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SUMMARY
This paper presents an efficient approach for planning collision-free and dynamically feasible
trajectories that enable a mobile robot to carry out tasks specified as regular languages over
workspace regions. A sampling-based tree search is conducted over the feasible motions and over an
abstraction obtained by combining the automaton representing the regular language with a workspace
decomposition. The abstraction is used to partition the motion tree into equivalence classes and
estimate the feasibility of reaching accepting automaton states from these equivalence classes. The
partition is continually refined to discover new ways to expand the search. Comparisons to related
work show significant speedups.

KEYWORDS: Motion planning; Mobile robots; Robot dynamics; Regular languages.

1. Introduction
Addressing the combined task and motion-planning problem is becoming increasingly important as
a growing number of diverse robotics applications in navigation, search-and-rescue, manipulation,
and surgical procedures involve reasoning with both discrete actions and continuous motions. In this
context, regular languages provide a convenient mathematical model to express robotic tasks. For
instance, the task of reaching regions P1, . . . ,Pn in succession, referred to as a sequencing task, can
be expressed via the regular expression

φn
seq = π1π2 . . . πn, (1)

where πi denotes the logical proposition “robot reached Pi ,” which becomes true only when the robot
reaches Pi . When giving the robot the flexibility to visit P1, . . . ,Pn in any order, the task is referred
to as a coverage task, which can be written as the regular expression

φn
cov =

∨
〈i1,...,in〉∈perm(1,n)

πi1πi2 . . . πin , (2)

where perm(1, n) denotes all the permutations of {1, 2, . . . , n}. Regular languages can also be used
to impose partial ordering, e.g., “P1 and P2 before P3 and P4,” which corresponds to the regular
expression

(π1π2 ∨ π2π1)(π3π4 ∨ π4π3). (3)

More sophisticated tasks can be constructed by combining simpler ones via union, intersection,
complementation, reversal, concatenation, homeomorphism, and many other operations under which

* Corresponding author. E-mail: plaku@cua.edu

https://doi.org/10.1017/S0263574715000417 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000417


Robot motion planning 27

regular languages are closed. The tasks can be specified as regular expressions, regular grammars, or
deterministic finite automata (DFA), as all these models can be used to represent regular languages.

Regular languages also include a special class of Linear Temporal Logic (LTL), which combines
propositions with logical (not, or, and) and temporal (always, next, eventually, until) operators.
Specifically, LTL formulas that do not use the “always” operator when written in positive normal
form are referred to as syntactically co-safe.51 Using tools from model checking, any syntactically
co-safe LTL formula can be converted into a regular language represented by a DFA.35, 36

Planning motion trajectories that satisfy task specifications given by regular languages pose unique
computational challenges stemming from (i) robot dynamics and collision avoidance, (ii) complexity
of the task, and (iii) intertwined dependencies between the feasible motions and the task constraints.
Robot dynamics express physical constraints on the feasible motions, such as bounding the velocity
and directions of motions, enforcing a minimum turning radius or preventing the wheels from
sliding sideways.41, 46 These constraints make it difficult to find control inputs that would drive
the robot to the goal. Further challenges arise due to the nonholonomicity of mobile robots which
have generally fewer local degrees-of-freedom than globally, requiring careful maneuvering to reach
desired positions and orientations. The state space where motion planning takes place is also high
dimensional as each state includes information about the robot’s position, orientation, steering angle,
velocity, and other components related to motion. Moreover, the planned motions must not only be
dynamically feasible but also collision-free, often requiring the robot to wiggle its way through narrow
passages.

When combining motion planning with regular languages additional challenges arise due to the
intertwined dependencies between feasible motions and task constraints. Consider a regular language
L and a word σ = 〈πi1πi2 . . . πin〉 ∈ L. Due to constraints imposed by obstacles and robot dynamics
it may be difficult or impossible to reach the regions of interest in the order specified by σ . As the
number of words in L could increase combinatorially fast with respect to the number of propositions,
as in Eq. (2), it becomes computationally challenging to determine which σ ∈ L is feasible. These
intertwined dependencies give rise to a chicken-and-egg problem as the feasibility of σ is determined
by generating a motion trajectory that follows σ but planning such trajectory requires σ to be feasible.
As motion planning with dynamics offers only probabilistic completeness,11, 37 i.e., probability of
finding a solution when it exists approaches one as time tends to infinity, it cannot determine the
infeasibility of a word. This is akin to Turing machines which will halt if the word is in the language
but could run forever otherwise.

To effectively plan collision-free and dynamically feasible motion trajectories that satisfy task
specifications given as regular languages, this paper proposes Argos (Automaton- and region-guided
motion search). In essence,Argos couples the ability of sampling-based motion planning to handle the
complexity arising from motion dynamics and collision avoidance with the ability of discrete search
to handle discrete abstractions. In particular, Argos expands a tree of collision-free and dynamically
feasible motions by adding new trajectories as tree branches, which are obtained by sampling input
controls and propagating forward the motion dynamics of the robot. A discrete abstraction is imposed
by implicitly combining the finite automaton representing the regular language with a workspace
decomposition. A key aspect of Argos is the use of the discrete abstraction to partition the motion
tree into equivalence classes based on the progress made toward accepting automaton states. Heuristic
costs based on short abstract paths over the automaton and the workspace decomposition are used
to evaluate the feasibility of reaching an accepting automaton state by expanding the motion tree
from each equivalence class. Heuristic costs are combined with selection penalties in order to avoid
overexploration or becoming stuck while attempting to expand the motion tree from an infeasible
equivalence class. The initial workspace decomposition and the partition of the motion tree into
equivalence classes are continually refined in order to enable Argos to discover new ways to expand
the search. The performance of Argos is tested in simulation using ground and aerial vehicle models
with nonlinear dynamics where the robot operates in complex environments and is required to
perform various tasks specified as regular languages. Comparisons to related work show significant
computational speedups.

Paper organization: Related work and the contribution offered by Argos over related work and
its preliminary version40 are discussed in Section 2. Robot models, task specifications as regular
languages, and the problem statement are defined in Section 3. Argos is described in Section 4.
Experiments and results are discussed in Section 5. The paper concludes in Section 6 with a discussion.
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2. Related Work
Motion planning with regular languages is part of an increasing body of work that seeks to combine
task and motion planning. Such approaches can be broadly divided into two categories: those that
seek to synthesize controllers from task specifications (Section 2.1) and those that use sampling-based
motion planning to find a trajectory that satisfies the task specification (Section 2.2). Argos belongs to
the second category. The contribution of Argos over related work, including its preliminary version,40

is discussed in Section 2.3.

2.1. Controller synthesis
In controller synthesis, the objective is to design a controller that generates robot motions in
accordance with the task specification. Frazzoli, Dahleh, and Feron introduce the maneuver automaton
which uses regular languages to define rules for concatenating motion primitives.24 Dantam and
Stilman16 develop a context-free motion grammar in order to represent and verify the discrete
dynamics of hybrid systems.

An extensive body of work on controller synthesis has used LTL to specify the robot tasks. Fainekos,
Kress-Gazit, Pappas et al.,21 synthesize global controllers for a robot operating in a 2D environment
by using model checking to compute a sequence of regions that satisfies the LTL formula and then
relying on a local controller to drive the robot from one region to the next as specified in the sequence.
Assuming perfect binary sensors for event detection, further work33 enables the robot to respond to
events sensed along the planned path. Controller synthesis has also been used to drive vehicle models
in accordance with traffic rules expressed as LTL formulas.32, 34 Vasumathi and Kress-Gazit47 develop
a method based on counterstrategy generation and Boolean satisfiability testing to explain why certain
unsynthesizable LTL specification cannot be fulfilled. Filippidis, Dimarogonas, and Kyriakopoulos
propose a decentralized approach to control multiple robots from local LTL specifications.22 Belta,
Bicchi, Egerstedt et al.,2 use model checking and motion primitives to synthesize controllers that
satisfy LTL specifications. Hierarchical abstractions are introduced in later work8, 31 in order to
control a team of robots. Local events are accommodated by a receding horizon technique.19 Ulusoy,
Wongpiromsran, and Belta53 develop an incremental control-synthesis approach for probabilistic
environments with the objective of maximizing the probability of satisfying specifications given by
syntactically co-safe LTL formulas.

Controller-synthesis approaches, under some assumptions, are generally correct-by-construction
in the sense that the synthesized controller is guaranteed to satisfy the task specification given by the
LTL formula. In particular, the environment must be admissible so that bisimulation holds, which
requires the availability of a local controller that can guarantee collision-free and dynamically feasible
trajectories between any two states from neighboring regions. Designing such controllers, especially
for high-dimensional systems with nonlinear dynamics, is a challenging problem and subject of
extensive research.1, 10, 17, 23, 27, 30

2.2. Sampling-based motion planning
Sampling-based motion planning leverages the idea of selectively sampling and searching the state
space in order to generate a collision-free and dynamically feasible trajectory to a goal region.
Sampling-based motion planners can take nonlinear dynamics into account by using a motion tree
to conduct the search.11, 37 Starting with the initial state as the root, the motion tree is incrementally
expanded by adding new trajectories as branches. Each trajectory is obtained by selecting a vertex
from the motion tree, sampling control inputs, and simulating the motion resulting from applying the
control inputs for several time steps. Numerous algorithms have been proposed, e.g., RRT,38, 39 EST,26

which use nearest neighbors, probability distributions, decompositions, and many other functions to
guide the motion-tree expansion.14, 15, 18, 25, 42, 45, 48, 49

Another class of sampling-based approaches follows a model predictive control paradigm.7 As
in sampling-based motion planning with dynamics, approaches based on model predictive control
use sampling of input controls and a model of the robot dynamics to generate dynamically feasible
motions. Typically, more than one neighbor is generated each time a vertex is selected for expansion.
The vertex selection and expansion strategies often seek to promote expansions toward the goal or
optimize some cost function.12, 20 These approaches have focused on computing a feasible trajectory
to a goal region. They have not been extended to accomodate task specifications given as regular
languages.
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Sampling-based motion planning has also focused on reachability where the objective is to plan a
feasible trajectory to a goal region. To account for LTL specifications, LTLSyclop coupled sampling-
based motion planning with discrete search.43–45 LTLSyclop was shown to effectively guide the
motion-tree expansion and handle task specifications given by syntactically co-safe LTL, which can
be modeled by DFAs. LTLSyclop was enhanced further by starting the discrete search from recently
explored abstract states instead of the initial abstract state.4–6

Another class of sampling-based motion planners follows a “bottom-up” approach which uses
the automaton as an external monitor to keep track of the automaton states associated with the tree
trajectories. In this setting, Karaman and Frazzoli29 use a variant of RRT to plan trajectories that
satisfy tasks specifications given by deterministic μ-calculus, which includes LTL. This work also
shows that optimality can be obtained by rewiring the tree branches in a similar fashion as in RRT∗.28

Rewiring, however, similar to controller-synthesis approaches, requires the availability of a controller
that can guarantee exact and optimal steering between any two states. Designing such controllers
especially for high-dimensional systems with nonlinear dynamics remains challenging.9, 30 Vasile and
Belta,54 under similar assumptions, create a sparse graph with cycles, as a variant of RRT, in order to
find infinite paths that satisfy a given LTL formula. They also extend this work to combine long-term
LTL goals with short-term reactive requirements.55

2.3. Contribution over related work
The contribution of Argos has several key aspects: (i) partition of the sampling-based motion tree
into equivalence classes; (ii) heuristic costs based on short abstract paths to estimate the feasibility of
reaching an accepting automaton state from each equivalence class; and (iii) partition refinement in
order to promote rapid expansions while discovering new ways to reach accepting automaton states.
These make it possible to efficiently plan collision-free and dynamically feasible trajectories that
satisfy task specifications given as regular languages.

In contrast, bottom-up approaches, which are based on RRT variants and use the automaton as an
external monitor, often lack guidance toward accepting automaton states. As a result, they end up
wasting significant computational time exploring parts of the space that do not advance the search.

LTLSyclop approaches rely on the discrete search to guide the motion-tree expansion. Even
though LTLSyclop approaches have been shown to solve challenging problems, they still suffer
from scalability issues. In fact, LTLSyclop, at each iteration, attempts to follow an entire abstract
path to an accepting automaton state. As such, LTLSyclop often wastes considerable computational
time before realizing that, due to constraints imposed by dynamics and obstacles, the current abstract
path needs to be abandoned and a new one needs to be computed. As the size of the automaton
increases, it becomes increasingly difficult for LTLSyclop to find feasible abstract paths that can
effectively guide the motion-tree expansion.

A preliminary version of Argos appeared as a conference proceeding.40 Argos offers several
algorithmic improvements over its preliminary version and extended experimental evaluation with
ground and aerial vehicle models. In particular, Argos introduces partition refinement which not
only reduces its dependence on the initial workspace decomposition but also considerably improves
its performance by more effectively identifying equivalence classes which can advance the search
toward accepting automaton states. The preliminary version precomputed heuristic costs for every
possible abstract state. As such, it could not be scaled to large automata. In contrast, Argos computes
the heuristic cost of an abstract state only when it is reached by the motion tree. Moreover, Argos
improves the discrete search by using internal heuristics based on distances to accepting automaton
states and leveraging shortest paths in the decomposition to the regions of interest. The experiments in
Argos include subdivision decompositions and aerial vehicle models in addition to the triangulation
decompositions and ground vehicle models used in the preliminary version.

3. Mathematical Framework
This section defines the robot models and motion trajectories from a motion-planning perspective, the
task specifications as regular languages over workspace propositions, the automata representations,
the semantics of task specifications over motion trajectories, and the problem statement.
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3.1. Robot models and motion trajectories
From a motion-planning perspective, a robot model is defined by its state and motions resulting
from applying controls. A robot state s ∈ S, where S denotes the state space, defines the position,
orientation, steering angle, linear and angular velocities, and other components that change as a result
of robot motion. A state s ∈ S is considered valid, as computed by a function VALID : S → {�, ⊥},
when position, steering angle, velocity, and other components of s are within desired bounds, and the
robot is not in collision with obstacles when placed according to the position and orientation specified
in s.

The robot is controlled by applying external inputs. As an example, a robotic vehicle is often
controlled by setting the acceleration and steering wheel. A control function u : [0, T ] → U indicates
the control input that is applied to the robot at each time step t ∈ [0, T ], where U is the control space.
As a result of applying the control inputs, the robot state changes according to its underlying motion
dynamics, giving rise to a motion trajectory ζ : [0, T ] → S.

Motion dynamics are often specified as a set of differential equations fMotionEqs : S × U → Ṡ.
Since S often includes velocities, fMotionEqs is generally nonlinear. Moreover, this work allows for
nonholonomic constraints, which are essential to model motion dynamics associated with robotic
vehicles and other systems, since the controllable degrees of freedom are less than the total degrees
of freedom. In addition to differential equations, physics-based engines such as Bullet13 and ODE52

are used to provide an increased level of realism by also modeling friction, gravity, nonflat terrains,
and other interactions of the robot with the world, which cannot be easily described analytically.
Examples of a physics-based ground vehicle, a snake-like robot, and an aerial vehicle model are
provided in Section 5.1.

From a motion-planning perspective, the motions resulting from applying input controls are
encapsulated by a function

snew ← MOTION(s, u, dt), (4)

where the new state snew is obtained by applying the control u to the state s for one time step dt .
When the motion dynamics are described as a set of differential equations fMotionEqs, the simulator
relies on numerical integration to compute snew. To ensure accuracy, as advocated in the literature,
Runge–Kutta methods with an adaptive step are used for the integration. For increased realism, the
proposed planner, Argos, can also work in conjunction with physics-based engines which model
general rigid body dynamics by computing the forces acting on the bodies and the motions resulting
from applying these forces.

3.2. Task specifications as regular languages over workspace propositions
The world in which the robot operates, referred to as the workspace and denoted by W , contains
several obstacles O = {O1, . . . ,Om} and several regions of interest P = {P1, . . . ,Pn}, which do not
intersect with each other or any of the obstacles. Each Pi ∈ P is labeled with a proposition πi . The
set of propositions is then defined as � = {π1, . . . , πn}. A function PROP : W → � ∪ {π⊥} maps
each point p ∈ W to the corresponding proposition in � if p is inside some Pi ∈ P or to the special
symbol π⊥ if p is not inside any of the regions of interest, i.e.,

PROP(p) =
{

πi, if p ∈ Pi for some Pi ∈ P,

π⊥, if p �∈ ∪n
i=1Pi .

(5)

The task that the robot is required to accomplish is specified as a regular language over �. As
an example, the task of visiting P1 or P2 before P3 can be expressed as the regular expression
(π1 ∨ π2)π3. Equation (1) provides an example of a sequencing task which requires the robot to visit
P1,P2, . . . ,Pn in succession. Equation (2) provides an example of a coverage task where the robot
can visit P1,P2, . . . ,Pn in any order.
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Fig. 1. Examples of DFAs for instances of the tasks described in Section 3.2. To simplify the figures, if δA(z, πi)
is not shown, it means that the DFA enters the reject state zrej and stays in zrej for all the inputs.

As another example, in the partial-order task, the robot is required to first visit P1, . . . ,P n
2 � in

any order and then visit P n
2 �+1, . . . ,Pn in any order, i.e.,

φn
po =

⎛
⎜⎜⎜⎝

∨
〈i1,...,i n

2 �〉∈
perm(1, n

2 �)

πi1 . . . πi n
2 �

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∨
〈i1+ n

2 �,...,in〉∈
perm(1+ n

2 �,n)

πi1+ n
2 � . . . πn

⎞
⎟⎟⎟⎠ . (6)

Experiments were also conducted with a zig-zag task which partitions the regions of interest into two
sets: A = {P1, . . . ,P n

2 �} and B = P \ A. The robot is then required to visit regions by alternating
between A and B, i.e., A, B, A, B, . . ., until it visits all the regions in P , ensuring that it never visits
the same region twice. The zig-zag task can be expressed as

φn
zig-zag =

∨
〈i1,i3,...,i2 n

2 �−1〉∈
perm(1, n

2 �)

⎛
⎜⎜⎜⎝

∨
〈i2,i4,...,i2� n

2 �〉∈
perm(1+ n

2 �,n)

πi1πi2 . . . πin

⎞
⎟⎟⎟⎠ . (7)

3.3. DFA representation and semantics over motion trajectories
The proposed planner, Argos, takes as input a DFA corresponding to the regular language describing
the desired task. Examples of DFAs for the instances of the tasks described in Section 3.2 are shown
in Fig. 1. A DFA over propositions � = {π1, . . . , πn} is defined formally as follows.

Definition 1. A DFA is a tuple A = (Z, �, δ, zinit, Accept), where Z is a finite set of states,
� is the input alphabet, δ : Z × � → Z is the transition function, zinit ∈ Z is the initial state, and
Accept ⊆ Z is the set of accepting states. Let � denote the empty string. Let �∗ = ∪∞

k=0�
k , where

�k denotes the strings of length k formed by concatenating the symbols in � (with �0 = {�}). The
extended transition function δ̂ : Z × �∗ → Z is then defined in the usual way, i.e.,

∀z ∈ Z, σ ∈ �∗, πi ∈ � : δ̂(z, �) = z and δ̂(z, σπi) = δ(δ̂(z, σ ), πi). (8)

A accepts σ ∈ �∗ if and only if δ̂(zinit, σ ) ∈ Accept.

The robot is considered to have reached a region of interest Pi if the position component of its state
is inside Pi . More formally, let PROJ : S → W provide a mapping from states to workspace points.
Given that the robot state s often includes s = 〈sposition, srotation, svelocity, . . .〉, the projection function
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Fig. 2. The sequence of regions reached by ζ is P2,P3,P1. Hence, WORD(ζ ) = 〈π2π3π1〉.
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Fig. 3. Schematic representation of the interactions among the main components of Argos.

can be defined as PROJ(s) = sposition. The proposition satisfied by the robot when at state s is then
given as PROP(PROJ(s)). For convenience, the notation PROP(s) is used as shorthand for PROP(PROJ(s)).

A trajectory ζ : [0, T ] → S is considered to have reached Pi at time t ∈ [0, T ] if the robot’s
position is inside Pi , i.e., PROJ(ζ (t)) ∈ Pi . Let Pi1 denote the first region reached by ζ . Let Pi2 denote
the next region reached by ζ , where Pi1 �= Pi2 . Continuing in this manner, ζ will reach a sequence
of regions Pi1,Pi2, . . . ,Pik , where Pij �= Pij+1 for all 1 ≤ j < k. The sequence of propositions
〈πi1πi2 . . . πi�〉 ∈ �∗ satisfied by ζ , where πij is the proposition associated with Pij , is referred to as
the word generated by ζ and is denoted by WORD(ζ ). Figure 2 shows an example.

As a result of this mapping, ζ satisfies the given task if and only if an accepting automaton state
is reached when running A with WORD(ζ ) as the input, i.e.,

δ̂A(zinit, WORD(ζ )) ∈ AcceptA. (9)

3.4. Problem statement
The motion-planning problem with task-specifications via regular languages over workspace
propositions can be stated as follows.

Definition 2. Given

� the workspace W with obstacles O = {O1, . . . ,Om} and regions of interest P = {P1, . . . ,Pn},
� a task specified as a DFA A = 〈Z, �, zinit, δ, Accept〉 over propositions � = {π1, . . . , πn}, where

πi is associated with the region of interest Pi ,
� a robot model 〈S,U, MOTION〉 to simulate its motion dynamics,
� a function VALID : S → {�, ⊥} where VALID(s) checks whether or not the robot is in collision and

state values are within desired bounds, and
� an initial state sinit ∈ S
compute a control function û : [0, T ] → U such that the trajectory ζ : [0, T ] → S obtained by
applying û starting at sinit avoids collisions, i.e., ∀t ∈ [0, T ] : VALID(ζ (t)) = �, and satisfies the task,
i.e., δ̂A(zinit, WORD(ζ )) ∈ AcceptA.

4. Method
Before presenting the algorithmic details, this section provides an overview of Argos focusing on its
main components and their interplay. A schematic illustration is provided in Fig. 3.
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Argos conducts the search by expanding a tree of collision-free and dynamically feasible motion
trajectories. Argos uses a discrete abstraction based on an implicit combination of the automaton
representing the regular language with a workspace decomposition to partition the motion tree into
equivalence classes. In particular, each vertex v in the motion tree is associated with an automaton
state depending on the sequence of regions of interest reached by the trajectory connecting the root
of the tree to v. Each vertex v is also associated with the region in the workspace that contains it.
Vertices that are associated with the same automaton state and the same decomposition region are
said to belong to the same equivalence class.

Argos proceeds iteratively by (i) selecting an equivalence class, (ii) expanding the motion tree
from vertices associated with the selected equivalence class, and (iii) refining the partition. The
selection of an equivalence class relies on heuristic costs which estimate the feasibility of reaching an
accepting automaton state. Such heuristic costs are computed based on short abstract paths over the
discrete abstraction composed of the automaton and the workspace decomposition. Once selected,
the equivalence class is expanded by adding a collision-free and dynamically feasible trajectory from
one of its vertices. The objective is to expand the motion tree along regions associated with the
abstract path to an accepting automaton state. As a result of the expansion, new vertices are added to
the motion tree. These vertices are associated with existing equivalence classes or new equivalence
classes are created when they reach new automaton states and decomposition regions. After the
expansion, a penalty is applied to the selected equivalence class in order to avoid overexploration or
becoming stuck when expansion attempts fail to make progress. Moreover, the partition is further
refined in order to enable Argos to discover new ways to reach an accepting automaton state. Argos
continues in this manner by selecting an equivalence class, expanding it, and refining the partition
until it finds a solution or exceeds the maximum allowed running time.

The rest of the section is organized as follows. The workspace decomposition, partition of the
motion-tree into equivalence classes, and the computation of the heuristic costs are described in
Sections 4.1–4.3. The overall search is described in Section 4.4.

4.1. Workspace decomposition
The workspace W is decomposed into a number of nonoverlapping (except at the boundary) regions.
The physical adjacency among the regions in the decomposition is expressed as a graph D = (R, E),
where R denotes the regions and E = {(ri, rj ) : ri, rj ∈ R and ri, rj are adjacent} denotes the edges.
The cost of an edge (ri, rj ) ∈ E is defined as the Euclidean distance between the centroids of ri and
rj , i.e., cost(ri, rj ) = ||centroid(ri), centroid(rj )||.

Argos can work with any workspace decomposition. This work uses both triangulations and
subdivisions. Triangulations are applicable only to 2D workspaces, while subdivisions can be used
for both 2D and 3D workspaces. In a triangulation, the unoccupied workspace area, (W \ O) \ ∪n

i=1Pi ,
is decomposed into a number of triangles tri1, . . . , tri�. The set of regions R includes these triangles
as well as the polygons P1, . . . , Pn associated with the propositions of interest π1, . . . , πn, i.e.,
R = {tri1, . . . , tri�,P1, . . . ,Pn}. Regions r1, r2 ∈ R are considered adjacent if and only if they share
a side. The Triangle package50 is used for the computation of the triangulation. Examples are shown
in Figs. 4 and 5.

In a subdivision decomposition, the bounding box of W is recursively split into half along the
largest dimension until it is free of obstacles, it is entirely occupied by obstacles, or its volume
becomes smaller than a predefined threshold. Each leaf cell in the subdivision tree is labeled as
“free,” “mixed,” or “blocked” depending on whether it is free of obstacles, partially occupied by
obstacles or entirely occupied by obstacles. The set of regions R includes all the leaf cells marked
as “free.” It also includes P1, . . . ,Pn since they do not necessarily correspond to subdivision cells
(each Pi can be any polygon in 2D and any polyhedron in 3D). A subdivision cell is considered to
be adjacent to Pi if they intersect or one is inside the other. Two subdivision cells are considered to
be adjacent if they share a boundary (part of an edge in 2D or part of a face in 3D). Figure 5 shows a
subdivision of W .

Argos also relies on a function LOCATEREGION : W → R ∪ {r⊥}, which maps each workspace
point p to the corresponding region in R or to the special symbol r⊥ if p is not inside any of
the regions. In the case of subdivision decomposition, a point p could belong both to some Pi

and some subdivision cell. For this reason, LOCATEREGION determines first if p is inside any of
the regions P1, . . . ,Pn. If not, it searches among the subdivision cells. LOCATEREGION can run in
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Fig. 4. Partition of the motion tree into equivalence classes as induced by the automaton and the workspace
decomposition. Task specified by the automaton requires visiting P1 or P2 and then P3, i.e., (π1 ∨ π2)π3.
Tree vertices are colored according to the corresponding automaton state. Tree vertices belonging to the same
equivalence class, i.e., the same automaton state and the same decomposition region, are labeled with the same
number.

Fig. 5. Scenes and robots. Each figure shows an example of a problem instance with 19 regions of interest. A
subdivision workspace decomposition is shown for the first scene and a triangulation decomposition is shown
for the second scene (scene 3 uses a subdivision decomposition but it is not shown here as it clutters the figure).
Figures viewed better in color and on screen. Video attachment shows solutions obtained by Argos.
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polylogarithmic time with respect to the number of triangles3 or in logarithmic time in the case of
subdivision decompositions. To facilitate presentation, the shorthand notation LOCATEREGION(s) is
used to denote running the function with the position component of the state s as the input point, i.e.,

LOCATEREGION(s)
def= LOCATEREGION(PROJ(s)).

4.2. Partition of the motion tree into equivalence classes
The search for a collision-free and dynamically feasible trajectory that satisfies the task specification
is conducted by expanding a motion tree T in the state space S. The motion tree T is maintained
as a directed acyclic graph consisting of vertices and edges. Each vertex v ∈ T is associated with a
collision-free state in S, denoted by v.s. Each edge (v, v′) ∈ T is associated with a collision-free and
dynamically feasible trajectory from v.s to v′.s. Starting from the initial state sinit as the root, T is
expanded by adding new vertices and edges. The details of the motion-tree expansion are provided
later in Section 4.4.2. For now, consider a vertex v ∈ T . Let TRAJT (v) denote the trajectory from sinit

to v, which is obtained by concatenating the trajectories associated with the edges in T that connect
the root to v. A solution is obtained when a vertex v is added to T such that WORD(TRAJT (v)) is
accepted by the automaton A, i.e.,

δ̂A(zinit, WORD(TRAJT (v))) ∈ AcceptA. (10)

We make an important observation that the automaton and the workspace decomposition induce a
partition of the vertices in T into equivalence classes. Informally, vertices vi and vj belong to the
same equivalence class if and only if TRAJT (vi) and TRAJT (vj ) end up in the same decomposition
region and their corresponding words end up on the same automaton state. That is, from a discrete
perspective, these trajectories provide the same information. More formally, v.s is defined as the last
state of TRAJT (v), i.e.,

v.s = LASTSTATE(TRAJT (v)). (11)

Let v.r denote the decomposition region in R associated with v, i.e.,

v.r = LOCATEREGION(v.s). (12)

Let v.z denote the automaton state obtained by running WORD(TRAJT (v)) on the automaton A, i.e.,

v.z = δ̂A(zinit, WORD(TRAJT (v))). (13)

Consider an abstract state 〈z, r〉 with z ∈ ZA and r ∈ R. Then, the equivalence class 	〈z,r〉 groups
together all the tree vertices mapped to 〈z, r〉, i.e.,

	〈z,r〉 = {v : v ∈ T ∧ v.z = z ∧ v.r = r}. (14)

Let 	 denote the partition of the motion tree T into these equivalence classes, i.e.,

	 = {	〈z,r〉 : |	〈z,r〉| > 0}. (15)

An illustration is provided in Fig. 4. The partition, as described next, is used to effectively guide the
expansion of the motion tree T .

4.3. Heuristic costs over the discrete abstraction
Consider an equivalence class 	〈z,r〉. Let σ = 〈πi1 . . . πik 〉 ∈ �∗ denote a word that leads to an
accepting automaton state when starting from z, i.e., δ̂A(z, σ ) ∈ AcceptA. Let 
 denote a sequence
of regions in the decomposition D = (R, E) that starts at r and reaches Pi1, . . . ,Pik in succession. If
the motion tree T can be expanded from 	〈z,r〉 so that it follows 
, then the resulting trajectory will
satisfy the task specification. Of course, constraints imposed by dynamics and obstacles may make
it difficult or even impossible to move along certain regions of 
. Nevertheless, 
 can serve as a
heuristic to guide the motion-tree expansion.

https://doi.org/10.1017/S0263574715000417 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000417


36 Robot motion planning

For this purpose, Argos searches over both A and D = (R, E) to compute a discrete path from
the abstract state 〈z, r〉 to an accepting automaton state. The length of this path serves as the heuristic
cost for 	〈z,r〉. During the discrete search, the outgoing edges of an abstract state 〈z′, r ′〉 with z′ ∈ ZA
and r ′ ∈ R (recall that R includes P1, . . . ,Pn) are computed on-the-fly as

EDGES(〈z′, r ′〉) = {〈z′′,Pi〉 : πi ∈ � ∧ z′′ = δA(z′, πi)}. (16)

In other words, there is an edge from 〈z′, r ′〉 to 〈z′′,Pi〉 if the automaton A transitions from z′ to z′′
with input πi . In this way, reaching Pi from r ′ would enable a transition from z′ to z′′. The cost of an
abstract edge (〈z′, r ′〉, 〈z′′,Pi〉) is defined as the length of the shortest path in D = (R, E) from r ′ to
Pi , i.e.,

cost(〈z′, r ′〉, 〈z′′,Pi〉) = MINCOSTPATHD(r ′,Pi). (17)

Let 〈z, r〉, 〈zi1,Pi1〉, . . . , 〈zik ,Pik 〉 denote the abstract path computed by the discrete search. Then,
the heuristic cost h(	〈z,r〉) of 	〈z,r〉 is defined as

h(	〈z,r〉) = MINCOSTPATHD(r,Pi1 ) +
k−1∑
j=1

MINCOSTPATHD(Pij ,Pij+1 ). (18)

Argos uses best-first search to conduct the discrete search. To make the search efficient, Argos
precomputes for each Pi the shortest path to each region r ′ ∈ R. More specifically, the shortest paths
in D = (R, E) from Pi to each r ′ ∈ R are computed with a single call to Dijkstra’s single-source
shortest-path algorithm using Pi as the source. As a result of this precomputation, each call to
MINCOSTPATHD(r ′,Pi) is carried out in constant time by returning the precomputed result.

As the size of the automaton A can grow exponentially with respect to the number of propositions,
the best-first search uses an evaluation function fBestFirst in order to effectively guide the search toward
an accepting automaton state. For an abstract state 〈z, r〉, it is defined as

fBestFirst(〈z, r〉) = dA(z) · d(P1, . . . ,Pn). (19)

The term dA(z) denotes the minimum number of transitions in A from z to an accepting state. These
values are precomputed for each z ∈ ZA by a single call to Dijkstra’s shortest-path algorithm using a
special state connected to all the accepting automaton states as the source and reversing the edges of
A. The term d(P1, . . . ,Pn) denotes the minimum pairwise shortest-path distance among P1, . . . ,Pn

in D = (R, E), i.e.,

d(P1, . . . ,Pn) = min
1≤i,j≤n

i �=j

MINCOSTPATHD(Pi ,Pj ). (20)

The best-first search is implemented using a minimum heap data structure. As is common, each
node keeps track of the best cost found so far to reach it and the parent it came from. The search
terminates when a node labeled with 〈z′, r ′〉 where z′ ∈ AcceptA is added to the heap. In the heap
comparison, when two abstract states 〈z′, r ′〉 and 〈z′′, r ′′〉 have the same value according to fBestFirst,
the tie is broken by comparing the best costs found so far to reach 〈z′, r ′〉 and 〈z′′, r ′′〉. As shown by
the experimental results, the discrete search efficiently computes short abstract paths that effectively
guide the motion-tree expansion.

4.4. Overall automaton- and region-guided expansion of the motion tree
Pseudocode for Argos is given in Algorithm 1. Argos starts by computing a workspace
decomposition (Algorithm 1:1) as described in Section 4.1. Argos then invokes Dijkstra’s algorithm
for each Pi ∈ P as the source to compute the shortest paths from Pi to each region r ∈ R

(Algorithm 1:2). The results are stored with each r ∈ R so that MINCOSTPATHD(r,Pi) can return the
precomputed result in constant time when invoked by Argos during the computation of the heuristic
costs associated with the equivalence classes in 	. To effectively guide the discrete search over A and
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D = (R, E), as discussed in Section 4.3, Argos also precomputes for each automaton state z ∈ ZA
the minimum number of transitions to reach an accepting state (Algorithm 1:3).

Argos(W,O,P,A,S,U ,motion,valid, sinit)
1: D = (R,E) ← WorkspaceDecomposition(W,O,P)
2: for Pi ∈ P do SingleSourceAllShortestPaths(D,Pi)
3: dA(z1), . . . , dA(zk) MinNrTransitionsToAccept(A)
4: T ← ∅; Γ ← ∅; ΓEmptySplits ← ∅; AddVertex(T ,Γ, noParent, sinit, noControl)
5: while time() < tmax

6: Γ z,r ← SelectEquivalenceClass(Γ)
7: v ← ExpandMotionTree(T ,Γ,Γ z,r )
8: if v.z ∈ AcceptA then return traj(T , v)
9: if vol(r) > volmin and r then RefinePartition(Γ, r,ΓEmptySplits)

10: return null

Algorithm 1: Pseudocode for Argos.

The motion tree T is initialized by adding the vertex vinit as the root and setting vinit.s

to sinit (Algorithm 1:4). This creates the first equivalence class, 	 = {	〈zinit,rinit〉}, where rinit =
LOCATEREGION(sinit) and vinit ∈ 	〈zinit,rinit〉. After the initialization, Argos iteratively expands T by
adding new vertices and new edges until a solution is found or an upper bound on running time is
exceeded (Algorithm 1:5–10). The overall process is driven by the following functions:

� SELECTEQUIVALENCECLASS(	) to select an equivalence class 	〈z,r〉 ∈ 	 from which to expand T
using selection penalties and heuristic costs defined over A and D = (R, E) as the basis for the
selection;

� EXPANDMOTIONTREE(T , 	, 	〈z,r〉) to expand T by adding a new collision-free and dynamically
feasible trajectory from a vertex associated with 	〈z,r〉; and

� REFINEPARTITION(	, r, 	EmptySplits) to refine the decomposition D and the equivalence classes in
	 by partitioning r and redistributing the vertices associated with each 	〈z′,r〉 ∈ 	 that has r as its
region.

The rest of the section describes these functions in more detail.

4.4.1. Selecting an equivalence class for the motion-tree expansion. The selection of an equivalence
class 	〈z,r〉 from 	 seeks to promote expansions of the motion tree toward an accepting automaton
state. A weight w(	〈z,r〉) is associated with each 	〈z,r〉 defined as

w(	〈z,r〉) = 2−dA(z) · (ĥ(	〈z,r〉))α · βNrSel(	〈z,r〉). (21)

The equivalence class with the maximum weight is then selected for expansion, i.e.,

SELECTEQUIVALENCECLASS(	)
def= argmax	〈z,r〉∈	w(	〈z,r〉). (22)

Recall that dA(z) denotes the minimum number of transitions in A to reach an accepting state from z.
As such, w(	〈z,r〉) increases exponentially as dA(z) decreases. This has the desired effect of promoting
expansions from equivalence classes that get closer and closer to accepting automaton states.

The exponent α ≥ 1 serves as a parameter to tune the strength of the heuristic. To counter the
greedy aspect of the heuristic, the term βNrSel(	〈z,r〉) with 0 < β < 1 is used to penalize each selection
of 	〈z,r〉, where NrSel(	〈z,r〉) denotes the number of times 	〈z,r〉 has been selected for expansion. The
penalization is necessary in order to avoid overexploration of 	〈z,r〉 or become stuck when expansions
from 	〈z,r〉 are infeasible due to constraints imposed on the feasible motions by the underlying robot
dynamics and the requirement to avoid collisions.

The term ĥ(	〈z,r〉) denotes the value of the heuristic cost h(	〈z,r〉) normalized in the range [ε, 1] as

ĥ(	〈z,r〉) = max{ε, 1 − h(	〈z,r〉)/hup}. (23)

The normalization seeks to provide a uniform measure across different workspaces and different task
specifications (since h(	〈z,r〉) depends on the physical dimensions of the workspace and the distances
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among the regions of interest that must be visited). In the normalization, small values of h(	〈z,r〉) are
mapped to values close to 1. The term hup serves as an upper bound. The equivalence class 	〈z,r〉
is considered to be too far away from an accepting automaton state when h(	〈z,r〉) ≥ hup(1 − ε). In
such cases, ĥ(	〈z,r〉) is set to ε. A small value ε > 0 rather than zero is used in order to ensure that
each 	〈z,r〉 has a nonzero probability of being selected for future expansions. One possibility is to
define hup = maxz′∈ZA,r ′∈R h(	〈z′,r ′〉). Such definition would require precomputing all the heuristic
values and is computationally feasible only when considering small automata. As an alternative, in
this work, hup is defined as

hup = h(	〈zinit,rinit〉) + max
r ′∈R

MINCOSTPATHD(r ′, rinit), (24)

where rinit = LOCATEREGION(sinit). In this way, hup adds to h(	〈zinit,rinit〉) the maximum among the
lengths of the shortest paths in the decomposition graph D = (R, E) to reach rinit from any region in
R. This maximum is computed with a single call to Dijkstra’s shortest-path algorithm using rinit as
the source. The maximum is initially set to −∞ and is updated each time a node is extracted from
the heap data structure associated with Dijkstra’s algorithm.

InitEquivalenceClass(Γ,Γ z,r )
1: if hup is not defined then
2: hup ← DiscreteSearch(A, D, zinit, rinit ) + maxr ∈R MinCostPathD(r , rinit)
3: h ← DiscreteSearch(A, D, z, r ); ĥ ← max{ 1 − h/hup}
4: d ← MinNrEdgesToAccept(A, z)
5: if find(ΓemptySplits, z, r ) = null then NrSel(Γ z,r ) ← 0
6: else NrSel(Γ z,r ) ← value(ΓEmptySplits, z, r ); remove(ΓEmptySplits, z, r )
7: w(Γ z,r ) ← 2−d · ĥβ · γNrSel(Γ z,r ); insert(Γ,Γ z,r )

SelectEquivalenceClass(Γ)
return argmaxΓ z,r ∈Γ w(Γ z,r )

Algorithm 2: Pseudocode for computing w(	〈z,r〉) when 	〈z,r〉 is first created and for selecting an
equivalence class from which to expand the motion tree.

As an implementation note, 	 is maintained as a maximum heap data structure. The selection
penalty β is applied to w(	〈z,r〉) each time 	〈z,r〉 is selected for expansion, i.e., w(	〈z,r〉) ← β ·
w(	〈z,r〉), and NrSel(	〈z,r〉) is increased by one. Pseudocode for computing w(	〈z,r〉) when 	〈z,r〉
is first created is given in Algorithm 2. The value hup used for the normalization of the heuristic
cost is computed only once and used thereafter (Algorithm 2:1–2). The discrete search described in
Section 4.3 is invoked to compute h(	〈z,r〉) (Algorithm 2:3). The value dA(z) is retrieved in constant
time from the vector storing these values (Algorithm 2:4), which were computed earlier by Argos
(Algorithm 1:3). The number of selections for 	〈z,r〉 is set to zero when it is first created unless 	〈z,r〉
resulted from the refinement process (Algorithm 2:5–6). In that case, as described in more detail in
Section 4.4.3, 	〈z,r〉 inherits the number of selections from its parent. After computing w(	〈z,r〉), 	〈z,r〉
is inserted into 	 so that it can be used for future expansions of the motion tree T (Algorithm 2:7).

4.4.2. Expanding the motion tree. After selecting an equivalence class 	〈z,r〉, the motion tree T
is expanded from 	〈z,r〉 by selecting a vertex from 	〈z,r〉 and then extending a collision-free and
dynamically feasible trajectory from v.s. Pseudocode is provided in Algorithm 3.

The selection of a vertex in 	〈z,r〉 from which to expand the motion tree T seeks to promote
expansions along the abstract path associated with 	〈z,r〉. Let Pi1 denote the first region along the
abstract path 〈z, r〉, 〈zi1,Pi1〉, . . . , 〈zik ,Pik 〉 from 〈z, r〉 to an accepting automaton state as determined
by the discrete search during the computation of the heuristic cost h(	〈z,r〉) (see Section 4.3). The
target point p is generated by sampling a random point inside one of the regions along the shortest
path in the decomposition D = (R, E) from r to Pi1 . Recall that such shortest paths have already been
precomputed by running Dijkstra’s single source shortest-path algorithm using each Pi as the source
(Algorithm 1:2). As a result, target sampling is done in constant time by first selecting a region along
the shortest path from r to Pi1 uniformly at random and then generating a random point inside that
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ExpandMotionTree(T ,Γ, Γ z,r )
1: p ← SelectTarget(Γ z,r ); v ← SelectVertex(Γ z,r , p)
2: u ← SelectControl(v.s, p)
3: for several steps do
4: AdjustControl(v.s, p, u); snew ← motion(v.s, u, dt)
5: if valid(snew) = ⊥ then return v
6: vnew ← AddVertex(T , Γ, v, snew, u)
7: if vnew.z ∈ AcceptA then return vnew

8: v ← vnew

9: return v

Algorithm 3: Pseudocode for expanding the motion tree from the selected equivalence class 	〈z,r〉.

region. Expansions toward such target point will promote progress along the abstract path associated
with 	〈z,r〉.

After the target point p has been generated, SELECTVERTEX(	〈z,r〉, p) selects for expansion the
vertex v ∈ 	〈z,r〉 that is closest to p according to the distance ||PROJ(v.s), p||. A trajectory is generated
from v.s by applying control inputs for several steps. A common strategy in sampling-based motion
planning is to select the control input uniformly at random in order to promote expansions along
different directions.11 When available, PID controllers that seek to steer v.s toward p can also be used.
For example, a PID controller for a robotic vehicle would adjust the steering so that the vehicle would
turn and move toward p. Note that Argos does not place any requirements on these controllers, so
exact steering is not needed. The function MOTION(v.s, u, dt) is used to simulate the motion dynamics
and determine the new state snew obtained by applying the input control u to v.s for one time step dt

(Algorithm 3:4). If snew is in collision or some state value exceeds the defined bounds, as determined
by VALID(snew), the tree expansion terminates early (Algorithm 3:5). Otherwise, a new vertex vnew is
added to T with snew as its state and v as its parent (Algorithm 3:6). If TRAJT (vnew) reaches an accepting
automaton state, i.e., δ̂A(zinit, WORD(TRAJT (vnew))) ∈ AcceptA, the expansion terminates successfully
with TRAJT (vnew) as the solution (Algorithm 3:7). Otherwise, the tree expansion continues from the
new vertex (Algorithm 3:8).

AddVertex(T ,Γ, v, snew, u)
1: vnew ← NewVertex(T ); vnew.parent ← v; vnew.s ← snew; vnew.u ← u
2: vnew.r ← LocateRegion(snew); vnew.prop ← PropLabel(vnew.r)
3: if vnew.prop π1, . . . , πn} or vnew.prop = v.prop then vnew.z ← v.z
4: else vnew.z ← δA(v.z, vnew.prop)
5: z, r vnew.z, vnew.r
6: if (Γ z,r ← find(Γ, z, r )) = null then
7: Γ z,r ← new(); nrSel ← 0; InitEquivalenceClass(Γ,Γ z,r ,nrSel)
8: insert(Γ z,r , vnew)
9: return vnew

Algorithm 4: Pseudocode for adding a new vertex to the motion tree.

Pseudocode for adding a new vertex to T is given in Algorithm 4. As mentioned, the new vertex
vnew has snew as its state, v as its parent, and u as the input control that was applied to generate
snew (Algorithm 4:1). The new vertex keeps track of the corresponding region in the workspace
decomposition and the proposition label associated with that region (Algorithm 4:2). If no region of
interest P1, . . . ,Pn has been reached or vnew is still in the same region as its parent, then vnew.z is
set to v.z (Algorithm 4:3). Otherwise, vnew.z is obtained by the automaton transition from v.z with
prop(vnew) as the input (Algorithm 4:4). A search is performed to determine whether 	〈vnew.z,vnew.r〉
already exists in 	. If not, a new equivalence class is created and added to 	 (Algorithm 4:7). At this
time, INITEQUIVALENCECLASS, as described in Section 4.4.1 and Algorithm 2, invokes the discrete
search over A and D = (R, E) to compute the heuristic cost and uses it to determine the weight
associated with the newly created equivalence class. In this way, Argos can use the new equivalence
classes to expand T in future iterations.

4.4.3. Refining the partition. After expanding T from 	〈z,r〉, if r is not one of the regions of interest
P1, . . . ,Pn and its volume is larger then a minimum threshold, Argos refines the workspace
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decomposition D = (R, E) by partitioning r into several nonoverlapping regions rpart1, . . . , rpartk .
The reason for the partition is to better identify which parts of r lead to successful expansions.
The decomposition refinement, as shown by the experimental results, also reduces the dependency of
Argos on the initial decomposition. As a result of partitioning r , tree vertices in any equivalence class
	〈z′,r〉 ∈ 	 with r as its region are distributed among 	〈z′,rpart1 〉, . . . , 	〈z′,rpartk 〉. After redistributing the
vertices, those 	〈z′,rparti 〉 that are nonempty, i.e., |	〈z′,rparti 〉| > 0 are added to 	 so that they can be used
for future expansions. Pseudocode for REFINEPARTITION(	, r, 	EmptySplits) is given in Algorithm 5.
More details follow.

RefinePartition(Γ, r,ΓEmptySplits)
1: rpart1 , . . . , rpartk

PartitionRegion(r); UpdateDecomposition(D, r, rpart1 , . . . , rpartk
)

2: UpdateShortestPaths(D, rpart1 , . . . , rpartk
,P)

3: keys z , r : Γ z ,r ∈ Γ}; S ← ∅
4: for z , r keys do
5: for i = 1 . . . k do
6: Γ z ,rparti

← new(); NrSel(Γ z ,rparti
) ← NrSel(Γ z ,r ); insert(S, Γ z ,rparti

)
7: for v ∈ Γ z,r do
8: rparti

← LocateRegion( rpart1 , . . . , rpartk
, sstate(v)); insert(Γ z ,rparti

, v)
9: remove(Γ, keys)

10: for Γ z ,rparti
∈ S do

11: if |Γ z ,rparti
| > 0 then InitEquivalenceClass(Γ,Γ z ,rparti

)
12: else insert(ΓEmptySplits, z , rparti

,NrSel(Γ z ,rparti
))

Algorithm 5: Pseudocode for refining the partition.

In the case of a triangulation decomposition, PARTITIONREGION(r) (Algorithm 5:1) partitions r

into three triangles using the centroid as the splitting point. In the case of a subdivision decomposition,
r is partitioned into two halves along the largest dimension. The decomposition graph D = (R, E) is
also updated to reflect the removal of r and the addition of rpart1, . . . , rpartk . The shortest paths from
each rparti to every Pj need to also be updated since Argos uses these shortest paths to compute
the heuristic costs associated with equivalence classes in 	. As rerunning Dijkstra’s shortest-path
algorithm is computationally expensive (since region partitioning will be performed hundreds or
thousands of times during a typical run of Argos), the shortest paths are locally adjusted from their
neighbors (Algorithm 5:2). In particular, the shortest path from rparti to Pj is computed by looking
up the shortest paths from the neighbors of rparti to Pj . The cost of the edge from rparti to its neighbor
r ′ is added to the path from r ′ to Pj . The shortest among the resulting paths is then used as the path
from rparti to Pj , i.e., minr ′∈neigh(rparti )(cost(r ′, rparti ) + MINCOSTPATHD(r ′,Pj )).

In the next step, all the equivalence classes 	〈z′,r〉 ∈ 	 with r as their region are retrieved as
they are affected by the partition of r (Algorithm 5:3). For each 	〈z′,r〉, new equivalence classes
	〈z′,rpart1 〉, . . . , 	〈z′,rpartk 〉 are created and are temporarily inserted into a set S. Each 	〈z′,rparti 〉 inherits
the number of selections from 	〈z′,r〉 (Algorithm 5:5–6). The vertices in 	〈z′,r〉 are distributed among
	〈z′,rpart1 〉, . . . , 	〈z′,rpartk 〉 depending on the new regions associated with them (Algorithm 5:7–8).

After processing all the 	〈z′,r〉 ∈ 	 with r as their region, they are all removed from
	 (Algorithm 5:9). Iterating over S, all the new nonempty equivalence classes are added
to 	 (Algorithm 5:10–11). At this time, as described in Section 4.4.1 and Algorithm 2,
INITEQUIVALENCECLASS(	, 	〈z′,rparti 〉) uses the discrete search overA and D to determine the heuristic
cost of 	〈z′,rparti 〉.

All the empty 	〈z′,rparti 〉 ∈ S are inserted into 	EmptySplits. This is done to keep track of the number
of times 	〈z′,rparti 〉 has been selected. Later tree expansions could cause the insertion of 	〈z′,rparti 〉 into
	. In such cases, it is not desirable to use zero as the number of selections since 	〈z′,rparti 〉 came from
a partition of 	〈z′,r〉 which had been selected in the past. Starting with a zero selection would reward
	〈z′,rparti 〉. Using the number of selections of 	〈z′,r〉 for 	〈z′,rparti 〉 makes it possible to carry over the
selection penalties applied to its parent.
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5. Experiments and Results
The performance of Argos is tested in simulation using ground and aerial vehicle models with
nonlinear dynamics where the robot operates in complex environments and is required to perform
various tasks specified as regular languages over regions of interest.Argos is compared toLTLSyclop
and RRT-based planners. The impact of the initial decomposition and of the partition refinement is
also evaluated.

5.1. Scenes and robot models
Figure 5 shows an illustration of the scenes and robot models with nonlinear dynamics used in the
experiments. In the first scenario, a ground vehicle is required to move up and down an elevated
racetrack while avoiding collisions with numerous obstacles scattered at random throughout the
environment. The vehicle is controlled by setting the engine force and changing the steering angle.
The vehicle state s includes position (x, y, z), orientation frame (rot), steering angle (ψ), linear
velocities (vx, vy, vz), and angular velocities (ωx, ωy, ωz). The projection function is defined as
PROJ(s) = (x, y) (since it is a ground vehicle, z is not used). The physics-based engine Bullet13 is
used as the underlying simulator. The steering linkages in the vehicle model follow the principles
of Ackermann steering geometry. The vehicle model in Bullet seeks to simulate its interactions with
the environment, taking into account the wheel friction, suspension stiffness, suspension damping,
friction slip, and compression. Due to the complexity of the interactions between the vehicle and
the nonflat terrain, Bullet, as other physics-based engines, relies on numerical simulations since
closed formulas are generally not available. The parameter settings used for the experiments are
the same as the default values in the version 2.8.3 of the Bullet vehicle simulator. The environment
dimensions are 120 m × 120 m. The maximum height of the racetrack is 4 m. The vehicle dimensions
are 2.2 m × 1 m × 0.45 m. The maximum speed is 14 m/s, the maximum steering angle is π/3.6 rad,
and the maximum rate of change for the steering angle is π/3 rad/s. The time step is dt = 0.05 s.

In the second scenario, a snake-like robot, modeled as a car pulling trailers, is required to move in
a maze environment. The state s = (x, y, θ0, v, ψ, θ1, . . . , θ�) includes the position (x, y), orientation
(θ0), velocity (|v|), and steering angle (ψ) of the head link as well as the orientation θi of the i-th
trailer, where � is in the number of trailers. The projection is defined as PROJ(s) = (x, y). The robot is
controlled by setting the acceleration (ua) and the rotational velocity of the steering angle (uω). The
differential equations of motion, adapted from37 [pp. 731], are defined as

ẋ = v cos(θ0) cos(ψ) ẏ = v sin(θ0) cos(ψ) θ̇0 = v sin(ψ)/L v̇ = ua ψ̇ = uω (25)

θ̇i = v
d

(sin(θi−1) − sin(θ0))
∏i−1

j=1 cos(θj−1 − θj ), (26)

where L = 0.15 m is the body length and d is the hitch length (set to a small value, d = 0.01 m, so
that the robot resembles a snake). MOTION(s, u, dt) is implemented using fourth-order Runge–Kutta
numerical integration. In the experiments, the number of links is set to � = 10. The head and each link
has length 0.15 m and width 0.08 m. The environment dimensions are 12 m × 12 m. The following
bounds are also used: speed |v| ≤ 5 m/s, acceleration |ua| ≤ 2 m/s2, steering angle |ψ | ≤ π/3.6 rad,
rotational velocity of steering angle |uω| ≤ π/3 rad/ s. The time step is dt = 0.05 s.

In the third scenario, an aerial vehicle is required to fly through small openings in various rooms.
The aerial vehicle model is based by augmenting a ground model to fly parallel to the xy-plane.
The state (x, y, z, θ, v, ψ, vz) includes the position (x, y, z), orientation (θ), velocity on the xy-
plane (v), steering angle (ψ), and the velocity along the z-axis (vz). The projection is defined as
PROJ(s) = (x, y, z). In addition to ua and uω, the aerial vehicle is controlled by setting the acceleration
uaz

along the z-axis. The differential equations of motion are defined as

ẋ = v cos(θ) cos(ψ) ẏ = v sin(θ) cos(ψ) ż = vz (27)

θ̇ = v sin(ψ)/L v̇ = ua ψ̇ = uω v̇z = uaz
(28)

MOTION(s, u, dt) is again implemented using fourth-order Runge–Kutta integration. The following
setup was used in the experiments: environment dimensions 120 m × 120 m × 14 m, aerial-vehicle
dimensions 8.6 m × 4.3 × 4.3 m, body length L = 8.6 m, speed |v|, |vz| ≤ 5 m/s, acceleration
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Table I. The number of states in the minimal DFA required for the various tasks considered in the experiments.

Task Number of states in minimal DFA at n = 19

φn
seq n 19

φn
cov 2n 524,288

φn
po 2 n

2 � + 2� n
2 � − 1 1,535

φn
zig-zag

∑n
�=0

( n
2 �

 �
2 �

)(� n
2 �

� �
2 �

)
184,756

|ua|, |uaz
| ≤ 2 m/s2, steering angle |ψ | ≤ π/3.6 rad, rotational velocity of steering angle: |uω| ≤

π/3 rad/s. The time step is dt = 0.05 s.

5.2. Tasks and problem instances
The experiments use sequencing φn

seq, coverage φn
cov, partial-order φn

po, and zig-zag φn
zig-zag tasks as

defined in Eqs. (1)–(7) (Section 1 and 3.2). For each task, the number of propositions is varied as
n = 5, 7, 9, . . . , 19. Table I shows the number of states in the minimal DFA required to represent
each task.

For each scene and each n, 60 instances are created by randomly placing the robot and the regions
of interest P1, . . . ,Pn. These instances are denoted by I〈scene,n〉. In each instance, the robot placement
is generated by repeatedly sampling a position and orientation at random until the robot is not in
collision with any of the obstacles. The placement of Pk is generated by repeatedly sampling a
position and orientation at random until Pk is at least a certain distance d away from the robot and the
previously placed regions P1, . . . ,Pk−1. The distance d is used to ensure that the regions of interest
are not too close to one another or to the robot. In the case of the physics-based vehicle (scene 1),
0.4n� of the regions of interest are scattered on the elevated ractrack, while the remaining regions
are placed outside the racetrack. In this way, the vehicle is forced to go up and down the racetrack in
accordance with the task specification. Figure 5 shows some examples of the instances used in the
experiments.

Let X denote a planner, S a scene, φ a task, and n the number of regions of interest. The planner
X is run 60 times, one for each instance in I〈S,n〉, with the objective of finding a solution for φ. A
maximum time of 40 s is set for each run. Results report the average runtime and standard deviation
for 〈X, φ, S, n〉 calculated after dropping the five best and worst runtimes to reduce the influence of
outliers. Runtime includes everything from reading the input file, which describes the workspace,
obstacles, regions of interest, robot models, and the DFA representing the task to be solved, to
reporting that a solution is found. Reading the input file is in the order of milliseconds. Experiments
were run on an Intel Core i7 (CPU: 1.90 GHz, RAM: 4 GB) using Ubuntu 14.04 and GNU g++-4.8.2.

5.3. Results
Argos is compared to LTLSyclop.4–6, 43, 44 The implementation of LTLSyclop has been optimized
to use features recommended in the various publications such as switching between shortest and
random paths, abandoning the current guide when little progress is made, and starting the discrete
search from recently explored abstract states instead of the initial abstract state.

Experiments were also run with an RRT-based approach, which used the automaton as an external
monitor to keep track of the automaton states associated with each trajectory. TheRRT-based approach,
however, failed to solve the problem instances. For this reason, it is not included in the graphs. Without
guidance toward accepting automaton states, the RRT exploration became stuck.

5.3.1. Scalability with the number of propositions. Figure 6 shows the results for each scene and
task when varying the number of propositions n ∈ {5, 7, . . . , 19}. Results show that Argos is an
order of magnitude faster than LTLSyclop. As n increases, LTLSyclop starts to time out (set to
40s) and so is unable to solve the larger problem instances. These results are in agreement with
related work,4–6, 43, 44 which has shown experimental results for LTLSyclop with tasks involving
1–10 propositions. LTLSyclop often wastes valuable computational time before realizing that the
current abstract path, which it seeks to follow, should be abandoned and a new one should be computed
instead. Also, LTLSyclop considers for expansions tree vertices that are along the abstract path that
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Fig. 6. Results on running time as a function of the number of propositions n ∈ {5, 7, . . . , 19} for various tasks
and scenes. Bars indicate one standard deviation. The RRT-based approach, which used the automaton as an
external monitor, is not included in the graphs as it was not able to solve the problem instances. A maximum
time of 40 s is set for each run. Runtime includes everything from reading the input file to reporting that a
solution is found.

it is following. This makes it difficult to explore along new directions which is necessary in order to
find more feasible abstract paths toward accepting automaton states.

In contrast, Argos efficiently solves in 2–4 s even the largest problem instances with n = 19. The
efficiency of Argos comes from the partition of the motion tree into equivalence classes, heuristic
costs associated with each equivalence class, selection penalties, and the partition refinement. In
fact, the partition into equivalence classes makes it possible to group together vertices that provide
the same abstract information. Heuristic costs based on short abstract paths estimate the feasibility
of reaching an accepting automaton state from each equivalence class. By applying a penalty after
each selection of an equivalence class, Argos reduces the likelihood of overexploration or becoming
stuck while attempting expansions from what could turn out to be an infeasible equivalence class.
By refining the partition after each expansion, Argos promotes rapid expansions while discovering
new ways to reach accepting automaton states. All these factors make it possible to efficiently plan

https://doi.org/10.1017/S0263574715000417 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000417


44 Robot motion planning

(a) φn
seq (b) φn

cov (c) φn
po (d) φn

zig-zag

3
6
9

12
15
18
21
24

m
ea

n 
so

l. 
le

ng
th [scene 1]

LTLSyclop

Argos

3
6
9

12
15
18
21
24

m
ea

n 
so

l. 
le

ng
th [scene 2]

LTLSyclop

Argos

5 7 9 11 13 15 17 19
3
6
9

12
15
18
21
24

number of propositions

m
ea

n 
so

l. 
le

ng
th [scene 3]

LTLSyclop

Argos

5 7 9 11 13 15 17 19
number of propositions

5 7 9 11 13 15 17 19
number of propositions

5 7 9 11 13 15 17 19
number of propositions

Fig. 7. Results on solution length as a function of the number of propositions n ∈ {5, 7, . . . , 19} for various
tasks and scenes. Bars indicate one standard deviation. Solution length is measured as the distance traveled by
the robot. The graphs show the solution length divided by the length of the diagonal of the workspace bounding
box.

collision-free and dynamically feasible trajectories that satisfy task specifications given as regular
languages.

Figure 7 shows the results on solution length, measured as the distance traveled by the robot.
As shown, Argos generates considerably shorter solutions. This is mainly due to the heuristic costs
associated with each equivalence class which promote expansions from those equivalence classes that
are deemed to be close to accepting automaton states. Also note that considerably shorter solutions
are generated for the coverage task φn

cov than for the sequencing task φn
seq. This is expected since in

the coverage task, Argos is given the flexibility to visit the regions in any order.

5.3.2. Impact of the workspace decomposition. Subdivision decompositions were used for all scenes.
Triangulations were used only for scenes 1 and 2 since 3 involves an aerial vehicle. Experiments were
conducted with TriDel, Tri35, Tri50, Tri75, where TriDel denotes a confirming Delaunay triangulation
and Tri� corresponds to a triangulation where the average area of a triangle is approximately
area(W)/�2. Figure 5 shows some examples.

Results in Figs. 6 and 7 were obtained by using the triangulation Tri50 for scenes 1 and 2, and
the subdivision decomposition for scene 3. Figure 8 shows results when varying the workspace
decomposition. The results indicate that the performance of LTLSyclop becomes worse when
considering fine-grained decompositions, such as Tri75, as it becomes more difficult to search the
product space of the automaton and the workspace decomposition and find feasible abstract paths.
Similar observations were made in related work regarding the performance of LTLSyclop.4–6, 43

The results show that Argos works well with different workspace decompositions. The partition
refinement that takes place during the motion-tree expansion reduces its dependence on the initial
workspace decomposition. Nevertheless, the initial decomposition should not be too fine grained as
it makes each region behave as a vertex (since a small number of vertices will be associated with
each region). When the initial decomposition is too coarse, Argos might not be as efficient in the
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Table II. Impact of the partition refinement. Entries marked with X indicate failure to solve the problem
instances within the 40 s bound per run.

Number of propositions

5 7 9 11 13 15 17 19
Task Method Refinement mean runtime [s]

φseq Argos yes 0.7 1.0 1.4 1.6 1.9 2.1 2.7 3.4
(scene 1) Argos no 0.7 1.2 1.2 1.5 1.8 2.8 3.4 6.5

LTLSyclop yes 25.3 39.6 X X X X X X
LTLSyclop no 18.7 23.1 28.1 37.2 X X X X

φcov Argos yes 0.5 0.7 0.9 1.0 1.2 1.5 1.5 1.8
(scene 2) Argos no 1.2 1.9 2.2 3.5 4.2 3.9 4.5 6.4

LTLSyclop yes 21.2 36.6 X X X X X X
LTLSyclop no 9.8 15.6 23.4 30.2 33.0 X X X

φpo Argos yes 0.7 0.9 1.0 1.2 1.5 1.9 1.9 2.2
(scene 2) Argos no 2.9 3.7 3.7 4.4 4.9 6.3 5.7 6.8

LTLSyclop yes 26.4 38.5 X X X X X X
LTLSyclop no 12.3 18.9 26.1 32.4 X X X X

φzig-zag Argos yes 1.2 1.6 1.6 2.0 2.4 2.4 3.3 3.4
(scene 3) Argos no 2.2 2.8 2.9 3.9 3.9 4.3 5.3 5.9

LTLSyclop yes 29.0 38.6 X X X X X X
LTLSyclop no 14.9 21.7 30.8 38.3 X X X X
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Fig. 8. Results when using various workspace decompositions: (a) Tri75. (b) Tri50. (c) Tri35. (d) TriDel. (e)
Subdivision.

beginning but will quickly improve as the initial decomposition is refined during the motion-tree
expansion. When considering a new problem instance, we recommend using a subdivision as the
initial workspace decomposition since it is simpler to use than a triangulation and applicable to both
2D and 3D environments.

5.3.3. Impact of the partition refinement. Experiments were also conducted to evaluate the impact of
the partition refinement on the overall performance of Argos. We also modified the implementation
of LTLSyclop so that it could also refine the workspace decomposition as it expanded the motion
tree. Table II provides a summary of the results.

The results indicate the importance of the partition refinement on the performance of Argos,
especially as the problems become more challenging. The partition refinement makes it possible for
Argos to effectively discover new ways to expand the search toward accepting automaton states.

The refinement process has the opposite effect on the performance of LTLSyclop. As the
refinement considerably increases the number of regions, it becomes increasingly difficult for
LTLSyclop to find feasible abstract paths that it can follow.

5.3.4. Runtime distribution. Figure 9 shows the percentage of runtime taken by the various
components of Argos. As the number of propositions increases, the percentage of the runtime
taken by the workspace decomposition becomes smaller. In the case of scene 3, which corresponds
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Fig. 9. Runtime percentage for various components of Argos: (a) Workspace decomposition (Algorithm 1:1–
2) (b) MOTION + VALID (Algorithm 3:4–5) (c) Heuristic costs for new equivalence classes (Algorithm 4:7) (d)
Partition refinement (Algorithm 5) (e) Other. Results correspond to Argos being run with subdivision workspace
decompositions.

to the aerial vehicle model, the subdivision decomposition requires more time since the workspace is
three dimensional. The simulation of motion dynamics and collision checking take most of the time as
the motion tree requires tens of thousands of vertices to solve the problem instances. The computation
of the heuristic costs for equivalence classes created as a result of motion-tree expansions increases
quite slowly with the number of propositions, demonstrating the efficiency of the discrete search.
The percentage of time taken by the partition refinement also increases slowly with the number of
propositions. Most of the time in the partition refinement, around 93%, is taken by the computation
of the heuristic costs for the new equivalence classes resulting from the partition while the rest is
taken by updating the decomposition graph and redistributing the tree vertices among the partitioned
equivalence classes. Also note the small percentage taken by other components (see category (e) in
Fig. 9) including SELECTABSTRACTCLASS, LOCATEREGION, and miscellaneous bookkeeping updates.

5.3.5. Impact of the heuristic strength and selection penalties. All the results presented so far on the
performance of Argos have used α = 8 as the heuristic strength and β = 0.95 as the selection penalty
when computing the weights associated with the equivalence classes (Section 4.4.1). Table III provides
a summary of the results when varying the heuristic strength and selection penalty. The results show
that the selection penalty is necessary to ensure that Argos does not become stuck while attempting
to expand the motion tree from what could be an infeasible equivalence class. In fact, the runtime of
Argos increases significantly when β = 0.999 which applies almost no selection penalty. When β is
too small, Argos benefits less from the heuristic and as a result the running time increases. Similar
observations hold for the heuristic strength α: a large value makes Argos too greedy and a small
value diminishes the benefits of the heuristic.

The results show, however, that Argos works well for a wide range of parameter values. When
considering a new problem instance, our recommendation is to start with α = 8 and β = 0.95 as it
worked well for a variety of scenes, tasks, and robots. The recommended range is α ∈ [4, 10] and
β ∈ [0.85, 0.97].
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Table III. Results on the mean runtime [s] when varying the heuristic strength
(α) and the selection penalty (β) used in the computation of the weights
associated with the equivalence classes (Section 4.4.1). Results are shown
for the case of scene 2 with φ19

zig-zag as the task and Tri50 as the workspace
decomposition used by Argos.

β ↓ α → 1 2 4 8 10 12

0.999 18.3 s 22.7 s 26.7 s 30.4 s 37.9 s 35.8 s
0.97 4.5 s 3.8 s 3.2 s 4.0 s 3.7 s 7.1 s
0.95 4.4 s 3.4 s 3.4 s 2.6 s 3.2 s 6.6 s
0.90 5.6 s 4.2 s 3.1 s 2.8 s 2.6 s 6.0 s
0.85 5.7 s 4.8 s 4.1 s 3.1 s 2.9 s 5.0 s
0.70 6.1 s 6.4 s 5.7 s 4.2 s 3.4 s 7.8 s
0.50 8.4 s 8.3 s 8.4 s 5.7 s 4.6 s 14.3 s

Table IV. Mean runtime when using (a) a differential-drive and (b) an
Ackerman steered vehicle model. Results were obtained using scene 2.
Entries marked with X indicate failure to solve the problem instances within

the 40 s bound per run.

φ19
seq φ19

cov φ19
po φ19

zig-zag

(a) Argos 1.21 s 1.24 s 1.32 s 1.28 s
(a) LTLSyclop 24.61 s 31.49 s X X

(b) Argos 1.86 s 1.89 s 1.95 s 1.83 s
(b) LTLSyclop 33.82 s X X X

5.3.6. Using other vehicle models. Experiments so far have used a physics-based ground vehicle
model, a snake-like robot model, and an aerial vehicle model. The results have shown that Argos can
efficiently plan for these different vehicle models. To further make this point, additional experiments
are conducted using a differential-drive model and an Ackerman steered vehicle operating in scene 2
(Fig. 5).

The equations of motion for the differential drive are defined as

ẋ = (r/2)(ω� + ωr ) cos(θ) ẏ = (r/2)(ω� + ωr ) sin(θ) θ̇ = (r/L)(ωr − ω�)
ω̇� = u� ω̇r = ur,

(29)

where r = 0.1 m is the wheel radius, L = 0.24 is the body length (body width is 0.22 m), (x, y) is
the position, θ is the orientation, ω�, ωr (|ω�|, |ωr | ≤ π/2 rad/s) are the rotational velocities of the left
and right wheels; and u�, ur (|u�|, |ur | ≤ 2 rad/s2) are the inputs for controlling the rate of change of
the rotational velocities for the left and right wheels, respectively.

The equations of motions for the Ackerman steered vehicle are defined as

ẋ = v cos(θ) ẏ = v sin(θ) θ̇ = v tan(ψ)/L v̇ = ua ψ̇ = uω, (30)

where L = 0.24 m is the body length (body width is 0.22 m), (x, y) is the position, θ is the orientation,
v(|v| ≤ 5 m/s2) is the velocity, ψ(|ψ | ≤ π/3.6 rad) is the steering angle, ua(|ua| ≤ 2 m/s2) is the
input control for the acceleration, and uω(|uω| ≤ π/3 rad/s) is the input control for the rotational
velocity of the steering angle.

Table IV provides a summary of the results. As with the other experiments, Argos is shown
to be significantly faster than LTLSyclop. The RRT-based approach failed to solve these problem
instances. These results indicate that Argos works well with a wide variety of vehicle models.

6. Discussion
This paper presented an effective approach, Argos, for planning collision-free and dynamically
feasible motion trajectories that enable a mobile robot to satisfy task specifications given as regular

https://doi.org/10.1017/S0263574715000417 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000417


48 Robot motion planning

languages over regions of interest. The efficiency of Argos was derived from (i) partition of the
sampling-based motion tree into equivalence classes; (ii) heuristic costs based on short abstract paths
to estimate the feasibility of reaching an accepting automaton state from each equivalence class; and
(iii) partition refinement in order to promote rapid expansion while discovering new ways to reach
accepting automaton states. Comparisons to related work showed significant computational speedups
of one order of magnitude.

A direction for future work is to use more advanced AI techniques to improve the discrete search,
even exploiting previous invocations to more efficiently compute abstract paths. Another direction is
to incorporate machine learning in order to automatically adjust the parameters based on the progress
made during the tree expansion. We will also seek to apply Argos to inspection tasks involving
ground, aerial, and underwater vehicles as well as extend Argos to multiple robots working together
in order to more efficiently complete the assigned task.
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