations (4) and (5). Thus, adding the covariate informa-

tion can potentially lead to different scaled locations.

We make five assumptions for identifying the model (for a discussion of identification, see

Tipping and Bishop, 1999, Appendix A.1), where the assumptions hold form ∈ {1,2}:

Z⊤SZS =W⊤
(m)W(m) = IQS

, (6)

Z⊤(m)Z(m) = B
⊤
(m)B(m) = IQ (m)

, (7)

Z⊤(m)ZS = 0Q (m)×QS
, (8)

L(1) ∝ L(2), (9)

L(m),D(m) are diagonal with non-negative entries (10)

Assumptions (6) and (7) state that, within a given subspace, the latent scalings and factors

are uncorrelated and length one. Assumption (8) states that the common subspace spanned by

ZS is not correlated with the idiosyncratic scalings. This assumption allows us to differentiate

the shared subspace from each idiosyncratic subspace. Assumption (9) requires the variation

in loadings for the shared subspace to be explained by the relative scales across data sources.

Assumption (10) identifies the particular rotation that we estimate. Specifically, we are assuming

that the factors W(m) and B(m) are numerically equal to singular decompositions of the shared

and idiosyncratic subspaces of Y(m), respectively.6 Note that we only identify the latent factors

ZS ,Z(m),WS and B(m) up to sign.7 We follow convention and assume the elements of L(m) and D(m)
are non-negative and arranged in decreasing order. We discuss relaxations of these assumptions

in Section 3.5.

3.2 A Probabilistic Framework
We next embed our factor model in a probabilistic framework, where we recover maximum

likelihood estimates of the factors. For the jth feature of dataset m, denoted by vectorY(m),•,j of

length N, the probabilistic MD2Smodel can be written as:

Y(m),•,j |W(m),j ,•,B(m),j ,•,L(m),D(m) ∼ N (ZSL(m)W
⊤
(m),j ,•+Z(m)D(m)B

⊤
(m),j ,•;σ

2
(m)IN ), (11)

whereW(m),j ,• andB(m),j ,• represent the row of thematrix of factors associatedwith the jth feature

of the data.

This model is an extension of the Probabilistic Principal Components model of Tipping and

Bishop (1999); see also Bach and Jordan (2005). We differ from these models as we are most

interested in theactors’ spatial locations (ZS ,Z(m)), sowe treat theweightsW(m) andB(m) as random

and the spatial locations as fixed (see also Aldrich and McKelvey, 1977, p. 117). We maintain the

assumption that the errors are of equal variance, and therefore do not vary systematically across

individuals or features.

6 See (Tipping and Bishop, 1999) and our discussion below for more.
7 This means that the data cannot differentiate between a model with estimates {ZS ,Z(m),WS ,B(m) } and {−ZS ,−Z(m),

−WS ,−B(m) }.
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Marginalizing over W(m),j ,• and B(m),j ,•, gives the unconditional densities for the vector

Y(m),•,j as

Y(m),•,j ∼ N (0N ,C(m)), (12)

where, form ∈ {1,2}, the symmetric N ×N matrix, C(m) = ZSL
2
(m)
Z⊤
S
+Z(m)D

2
(m)
Z⊤
(m)

+σ2
(m)
IN .

The data log-likelihood as a function of {ZS ,Z(1),Z(2),L(1),L(2),D(1),D(2)} can be written as

ℓ
(
ZS ,Z(1),Z(2),L(1),L(2),D(1),D(2) |Y(1),Y(2)

)
=

−
1

2

{
N (K(1)+K(2)) log(2π)−K(1) log

(
|C(1) |

)
−K(2) log

(
|C(2) |

)
− tr

(
Y(1)Y

⊤
(1)C

−1
(1) +Y(2)Y

⊤
(2)C

−1
(2)

)}
. (13)

We derive analytical expression for the maximum likelihood estimates in Appendix A.

3.3 Implementation
In the single dataset setting, Tipping and Bishop (1999) show that the maximum likelihood

estimates for each factor are principal components of the data. We extend the result to the

MD2S model. Doing so allows for an efficient estimation strategy, whereby we can estimate

ZS ,Z(1), and Z(2) directly using an iterative algorithm, then recover the remaining estimates,

Ŵ(m), B̂(m), L̂(m), D̂(m), a�erwards. We prove the validity of this strategy in the following proposition:

PROPOSITION 1 The maximum likelihood estimates for the shared and idiosyncratic subspaces can

be written as singular vectors of functions of the data. Specifically:

1. The maximum likelihood estimates for Z(m) are proportional to principal components of

Y⊤(m)M(ZS ) form ∈ {1,2}.8

2. Denote ZS |(m) as the N × QS matrix containing the first QS principal components of

Y⊤
(m)
M(Z(m)). Then,

(a) ZS ∝ ZS |(1)Υ(1)+ZS |(2)Υ(2); withΥ(1)+Υ(2) = IQS

where Υ(1) and Υ(2) are two diagonal matrices of size QS × QS with υ(m);q =

diag(Υ(m))q > 0 form ∈ {1,2} and q ∈ {1, . . . ,QS }.

(b) ZS is selected to maximize tr
(
Z⊤
S
Y
(1)
Y⊤
(1)
Y
(2)
Y⊤
(2)
ZS

)
.

Proof. See Appendix A.

The proposition leads directly to our estimation strategy.9 Our algorithm estimates the MD2S

model using an iterative procedure that updates the estimate of each subspace one at a time,

enforcing the constraints in Equations (6)–(10) along the way. That is, for every iteration until

convergence, the estimation proceeds in two steps. Given the previous iteration estimate of the

shared space ZS , we update Ẑ(1) and then Ẑ(2). Second, we partial the idiosyncratic spaces out

to update ẐS , which is a weighted average of the first QS principal components of Y⊤(m)M(̂Z(m))

for m ∈ {1,2}. A�er convergence in each subspace, we update our estimates of the remaining

parameters.

Note that our algorithm allows the computational advantage of having to invert square matri-

ces of whichever size is smaller, N × N or K(m) × K(m).10 For example, in the main empirical

application below we observe 100 voting members, 486 votes, but 2,532 words. Our algorithm

8 Note thatM(A) represents the annihilator matrix for A i.e.,M(A) = I−H(A), with the projection matrix of A equal to H(A) =
A(A⊤A)−1A⊤; (A⊤A)−1 denotes the generalized inverse of (A⊤A); and I is the commensurate identity matrix.

9 See the Supplemental Appendix A for details.
10 See Aldrich and McKelvey (1977, p. 117) and Tipping and Bishop (1999, Appendix B) for similar insights.
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is fit through invertingmatrices of size 100× 100 instead of 486× 486 or 2,532× 2,532, which gives

us sizable computational gains. One advantage of our algorithm is that, at each step, it recovers

estimates of the data, Ŷ(1) and Ŷ(2), conditional on current estimates of shared and idiosyncratic

subspaces. Thus, all the information at hand is used in estimation.

3.4 Uncertainty
Uncertainty in Scaled Locations.We estimate uncertainty for two parts of the MD2S model: the

scaled locations and the number of dimensions. For the scaled locations, we rely on the boot-

strapping methodology introduced by Jacoby and Armstrong II (2014). Let {Ỹb
(1)
, Ỹb
(2)
} denote two

b t h bootstrapped samples, with b ∈ {1,2, . . . ,B}, where B is some large number, such as 1,000.

The bootstrapped sample is generated by fixing the number of rows and sampling K(m) columns

for each matrix, with replacement. Uncertainty due to sampling error can be estimated through

fitting MD2S to these bootstrapped estimates.

Distinguishing Scaled Locations fromRandomNoise.Wepresent a statisticalmethod for estimating

the number of dimensions while acknowledging that the first empirical consideration should be

substantive interpretability of the estimated subspaces. We recommend separating signal from

noise dimensions through theuseof a permutation test (e.g., Keele et al., 2012). A permutation test

requires estimating the density of a test statistic on a set of datasets permuted such that under the

null hypothesis, there is in-truth no signal in the data, and then the observed value is compared

to this simulated null distribution. We are not the first to use a permutation test to separate an

estimated scale from noise (see e.g., Mair et al. 2016 and references therein). However, these

authors only compare the estimated weight on each dimension to the mean under the simulated

null, rather than estimate a p value (figure 1 in Mair et al. 2016).

For the permutation test, we assume that there is no structure in the data, so the subspace

loadings are all zero. Formally,

H 0
L(m);q

: L(m);q = 0; (14)

H 0
D(m);q

:D(m);q = 0, (15)

where for allm ∈ {1,2}, L(m) = diag(L(m)), andD(m) = diag(D(m)). In this setting, L(m);q andD(m);q

represent the qth element (dimension) of L(m) and D(m), respectively. Under these hypotheses,

the observed data is pure noise with no systematic structure, that is Y(m) = Ω(m). In other words,

any permutation of the data is equally likely. We permute the data, estimate dimension weights,

and then compare the statistic under the observed data to the statistic under the null distribution.

To the extent that the statistic is an outlier under the null hypothesis, we can argue that the null

hypothesis is not accurate and there is, in fact, some systematic relationship in the data.

Specifically, we permute the data such that within each column of Y(m), the rows are shuffled.

In this case, in truth, there is no systematic relationship in the permuted data. Denote the r t h

permuted dataset out of R total as Ỹr
(m)
, with R some large number, say 1,000. For each permuted

dataset, we calculate the dimension weights, L̂r
(m)

and D̂r
(m)
. Then for each dimension q, those

values are compared to the estimated values on the non-permuted data, L̂(m) and D̂(m).

Under this formulation, a p value for dimension q in the shared subspace or idiosyncratic

subspace can be estimated as

p̂S ;q =

∑R
r=1 1

(
L̂r
(1);q

≤ L̂(1);q

)

R
; p̂(m);q =

∑R
r=1 1

(
D̂r
(m);q

≤ D̂(m);q

)

R
. (16)
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Weadapt the test toourmodelbynoting that the tests arenot independent. Thedimensionsare

estimated in order of decreasing loadings, such that more explanatory dimensions are estimated

before less explanatory ones. Therefore, we take as our estimated dimensionality the first d

dimensions such that each dimension has an estimated p value below a given threshold. In our

empirical applications, we calculate the estimated dimensionality d̂ = q as the largest q such

that dimensions 1 to q have estimated p values below 0.1. However, once the permuted p value is

estimated, this threshold can be bemanipulated to assess the sensitivity of the estimated number

of dimensions.11

3.5 Extensions and Discussion of Method
Although our method to recover scaled locations is data-driven, its algorithm can be used in the

estimation of choice-theoretic utility models that recover ideal points under different behavioral

assumptions (see, e.g., Kim et al., 2018; Ladha, 1991). For example, we can turn the model into

a quadratic utility model through utilizing the latent normal representation of a probit model

(Clinton et al., 2004; Albert and Chib, 1993; Hare et al., 2015; Jackman and Trier, 2008), leaving

it commensurate with a binary choice model. Now, though, the researcher may combine votes

on different issues and decompose the ideal points according to our model. We can also utilize

scale- and location-mixtures of normals to accommodate ordinal and count data, as in Goplerud

(2019); Albert and Chib (1993). In this framework, our probabilistic model is the “M”-step of an

EM routine, with the “E”-step as an adjustment to the observed data.12 Our concern here is not

with accommodating a particular class of data or formal choice structure, but instead to develop

a framework for integrating multiple sources in a single coherent fashion.

Ourmethod relies on two sets of orthogonality conditions, requiring orthogonality both across

subspaces and across factors within a given subspace. The former, that the joint and idiosyncratic

subspacesareuncorrelated, is thecentral elementofour identificationstrategy. The latter, though,

can be relaxed. Factors can be recovered within each subspace using any method favored by

the researcher. For example, rather than identifying the factors in a given subspace through

orthogonality conditions, the researcher could instead allow for correlated factors and identify

them with a prior; see Klami et al. (2013); Gupta et al. (2011) for recent work. Placing a prior

could shrink elements of the factor, returning a set of correlated factors that may be easier to

interpret, particularly in high-dimensional settings (see, e.g., Rockova and George, 2016, for work

in a factor model). In addition, a sparsity prior on the dimension weights could be used to select

the number of underlying dimensions (e.g., Kim et al., 2018; Hahn et al., 2012). The assumption

of uncorrelated factors guarantees identification and simplifies several of the derivations in our

estimation algorithm (see Supplemental Appendix A), but placing a different structure on the

factors in each subspace can be incorporated into our model.

We have also assumed that all of the K(m) columns in Y(m) are on the same scale. If an analysis

requires combining data on different scales, say a combination of continuous and categorical

outcomes, we have two suggestions. First, if all of the data is continuous and approximately

normal, eachcolumnmaybeconverted toa z-scaleby subtractingoff themeananddividingby the

sample standard deviation. Recent literature has also suggested placing data on the same scale

through an inverse z-transformation of the empirical distribution function,

y z
(m)i ,j = Φ−1

(
1

N +1

N∑

i ′=1

1
(
y(m)i ′,j ≤ y(m)i ,j

)
)
, (17)

11 Formally, d̂S = argminq {q : p̂S ;q > 0.1} −1; d̂(m) = argminq {q : p̂(m);q > 0.1} −1

12 Forexample, ina latentprobitmodel, this step involvesadding to the fittedvalues themeanof anormal covariate truncated
at 0 and centered at the fitted value, with support above zero for observed values of “1” or below zero for observed values
of “0,” and support over the whole line for missing values. See Clinton et al. (2004); Albert and Chib (1993).
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where Φ(·) is the normal distribution function. For more on this and other methods, see Quinn

(2004); Hoff (2007); Murray et al. (2013).

The probabilistic PCA model allows us to recover point estimates even when there are more

features than observations, causing existing common factor analytic implementations to fail due

to a rank deficiency. This data structure is unavoidable in text data, where word features may

greatly outnumber units of observation. A second approach, Weighted Multidimensional Scaling

(WMDS) (Borg et al., 2013; Borg and Groenen, 2005), returns a common index across several

datasets, with a measure of how much information each dataset contributes to the common

index. MD2S optimally combines the two datasets to extract a common factor, as inWMDS, as well

as idiosyncratic factors, allowing the researcher to estimate the location of features along each

estimated scale. Doing so greatly aids interpretation, sincewe can use both the observations (e.g.,

legislators) and their features (e.g., words) to summarize the dimensions.

Lastly, we wish to qualify how the p values should be incorporated into the process of inter-

pretation. Our permutation test offers a precise, but incomplete, measure of uncertainty; see Mair

et al. (2016, esp. 778–779) for recent work on the topic.13 We advocate three different criteria for

ascertaining whether an uncovered dimension is systematic. First is the p value. If a dimension is

not easily distinguished from noise, it should not be favored. This, of course, is necessary but not

sufficient. The second criterionwe recommend is substantive significance, namely the proportion

of the observed variance explained by the method. The third criterion is whether the dimension

has face validity. Every positive p value threshold leaves open the possibility of recovering a noise

dimension, so the particular threshold should be selected based off the researcher’s tolerance of

false positives. In our simulation and application exercises, we follow convention and implement

a threshold of 0.1 below, but do so while emphasizing that the final elements of evaluating the

recovered dimensions rely crucially on substantive understanding.

4 Simulation Study
In order to assess the proposed method, we conduct a simulation study which tests MD2S across

two different elements: first, its ability to identify common and idiosyncratic factors, as well as its

ability to distinguish systematic dimensions from noise.14

4.1 Simulation Setup
The observed data consist of matrices Y(1) and Y(2) with N rows and K(1) and K(2) columns respec-

tively. N is varied along {20,50,100} and K(2) along {20,100,250,500,1,000,2,500,5,000}. K(1) is

held at 40. The data are generated as

Y(1) = 2ZS ;1W
⊤
(1);1+ZS ;2W

⊤
(1);2+4Z(1);1B

⊤
(1);1+2Z(1);2B

⊤
(1);2+Ω(1), (18)

Y(2) = 2ZS ;1W
⊤
(2);1+ZS ;2W

⊤
(2);2+4Z(2);1B

⊤
(2);1+2Z(2);2B

⊤
(2)2+2Z(2);3B

⊤
(2);3+Ω(2). (19)

The latter means that are two shared dimensions denoted by the vectors ZS ;q for q ∈ {1,2}. In

terms of loadings, we have that the first shared dimension is twice the size of the second one that

is, L(m) = (2,1). The matrix Y(1) has two idiosyncratic dimensions and Y(2) has three. In addition,

we have that the dimension loading for the idiosyncratic subspaces are given byD(1) = (4,2) and

D(2) = (4,2,2). All systematic factors Z(m);q ,W(m);q , and B(m);q are drawn from a standard normal.

The error matrices Ω(m) are scaled such that the systematic component has twice the standard

13 We note that these authors advocate comparing the mean dimension weight under the null to the observed value rather
than calculating a proper p value; see, for example, figure 1 in Mair et al. (2016).

14 Replication materials are available at Enamorado et al. (2020a) and Enamorado et al. (2020a)
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error of the random component, that is the true R 2 is (2/(2+1))2 = 4/9 ≈ 0.44. All simulations

were run 1,000 times.

We designed this simulation with two goals in mind. First, we wanted the common factor in

ZS to not be the largest systematic factor of Y(1) and Y(2). Uncovering the common factor involves

avoiding the idiosyncratic factors. Second, we wanted to have more variables than observations

in one of thematrices. We did so tomimic text data, wherewe havemore terms than observations

and regular factor analysis is computational infeasible.

We compare our proposed algorithm to two additional methods that are able to recover a

shared scale from multiple datasets. First, we use a variational approximation of the Bayesian

Inter-Battery Factor Analysis (V-BIBFA) model of Klami et al. (2013). The data generating process

behind V-BIBFA is the same as ours, which is based on a linear latent variablemodel. In contrast to

MD2S, V-BIBFA targets the factors or linear projectionsW(m) and B(m) instead of the latent factors

ZS and Z(m). This is done by placing a sparse prior over the linear projections in order to separate

a shared linear mapping W(m) from a specific one for each dataset m, B(m). Given an estimated

posterior distribution of factors, scaled locations can be recovered from a normal posterior.

We also compare MD2S to another scaling approach, weighted multidimensional scaling or

“individual differences scaling” (INDSCAL) as implemented in the R library smacof. Instead of

focusing on the scaling of two matrices of size N by K(1) and N by K(2) as done by MD2S, INDSCAL

recovers a shared scale from two matrices of dissimilarities of size N by N instead. First, a scale is

recovered for each individual dataset and a matrix of weights is estimated to map this individual

scales into a shared subspace.15 We use the Manhattan distance (L1 norm) as the measure of

dissimilarity between the rows of Y(1) and Y(2) to reduce them to square matrices of size N by N.

In contrast to MD2S, INDSCAL does not directly return shared and idiosyncratic variation. In order

to extract data-specific scales orthogonal to the shared subspace, we first estimate the shared

latent dimension with the INDSCAL procedure. Next, with a linear mapping we partial this scale

out from theK(m) outcomes in each original datamatrix, Y
∗
(m)
. Finally, each partialed out dataset is

transformed into a squared dissimilarity matrix and scaled via metric multidimensional scaling.

4.2 Results
Our primary interest is in recovering a scaling informed by both sets of datasets. Figure 1 presents

the results comparing estimates of the shared subspace and the true shared subspace. The figure

is organized with sample size in columns ( N ∈ {20,50,100}) and the number of outcomes in Y(2),

K(2) ∈ {20,100, . . . ,5,000} in rows. The x-axis ranges from 0 to 1 and measures the correlation

between the true and estimated values. The y-axis is a density scale. The methods presented

include MD2S, the proposed method; the variational Bayesian implementation of Klami et al.

(2013) (V-BIBFA); the individual differences scaling (INDSCAL); and an estimate that is pure normal

noise (Random).

Looking across the columns of Figure 1, each method benefits from an increase in sample

size and is clearly differentiable from random noise. Table 3 in the Supplemental Appendix B.4

shows the mean correlation with the true shared subspace across different settings.16 We see

that, across settings, either MD2S or V-BIBFA performs the best in recovering the true shared

subspace. Particularly, for small N and K(2), V-BIBFA slightly outperforms MD2S in recovering the

first dimensionof the shared subspace,ZS ;1. AsK(2) increases, theestimates inV-BIBFAdeteriorate

while MD2S improves. This is evidence that, with large outcome data matrices, such as the ones

generated by text data, our iterative algorithm is able to recover a latent shared subspace that is

closer to the true data generating process than available alternatives. The solid gray line shows

15 We thank an anonymous reviewer for suggesting this comparison.
16 For instance, with N = 50 and K2 = 500, the mean correlation with ZS are 0.97, 0.91 and 0.20, for MD2S, V-BIBFA and

INDSCAL, respectively.
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Figure 1. Correlation between common subspace (ZS ;1) and its estimate, by method. Sample size is in
columns ( N ∈ {20,50,100}) and K(2) ∈ {20,100, . . . ,5,000} is in rows. The x-axis ranges from 0 to 1 and
measures the correlation between the true and estimated values. The proposedmethod, MD2S, is compared
to V-BIBFA and INDSCAL, as described in the text. All methods improve in N, but MD2S outperforms the rest
along N and K(2).

that INDSCAL regularly outperforms random noise, but performs notably worse than MD2S and

V-BIBFA.

Figure 2 contains the same set of results as Figure 1, but for the first dimension of the idiosyn-

cratic subspaces Z(1);1 from Y(1) (le�), and Z(2);1 from Y(2) (right). Consider the le�-side panel. The

number of features in Y(1), K(1), is fixed across simulations, only K(2) is changing. Looking down

rows, we see that the MD2S and V-BIBFA results for Z(1);1 are almost invariant to changes in Y(2).

This is desirable: since Z(1);1 is idiosyncratic to Y(1), we do not want changes in Y(2) to impact its

estimate. Overall, INDSCAL’s performance is relatively the worst, with a correlation with Z(1);1 of

just 0.2, whereas the correlation with Z(1);1 for MD2S and V-BIBFA are 0.97 and 0.91, respectively
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(withN = 50 andK(2) = 500).17 Looking across columns, asN increases,we see thatMD2Sperforms

better than V-BIBFA, with a higher correlation with the true subspace Z(1);1 across all settings.

Next, consider the right-hand panel. Looking across columns, again, we see MD2S improving

as either N or K(2) increases. As with the case for the shared subspace, the performance of

V-BIBFA deteriorates as K(2) increases. In fact, MD2S outperforms V-BIBFA in recovering Z(2);1

across all configurations. Moreover, whenK(2) ≥ 500 andN ≥ 50, MD2S recovers Z(2);1 near exactly

and substantially better than all other methods.18

The Supplemental Appendix contains additional simulation exercises that show the relative

performance of MD2S when we vary relevant features in the data related to bridging, sparsity,

and factor correlation across dimensions. Supplemental Appendix B.1 shows evidence that MD2S

performs well at jointly estimating scaled locations when we allow actors across datasets to

differ and use only common items for scaling. Supplemental Appendix B.2 focuses on adding

different levels of sparsity, a common feature in text data. We show that even when sparsity

reaches 80%of the data, MD2S outperforms othermethods in recovering scaled locations. Finally,

the Supplemental Appendix B.3 shows the robustness of MD2S when we allow different levels of

correlations across dimensions within each subspace.

4.3 Estimating Dimensions
We next illustrate the proposed method’s ability to separate systematic from noise dimensions

through the use of the permutation test presented in Section 3.4.

Figure 3 presents the results of the permutation test described in Section 3.4, for which five

dimensions were fit to the shared and idiosyncratic subspaces, with K(1) = 40. To evaluate the

ability of MD2S to recover the correct number of systematic dimensions per subspace, we use

three settings. First, we set N = 50 and K(2) = 100 in panel (a). Moving from panel (a) to (b), we

increasedN to 100 but keptK(2) fixed at 100. Finally, moving frompanel (b) to (c), we keptN = 100,

but increase K(2) to 1,000. For each of the above-mentioned settings, 1,000 total simulations with

1,000 permuted datasets per simulation were used to estimate the p value.

Across panels, if we classify values below p = 0.10 as successful instances of uncovering signal

from noise, MD2S consistently recovers the first dimension of the the shared subspace. However,

if the number of observations (N) is small as in panel (a), MD2S recovers the second shared

dimension, which is not noise, only 17% of the time. Increasing the number of observations, as

done in panel (b), improves MD2S’ ability to recover the second shared dimension, as it is now

detected 53% of the time. If both N and K(2) are increased, as in panel (c), MD2S classifies the

second shared subspace as signal 83% of the time.

A similar but less pronounced pattern, is observed for the two idiosyncratic subspaces. The

noise dimensions, 3–5 in Y(1) and 4 and 5 in Y(2) are never selected. However, dimensions 2 for Y(1)
and 3 for Y(2) which contain systematic information, are difficult to recover for MD2S when both N

andK(2) are small. In panel (a), MD2S correctly classifies dimensions 2 of Y(1) and 3 of Y(2) as signal

73% and 46% of the time, respectively. If the number of observations and features of our larger

dataset are increased, as in panel (c), then MD2S correctly classifies dimension 2 of Y(1) as signal

93% of the time, while dimension 3 of Y(2) is always correctly classified as signal.

5 Combining Senate Roll Call and Text Data
In this empirical exercise, we apply MD2S to data from speech and roll call votes in the 112th

U.S. Senate. The data consist of a term document matrix of 2,532 unique terms constructed from

senators’ floor speech found in the Congressional Record, as well as the final roll call vote matrix

17 Table 3 in the Supplemental Appendix B.4 shows the average correlation with Z(1);1 for each setting and method under
consideration.

18 Table 4 in Appendix B.4 shows the average correlation with Z(2);1 for each setting andmethod under consideration.
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Figure 2. Correlation between idiosyncratic locations for Y(m) and their estimates, by method. The le� and right figures are structured identically to Figure 1. Consider the le� figure.
Looking down rows, MD2S estimates for Z(1);1 is invariant to changes in Y(2). Other methods are similarly stable. Looking across columns, as N increases, MD2S performs best. Now,
consider the right-hand figure. Looking across columns, all methods improve asN increases. As bothN andK(2) increase, the performance of V-BIBFA deteriorates, while MD2S improves.
For N ∈ {50,100} and K(2) > 100, MD2S is outperforming all other methods in recovering Z(2);1. When K(2) ≥ 1,000 and N ≥ 50, MD2S recovers Z(2);1 near exactly, and quite a bit better
than all other methods.

https://doi.org/10.1017/pan.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/pan.2020.24


�
�

��

�

�

�

�

�

�

�

��

�

��

�

��

�

�

�

�

���

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����

�

���

�

�

�

��

�

��

�

�

�

��
�
�

�

�

�

��

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

��
�

�

�

�

�

�

�

������

�

��

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

���

�

�

�
�

�

�

�

�

�

�
�
��

�

�

�

�

��

�

�

�

�

�

�

�

������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�
�0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Shared Subspace Idiosyncratic, Y1 Idiosyncratic, Y2

E
s

ti
m

a
te

d
 p

−
v
a

lu
e

Dimension Dimension Dimension

Dimension

Systematic
Noise

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�����

�

�

���

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Shared Subspace Idiosyncratic, Y1 Idiosyncratic, Y2

E
s
ti

m
a

te
d

 p
−

v
a

lu
e

Dimension Dimension Dimension

Dimension

Systematic
Noise

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

����

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Shared Subspace Idiosyncratic, Y1 Idiosyncratic, Y2

E
s
ti

m
a

te
d

 p
−

v
a

lu
e

Dimension Dimension Dimension

Dimension

Systematic
Noise

Figure 3. Estimating dimensions. The three panels above present the results from the permutation test for
the number of dimensions under threedifferent settings.Weuse the samedata generationprocess described
in section 4, fixing K(1) = 40. For panel (a), N = 50 and K(2) = 100; for panel (b), N = 100 and K(2) = 100; and
for panel (c), N = 100 and K(2) = 1,000. Values in the boxplot that fall below the dotted line at p = 0.10 were
estimated as systematic dimensions; those above were considered noise. As the three panels show, as we
increase both the number of observations N and the number of features (K(2)) of the larger dataset, MD2S
is able to detect the correct dimensionality. Note that for each of the 1,000 simulations per setting, 1,000
permuted datasets were used to recover a p value.

of 486 binary votes taken during this session.19 The data was previously analyzed using the Sparse

Factor Analysis (SFA) methodology introduced in Kim et al. (2018), who found two dimensions in

the space jointly informed bywords and votes. The primary dimensionwas qualitatively the same

as the ideological dimension identified by any common scaling method applied to roll call votes

19 Speechdata is collectedby theSunlight Foundationand roll call votesareobtained fromVoteView.Tocreate thedocument-
termmatrix, senators’ floor speech is preprocessed following standard practices by stemming, eliminating stopwords, and
analyzingall unigramsandbigrams in the text data. Infrequent terms that arenot usedbyat least ten senators are trimmed.
See Kim et al. (2018) for a detailed discussion of the construction of the document-term matrix. Our results are robust to
different trimming rules and the inclusion of bigrams (Denny and Spirling, 2018); see Supplemental Appendix B.5.2 for
details.
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Table 1. Permutation test. % represents the percentage of explained variance for each dimension. Using any
p value threshold between 0.01 and 0.71 gives us two dimensions for the shared subspace and three for the
idiosyncratic word and votes subspaces. Number of permuted datasets: 5,000.

Dimension

(1) (2) (3) (4) (5)

Shared subspace p-value 0.00 1.00 1.00 1.00 1.00

% 95.64 2.17 0.89 0.74 0.55

Word subspace p-value 0.00 0.72 1.00 1.00 1.00

% 39.00 20.23 16.01 13.10 10.67

Vote subspace p-value 0.00 1.00 1.00 1.00 1.00

% 49.21 17.64 12.78 11.40 8.97

from the U.S. Senate (e.g. Clinton et al., 2004, Figure 1). The second dimension was a “leadership”

dimension ranging from party leaders, on one end, to rank and file members on the other.

We present the results obtained from MD2S in two parts. First, we use our permutation test

to assess which latent dimensions may not be noise. Second, we examine the substance of the

scaled locations in the first shared subspace informed by bothwords and votes, as well as the first

idiosyncratic dimensions specific to each type of data. We show the point estimates of the scaled

locations for each senator in the results below. Results of the bootstrapped confidence intervals

as described in Section 3.4 can be found in the Supplemental Appendix B.5.4.

We inform the scaled locationswith available senators’ characteristics.20 In particular, we allow

the latent variables to be a function of senators’ party, gender, and seniority. We also account

for measures of the number and type of committee assignments of each senator in this session.21

We include membership, which is given by the total number of committees a senator belongs to.

The variable leadership is a representation of the number of committees where a senator holds

a leadership position. The remaining covariates: agricultural, economics, and security,

measure the proportion of committees a senator belongs to that deal with these issues.22 In the

Supplemental Appendix B.5.5, we recover the estimated coefficients associated to each subspace

on the set of senators’ covariates.

Estimating Dimensionality.
Table 1 presents the results from the permutation test presented in Section 3.4 applied to the

Senate data. The table contains the results for the shared subspace and the two idiosyncratic

dimensions on 5,000 permuted datasets.

Using any p value threshold between 0.01 and 0.71 gives us one statistically significant dimen-

sion across the shared and idiosyncratic subspaces. In terms of explained variance, the first

shared subspace explains most of the joint variance across votes and words (i.e., 96%). For the

idiosyncratic subspaces the first dimension explains 49%and39%of the variance unique to votes

and words, respectively.

Scaled Locations.
Since we are placing the words and the senators in the same subspace, words at one extreme

aremost used by legislators at the same extreme. Thus, connecting the words with the legislators

20 As a robustness check, in Supplemental Appendix B.5.1, we present and discuss the results without using senators’
characteristics—which overall are quite similar to the results presented here.

21 Senate committee assignments are obtained from Stewart and Woon (1998).
22 agricultural include the committees of Agriculture, Nutrition and Forestry, Energy and Natural Resources, and Envi-

ronment and Public Works. economics include the committees of Appropriations, Banking, Housing, and Urban Affairs,
Budget, and Finance. security includes the committees of Armed Services and Homeland Security and Governmental
Affairs.

Ted Enamorado et al. ` Political Analysis 227

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.24


Figure 4. Shared subspace locations estimated via MD2S for the members of the 112th U.S. Senate.

greatly aids in interpretation, as we do not only have the locations of the legislators to go by in

ascertaining the substantive meaning of the dimension.

We present the scaling estimates of the first shared dimension in Figure 4. On the le� panel, we

present word clouds containing the top 100 positive (in red) and top 100 negative (in blue) words

according to their weights in the estimated matrix of factors for the text data, Ŵ(wor ds ). The size

and color intensity of each word in the wordclouds are proportional to the absolute value of the

estimated weights, so words of one color are estimated as near legislators of the same color.

The right panel of Figure 4 presents the estimated location of senators in the shared subspace

ẐS . For the shared subspace, we find the estimated weights balancing the proportion of informa-

tion coming from votes and words to be, on average, 33% and 67%, respectively.23

23 This is parameter diag (Υ(1))1 in Proposition 1.
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The shared subspace differentiates the party, placing Republicans towards the top and

Democrats towards the bottom. Our estimates are highly correlated with the SFA ideal point

estimates at 0.97. With respect to scaling approaches using only data on roll call votes, our

first shared dimension correlates with DW-NOMINATE (Poole, 2005) and IDEAL (Clinton et al.,

2004) at 0.94 and 0.95, respectively. Therefore, the shared scale is consistent with the ideological

dimension uncovered from a spatial vote choice model and from its extension to word choice.24

Thesecorrelations serveasavalidationexercise, asDW-NOMINATEand IDEALhaveproven tobe

robust methods to extract information exclusively from roll call votes. Thus, by adding words into

the equation in a structured fashion, MD2S is able to recover other interesting patterns, while also

recovering the expected ideological dimension from the vote data obtained by popular methods

such as DW-Nominate and IDEAL.25

The words anchoring each dimension are similar to those identified in Kim et al. (2018, see

figure 3, righthand plot). In particular, we find parliamentary control terms on the side associated

with the governing Democratic majority (meet session, author meet, conduct hear) with fiscal

terms on the side associated with the Republicanminority, (stimulus, trillion, budget, rais tax, and

debt) commensuratewith the party’s professed fiscal concerns. If wemove past the parliamentary

terms, the first set of substantive terms on the Democratic side are also fiscal in nature but

diametrically opposite the Republicans:wealthiest,middleclass, tax break, tax cut, and hear entitl.

Therefore, by recovering the associated terms with each scaled location, we find that the first

shared dimension captures well the main differences between Democrats and Republicans in

terms of fiscal policy, as identified by the words most associated with each side of the scale.

In terms of idiosyncratic subspaces, we first focus our attention on the vote subspace. As

illustratedbyFigure5,we findasignificant firstdimension thatorganizes voting,but isunrelated to

floor speech. On one extreme, this dimension is anchored by fiscal conservative senators DeMint,

Lee, Toomey, Paul, and Risch, noted Tea Party and small government enthusiasts. In terms of the

covariates included in the estimation, senators assigned to a leadership position in committees

related to agricultural and economic issues are significantly correlated with this extreme of

the scale. The other extreme of the vote subspace is anchored by prominent and more moderate

senior senators like Schumer, Boxer, andCollins, who have been reelected at least once andhold a

leadership position in a Senate committee. As shown in the Supplemental Appendix, we find that

seniority and more leadership assignments, as well as membership in committees focused

on national security issues, are systematically associated with positive locations in the vote

subspace.

Similar to the results for the shared subspace, Figure 6 shows senators’ locations in the first

dimension of the word subspace along with the word clouds of the top 100 words associated with

each side of the scale given by the estimated text factor B̂(words). In terms of the scaled locations,

we have on one end, senators who put emphasis on national security issues, such as prominent

members of the Committees on Armed Services and Homeland Security, as well as Governmental

Affairs like senators Johnson, Akaka, and Collins. The associated terms on this extreme relate to

themilitary (e.g, command, deploy, navi, and air forc), as well as personnel and privacy-protection

issues (e.g., privaci, personnel, andcivilian). The opposite side of the words subspace is anchored

by senators of both parties (Sanders, Stabenow, Sessions and Thune) addressing budget issues,

with associated terms such as tax, deficit, debt,money, andmedicare.

Notice that the estimated locations in these idiosyncratic vote and words dimensions allows

us to further differentiate senators found to be moderate in the shared dimension, but that have

substantive differences specific to either their roll-call or floor speech behavior.

24 The shared scale recovered by V-BIFBA applied to the Senate data correlates with our shared scale at 0.89. The correlation
of V-BIFBA with SFA, DW-Nominate and IDEAL is 0.91, 0.91 and 0.95, respectively.

25 SeeSupplemental AppendixB.5.3 for theoverall correlations,within-party correlations, anddifferent scatter plots showing
the similarities across different scaling methods.
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Figure 5. Idiosyncratic vote subspace locations estimated viaMD2S for themembers of the 112thU.S. Senate.

6 Conclusion
As we enter a period of “big data,” we encourage political scientists to think not just of analyzing

large datasets, but also how to combine data from disparate sources. We present such a method

here, for scaling data from two separate datasets. The method, MD2S, successfully incorporates

information from two different data sources, generating scaled locations with a higher internal

validity than analyzing the two datasets separately. We include methods for checking validity,

separating systematic dimensions from noise, and a way to relate scaled locations to covariates,

all fit using an efficient statistical algorithm.

The method also allows the user to use the scaled locations from both datasets to help infer

the meaning of the latent dimensions. In our empirical application, scaled locations were also

associated with words that let us better interpret the meaning of the estimated latent scales. The

idiosyncratic subspaces also offers new insights, allowing us to identify dimensions in which the

members at the extremes of the shared subspace differed.

Weanticipate severalways inwhich thisproject canbemoved forward. First,wehavepresented

themethod in a geometric, least squares framework. Placing themethod in a probabilistic frame-

workwill allow for an extension to commonly used Bayesian techniques (Hare et al., 2015; Tipping

andBishop, 1999).Wealsoplan to extend themethod to allow for cross-time comparisons, so as to

placemultiple observations in the same space over time. As noted above, an important avenue of

future research is to scale information coming frommore than two datasets, for example, scaling

Senators’ roll calls, floor speeches, and social media statements. In principle, our framework and

identification assumptions can be generalized tomultiple databases. We leave for future research

an empirical implementation of this extension to the method.

Appendix A. Proof of Proposition 1
We first derive score conditions for the IBFA, extending the model of Tipping and Bishop (1999).

We then implement a Minorize-Maximization (MM) algorithm for estimation (for the use of this

class of algorithm in scaling, see Borg and Groenen, 2005). The estimation procedure works by

deriving a minorizing function that lies weakly below the true objective, maximizes, and iterates

to convergence.26

The Model and Likelihood.
This section followsTippingandBishop (1999). The twodatasets,Y(1) andY(2) aremodeled in terms

of a shared subspace ZS aswell as dataset specific subspaces, Z(1) and Z(2), such that for column j:

Y(m),•,j |W(m),j ,•,B(m),j ,•,L(m),D(m) ∼ N (ZSL(m)W
⊤
(m),j ,•+Z(m)D(m)B

⊤
(m),j ,•;σ

2
(m)IN ) (20)

26 The Q function in the popular EM algorithm is a minorizing function.
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Figure6. Idiosyncraticword subspace locationsestimatedviaMD2S for themembersof the 112thU.S. Senate.
First dimension.

for m ∈ {1,2}. Marginalizing overW(m),j ,• and B(m),j ,•, gives the unconditional densities for the

vectorY(m),•,j as

Y(m),•,j ∼ N (0N ,C(m)), (21)

where, form ∈ {1,2}, the symmetric N ×N matrix, C(m) = ZSL
2
(m)
Z⊤
S
+Z(m)D

2
(m)
Z⊤
(m)

+σ2
(m)
IN .

The data log-likelihood as a function of {ZS ,Z(1),Z(2),L(1),L(2),D(1),D(2)} can be written as

ℓ
(
ZS ,Z(1),Z(2),L(1),L(2),D(1),D(2) |Y(1),Y(2)

)
=

−
1

2

{
N (K(1)+K(2)) log(2π)−K(1) log

(
|C(1) |

)
−K(2) log

(
|C(2) |

)
− tr

(
Y(1)Y

⊤
(1)C

−1
(1) +Y(2)Y

⊤
(2)C

−1
(2)

)}
. (22)
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Denoting L2
(2)

= λ2L2
(1)
, the score conditions for the shared subspace model are

∂ℓ (·)

∂ZS
=

{
1

2

(
K(1)C

−1
(1) +K(2)C

−1
(2)

)
−
1

2

{
C−1(1)Y(1)Y

⊤
(1)C

−1
(1) +λ2C−1(2)Y(2)Y

⊤
(2)C

−1
(2)

}}
ZSL

2
(1), (23)

∂ℓ (·)

∂Z(m)
=

{
1

2
K(m)C

−1
(m)−

1

2
C−1(m)Y(m)Y

⊤
(m)C

−1
(m)

}
Z(m)D

2
(m). (24)

It may appear at first that Z(m) and ZS are solutions to an eigen problem of the form AZ = λZ.

This does not immediately follow fromEquations (23) and (24), though, because Z(m) and ZS enter

into C(m) nonlinearly. The work in the proof below comes from using the identification conditions

(Equations 6–10) and making use of the Woodbury identity to isolate ZS in C−1(m). With this done, it

is apparent that themaximum likelihood estimates are indeed singular vectors. We formalize that

result in the Proposition 1, which is given in the text.

Proof of Proposition 1.
1. We proceed in two steps. First, we simplify the termC−1

(m)
Z(m)D

2
(m)
, leaving it a function of only

Z(m) and not ZS . Second, we substitute this simplified term back into the score conditions,

showing that Z(m) are singular vectors.

First, denote Ã = (Z(m)D
2
(m)
Z⊤
(m)

+σ2
(m)
IN ) and Ũ = (L−2

(m)
+Z⊤

S
Ã−1ZS ). Then,

C−1(m)Z(m)D
2
(m) = C

−1
(m)M(ZS )Z(m)D

2
(m) ZS ⊥ Z(m)

=
{
Ã−1− Ã−1ZS Ũ

−1Z⊤S Ã
−1

}
M(ZS )Z(m)D

2
(m) Woodbury identity to C−1(m)

= (Z(m)D
2
(m)Z

⊤
(m)+σ2

(m)IN )
−1M(ZS )Z(m)D

2
(m)

where the last line follows from distributing and that Ã−1 is not a function of ZS , leaving

the second summand linear in ZS and therefore annihiliated by M(ZS ). We further simplify

through reapplying the Woodbury identity to (Z(m)D
2
(m)
Z⊤
(m)

+σ2
(m)
IN )−1:

=
1

σ2
(m)

{
IN −Z(m)

(
σ2
(m)D

−2
(m)+Z

⊤
(m)Z(m)

)−1
Z⊤(m)

}
M(ZS )Z(m)D

2
(m)

=M(ZS )Z(m)D̃(m),

where we denote the diagonal matrix D̃(m) =
1

σ2
(m)

{IQ (m)
− (σ2

(m)
D−2
(m)

+ IQ (m)
)−1}D2

(m)
. That this

matrix is diagonal is crucial toour result, illustratingwhere theadvantageof theprobabilistic

PCA enters our results.

Substituting into the score conditions gives:

K(m)C
−1
(m)Z(m)−

1

σ2
(m)

C−1(m)Y(m)Y
⊤
(m)M(ZS )Z(m)D̃(m) = 0N×Qm

⇒ K(m)Z(m)−
1

σ2
(m)

Y(m)Y
⊤
(m)M(ZS )Z(m)D̃(m) = 0N×Qm

Premultiply C(m)

⇒ K(m)M(ZS )Z(m)−
1

σ2
(m)

M(ZS )Y(m)Y
⊤
(m)M(ZS )Z(m)D̃(m) = 0N×Qm

PremultiplyM(ZS )

⇒ K(m)Z(m)−
1

σ2
(m)

M(ZS )Y(m)Y
⊤
(m)M(ZS )Z(m)D̃(m) = 0N×Qm

M(ZS )Z(m) = Z(m)
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⇒ K(m)Z(m)IQ (m)
−

1

σ2
(m)

V(m)Z(m)D̃(m) = 0N×Qm
,

where we define V(m) ≡ M(ZS )Y(m)Y
⊤
(m)
M(ZS ) in the last line. Considering this last equality

columnwise shows that each column of Z(m) is a singular vector of V(m), which was to be

shown.

2. Denote ZS |(m) as the first QS principal components of Y⊤(m)M(Z(m)). To prove part (a), just

repeat the proof for point 1 using M(Z(1)) and M(Z(2)) in equation (23). Then, by a similar

argument, themaximum likelihood estimates of ZS are proportional to singular vectors of a

weightedaverageofY(1)Y
⊤
(1)
andY(2)Y

⊤
(2)
. Toprovepart (b),wemaximize aminorizing function

that liesweaklybelow the true likelihood function. Togenerate theminorizing function, note

Y⊤(m)Y(m) ≥ Å
(
Y⊤(m)Y(m) |ZS ,Z(m),σ

2
(m)

)
= C(m)

⇒
(
Y⊤(m)Y(m)

)−1
≤ C−1(m)

with the inequalities meant in a matrix sense. Define

Q
(
ZS ,Z(1),Z(2)

��Y(1),Y(2),C−1(1),C
−1
(2)

)
=

−
1

2

{
N (K(1)+K(2)) log(2π)+K(1) log(|C1 |)+K(2) log(|C2 |)

+ tr
(
C−12 Y(2)Y

⊤
(2)Y(1)Y

⊤
(1)C

−1
1 +C−11 Y(1)Y

⊤
(1)Y(2)Y

⊤
(2)C

−1
2

) }
.

By construction,

Q
(
ZS ,Z(1),Z(2)

��Y(1),Y(2),C−1(1),C
−1
(2)

)
≤ ℓ

(
ZS ,Z(1),Z(2)

��Y(1),Y(2)
)
. (25)

Following the steps in the proof of part (1), ZS is clearly proportional to a le� singular vector

of a weighted average of A and A⊤, where A = Y(2)Y
⊤
(2)
Y(1)Y

⊤
(1)
. That the maximizer of the

minorizing function at convergence is also the ML estimate follows from invariance of the

maximum likelihood estimator.
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