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Laboratory experiments on counter-propagating
collisions of solitary waves. Part 1.

Wave interactions
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Collisions of counter-propagating solitary waves are investigated experimentally.
Precision measurements of water-surface profiles are made with the use of the laser
induced fluorescence (LIF) technique. During the collision, the maximum wave
amplitude exceeds that calculated by the superposition of the incident solitary waves,
and agrees well with both the asymptotic prediction of Su & Mirie (J. Fluid Mech.,
vol. 98, 1980, pp. 509–525) and the numerical simulation of Craig et al. (Phys.
Fluids, vol. 18, 2006, 057106). The collision causes attenuation in wave amplitude:
the larger the wave, the greater the relative reduction in amplitude. The collision also
leaves imprints on the interacting waves with phase shifts and small dispersive trailing
waves. Maxworthy’s (J. Fluid Mech., vol. 76, 1976, pp. 177–185) experimental results
show that the phase shift is independent of incident wave amplitude. On the contrary,
our laboratory results exhibit the dependence of wave amplitude that is in support
of Su & Mirie’s theory. Though the dispersive trailing waves are very small and
transient, the measured amplitude and wavelength are in good agreement with Su
& Mirie’s theory. Furthermore, we investigate the symmetric head-on collision of
the highest waves possible in our laboratory. Our laboratory results show that the
runup and rundown of the collision are not simple reversible processes. The rundown
motion causes penetration of the water surface below the still-water level. This
penetration causes the post-collision waveform to be asymmetric, with each departing
wave tilting slightly backward with respect to the direction of its propagation; the
penetration is also the origin of the secondary dispersive trailing wavetrain. The
present work extends the studies of head-on collisions to oblique collisions. The
theory of Su & Mirie, which was developed only for head-on collisions, predicts well
in oblique collision cases, which suggests that the obliqueness of the collision may
not be important for this ‘weak’ interaction process.

Key words: shallow water flows, solitary waves, waves/free-surface flows

1. Introduction

Solitary waves can be described by an exact solution to the Korteweg–de Vries
(KdV) equation which models water waves propagating in a single direction +x in

† Email address for correspondence: harry@engr.orst.edu
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finite-but-shallow water. The KdV equation can be written as:

ηt + c0ηx + 3
2

c0

h0
ηηx + 1

6
c0h2

0ηxxx = 0, (1.1)

where η is the water-surface elevation from the equilibrium state, h0 is the quiescent
water depth, which is constant, and c0 = √gh0 in which g is the gravitational
acceleration, and t is time. The solitary wave is expressed as:

η= a sech2

{√
3a
4h3

0

(
x− c0

(
1+ a

2h0

)
t
)}

, (1.2)

where a is the wave height. These solitary waves possess the characteristics of a
soliton (Zabusky & Kruskal 1965), which is ‘a localized nonlinear wave which
interacts with another (arbitrary) local disturbance and regains asymptotically its
exact initial shape and velocity (allowing for a possible phase shift)’ (Ablowitz &
Segur 1981). Therefore, solitary waves are often called KdV solitons. Zabusky &
Kruskal (1965) predicted that when a larger soliton catches up to and collides with a
smaller one from behind, a ‘strong’ nonlinear overtaking interaction takes place and
the collision process is considered as ‘elastic’. After the collision, each solitary wave
re-emerges retaining its original identity with the only remnant of the interaction
being a shift in phase: the faster wave is shifted forward and the slower wave is
shifted backward. This phenomenon was demonstrated experimentally by Weidman &
Maxworthy (1978), and more quantitatively by Craig et al. (2006) and Li (2012).

On the other hand, the interaction is ‘weak’ when two solitary waves moving in
opposite directions collide head-on with each other. The weak interaction of two
solitary waves is the theme of this paper. Maxworthy (1976) first demonstrated
experimentally the head-on collision process. The present paper revisits Maxworthy’s
laboratory investigation with the use of a more precise apparatus and more accurate
instruments to make unambiguous and quantitative comparisons with the theory and
the numerical results for this nonlinear collision process.

In the companion paper Chen, Zhang & Yeh (2014, Part 2), the induced flow
field during the collisions of counter-propagating solitary waves is investigated
experimentally with the use of the particle image velocimetry (PIV). In particular, the
flows near the bed are visualized and analyzed in terms of velocities, accelerations,
vorticities, and velocity-gradient tensors.

2. Background
Byatt-Smith (1971) first showed that the maximum amplitude of head-on collision

of two equal-amplitude solitary waves exceeds twice the amplitude of the incident
solitary wave. Su & Mirie (1980) carried out a comprehensive perturbation analysis
for the head-on collision of two arbitrary-amplitude solitary waves to third order. They
derived the maximum amplitude of the head-on collision to be

εmax = εR + εL + εR εL

2
+ 3

8
εR εL(εR + εL), (2.1)

where εmax = amax/h0 represents the maximum amplitude during the collision process,
and εL = aL/h0 and εR = aR/h0 are normalized individual wave amplitudes in which
the subscript L denotes the left-running wave and R the right-running wave. A head-on
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collision leaves imprints on the colliding waves with phase shifts, which means the
trajectory of each solitary wave in the x–t plane is not the same before and after the
collision. Contrary to the ‘strong’ interaction of solitary waves, a head-on collision
causes retardation in phase. According to Su & Mirie (1980), the phase shifts of the
right-running wave and the left-running wave are, respectively:

1θR = h0

(εL

3

)1/2
(

1+ εL

8
+ 3εR

4

)
,

1θL =−h0

(εR

3

)1/2
(

1+ εR

8
+ 3εL

4

)
.

 (2.2)

They further showed that after collision, each solitary waveform becomes
asymmetrical and tilts backward with respect to the direction of its propagation.
As a result of collision, secondary dispersive waves are generated, which trail the
parent waves. They found that the secondary trailing wave can be expressed as:

η= γ SS′ − 4
9γ S′, (2.3)

in which the prime represents the total derivative, and, for the right-running wave,

γ = 9ε3/2
R ε

1/2
L , S= sech2 1

2ξ0, and ξ0 = ε1/2k(x− cRt), (2.4a–c)

in which k is the wavenumber and cR is the right-running wave speed. (A similar
equation is applicable for the trailing left-running wave.) Su & Mirie (1980) attempted
to validate their theoretical predictions with the numerical and laboratory experiments
given by Chan & Street (1970) and Maxworthy (1976). (Note that those experimental
results are only for the head-on collision of identical solitary waves.) The prediction
of the maximum amplitude (2.1) is found to be in agreement with the experimental
data, while the prediction of the phase shift (2.2) is significantly different from
the experimental data: in fact, the measurements by Maxworthy (1976) show
amplitude-independent phase shifts. The nature of the secondary wave (2.3) has
not been measured in the laboratory.

Head-on collisions of two identical solitary waves were further investigated by
other researchers. Fenton & Rienecker (1982) used the Fourier-series method to
solve the fully nonlinear Euler equation, and their results for maximum amplitude
at the collisions are in good agreement with the experimental results of Chan &
Street (1970). Renouard, Santos & Temperville (1985) found a loss in amplitude
as the reflected wave propagates away from the vertical wall in their experiments
on solitary wave reflection. (Note that except for the boundary layer effect, wave
reflection at a vertical wall is equivalent to the head-on collision of equal-amplitude
waves.) Cooker, Weidman & Bale (1997) provided numerical results for the collision
of a solitary wave onto a vertical wall, and derived the phase shift indicators, i.e.
the attachment, detachment and residence times of the collision, from the third-order
results of Su & Mirie (1980). Craig et al. (2006) presented a numerical analysis based
on a pseudo-spectral method in space, solving the Euler formulation for water-wave
problems. Furthermore, Craig et al. gave theoretical results for a relationship between
the change in amplitude of solitary waves due to collision and the energy carried
away from the interaction by the trailing wave trains. They also analysed the size
of the trailing waves generated by solitary-wave collisions. Chambarel, Kharif &
Touboul (2009) investigated the head-on collision of two equal and two unequal steep
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solitary waves numerically by the boundary integral equation method. They found a
phenomenon corresponding to the occurrence of a thin residual jet during collision
when the normalized amplitude of the two solitary waves exceeds 0.60.

The present laboratory study was designed to validate the theoretical results,
primarily, of Su & Mirie (1980) and the numerical results of Craig et al. (2006) in
terms of wave amplification and phase shift associated with the counter-propagating
solitary waves. It is noted that Craig et al. also compare their numerical simulations
with laboratory data, but only one case was presented.

3. Experiment set up and data analysis
Laboratory experiments were performed in a wave tank, which was designed

and constructed for long-wave research. The wave tank is 7.3 m long, 3.6 m wide,
0.3 m deep and elevated 1.2 m above the ground. Figure 1 depicts schematics of the
apparatus. The sidewalls as well as the bottom of the tank are made of 12.7 mm
thick glass plates to allow the use of optical techniques. The top surface of the
entire 3.6 m× 7.3 m aluminium frame was planed in one piece to achieve a smooth
flat surface. With the height-adjustable base columns, the glass plates were directly
installed on the frame in a precisely horizontal plane. The wave tank is equipped
with a 16-axis wavemaker system installed along the 3.6 m long headwall. This
wavemaker system is capable of generating arbitrarily shaped, multi-directional waves.
Each wave paddle is pushed through hinge connections by two adjacent linear-motor
motion devices: the linear motor is inherently more accurate for producing linear
positioning than an ordinary servomotor. Vertical paddles are made of polyvinylidene
fluoride plates that are moved horizontally in piston-like motions. The maximum
horizontal stroke for each paddle is 55 cm, which is more than sufficient to generate
very long waves with the water depth of h0 = 6.0 cm used in our experiments.

In the present study, the origin of the coordinates is taken at the initial wave
paddle position as shown in figure 1; the x direction points horizontally along the
sidewall, y direction points perpendicularly away from the sidewall and z direction
points upwards.

Goring & Raichlen (1980) presented an algorithm for the generation of a solitary
wave. The motion of the wave paddle is set to match the depth-averaged fluid velocity;
hence the time history of wave-paddle displacement ξ(t) can be determined by

dξ(t)
dt
= ū(x= ξ(t), t), (3.1)

where ū is the depth-averaged velocity for finite-amplitude shallow-water waves:

ū(x, t)= cη(x, t)
h0 + η(x, t)

, (3.2)

in which c is the wave speed. For the present study, we use the higher-order solution
of solitary waves given by Grimshaw (1971) that is explicitly presented by Tanaka
(1993). In non-dimensionalized form, the higher-order solitary wave can be expressed
as

η= a s2 − 3
4 a2(s2 − s4)+ a3

(
5
8 s2 − 151

80 s4 + 101
80 s6

)
, (3.3)

with
s≡ sech {α(x− F t)} ,
F= 1+ 1

2 a− 3
20 a2 + 3

56 a3,

α =
√

3
4 a
(
1− 5

8 a+ 71
128 a2

)
,

 (3.4)
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Wave paddles
z

Camera view port 0.31 m

x

7.3 m
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Reflected first
wave crest line

Oblique second
wave crest line

Collision plane illuminated
by laser sheet

7.3 m
3.

6 
m

x

(a)

(b)

FIGURE 1. Schematic drawings of the wave basin. Elevation view (a) showing position
of the camera view port. Plane view (b) showing the collision of the parallel wave and
the oblique wave at an angle ψ . The coordinate system defined in the figure is used to
describe the apparatus position.

where the lengths are scaled by the quiescent-water depth h0 and the time is scaled
by h0/c0 with c0 =√gh0: therefore, the wave celerity used in (3.2) is c= c0F.

For all the laboratory results presented in this paper, the still-water depth is set con-
stant at h0=6.0 cm, and hereafter the lengths and time are in the non-dimensionalized
form, unless otherwise stated. The following cases were examined:

(i) head-on collision of two waves with equal amplitude travelling in opposite
directions; we called this case a ‘symmetric head-on’ collision for brevity:
ε= εR= εL, and ψ=0◦ (ψ is the angle between the right-running and left-running
wave crests as shown in figure 1);

(ii) head-on collision with unequal amplitudes which we called an ‘asymmetric head-
on’ collision: εR > εL, and ψ = 0◦;

(iii) collision of identical waves intersecting with an oblique angle which we called a
‘symmetric oblique’ collision: ε= εR = εL, and ψ = 10◦, 15◦, and 20◦;

(iv) collision of two waves with unequal amplitudes with an oblique angle which we
called an ‘asymmetric oblique collision’: εR > εL, and ψ = 10◦, 15◦, and 20◦.
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Wavemaker

Wavemaker

Wavemaker

Wavemaker

Wavemaker

Reflected first wave

First wave

First wave

Colliding wave

Second wave

Second wave

First wave reflecting

FIGURE 2. Sketch of the procedure for generating two counter-propagating solitary waves.

In the experiments, dual solitary waves were generated in sequence with a certain
time in between. As sketched in figure 2, while the first wave is reflected at the
endwall and propagates backward toward the wavemaker, the second wave is then
generated so that these two waves collide at the specified location. The time interval
between these two waves is controlled by the wavemaker control system. For head-
on collision cases, waves propagate perpendicular to the wavemaker (in the direction
parallel to the sidewalls). For waves with oblique collisions, we generated the first
wave perpendicular to the wavemaker, but created the second wave with a specified
oblique angle (see figure 1). By controlling the wavemaker motion, these two waves
collide each other at the predetermined location that is 1.5 m away from the wave
paddles. Given the unavoidable viscous damping effect, a slightly larger amplitude
for the first wave was programmed by trial-and-error so that the two waves were
practically identical at the collision point.

With the use of four non-contacting capacitance-type wave gauges, Hammack
et al. (2004) repeated an identical experimental run 40 times to capture the solitary
wave collision process with a spatial resolution of 1 cm in a propagation span
of 1.6 m. Note that wave-gauge measurement depends on calibrating it under
the quiescent condition (i.e. static calibration). Their measurement procedure –
repeating an experimental run 40 times – requires precise repeatability and stability in
instrumentation. Although the still-water level was carefully monitored and adjusted
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during the repeated runs, the measurement involves uncertainties associated with
the instrumentation. In the present study, the laser-induced-fluorescent (LIF) imagery
method is used to study temporal and spatial variations of water-surface profiles: note
that the LIF method was used to record water-surface variations of bores as early as
1980s (Yeh & Ghazali 1986; Ramsden 1993; Duncan et al. 1994), and to capture the
detailed incipient wave-breaking process (Duncan et al. 1999; Liu & Duncan 2006;
Diorio, Liu & Duncan 2009). In this method, a laser beam is converted to a thin laser
sheet using a cylindrical lens. With the aid of fluorescein dye dissolved in water, the
vertical laser-sheet illumination from above induces the dyed water to fluoresce and
identifies a water-surface profile directly and non-intrusively. The illuminated images
were recorded with a high-speed high-resolution video camera. Captured images
from the perspective view are transformed to orthographic view with the aid of the
calibration image, mapping the obtained data into physical dimension units, so that
the resulting images can be analysed quantitatively. The transparent glass bed of the
tank minimizes the reflection of laser illumination that could have caused noise in
the wave-profile images.

In the data processing, image pixels are traced in the vertical direction from top
to bottom. The air–water surface is determined by where the gradient of the light
intensity reaches a maximum. Note that the measurement plane is sufficiently far
away from the sidewall to prevent sidewall influence on the measurement section.
Unlike capillary waves or breaking waves, long waves have an inherently small
vertical-to-horizontal ratio. Our laboratory experiments require measurements of
small wave amplitudes (1.0–3.2 cm) in a large horizontal span (approximately 1 m).
Consequently, one of the difficulties for the LIF method is resolution. To overcome
this, we used a montage method. Taking advantage of the highly precise repeatability
of our experimental apparatus, the LIF water-surface profiles were measured on five
connected panels, each a 27 cm segment, making profiles approximately 1.3 m long.
Note that with the use of the CCD camera (1280 pixels× 1024 pixels), the resulting
vertical resolution is better than 0.15 mm. A similar montaging technique was used
by Li, Yeh & Kodama (2011) for their experiments on Mach reflection of solitary
waves.

Another difficulty in the laboratory experiments was associated with the cases of
oblique collision. Due to the finite width of the wave tank, the collision site must
be located to avoid the sidewall effects. We found the optimum site to be at (x =
1.5 m, y = 1.3 m), avoiding the energy leakage due to diffraction from the sidewall
(y = 3.6 m) and energy reflection from the opposite sidewall (y = 0). Because of
the sidewall effects – wave reflection and diffraction – the oblique angle is limited
to be less than 20◦, although the wavemaker itself is capable of generating waves
with oblique angle of 45◦. Note that our precisely controlled wave generation system
allowed us to study the collision process in the area relatively near the wavemaker:
x/h0 ≈ 26.

4. Results
Figure 3 shows the spatio-temporal water-surface profile obtained with the LIF

technique. The counter-propagating waves both have amplitude ε = a/h0 = 0.40 prior
to the collision: it is a symmetric head-on collision with ψ = 0◦. A small phase shift
before and after the collision can be seen by tracing each wave-crest trajectory in the
figure. Note that trailing small waves are generated after the collision. Also recall that
we used the montage method to patch five panels together: hence there are slightly
visible vertical strips (for example at the location around x/h0 = 21.5) in figure 3.
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FIGURE 3. Two views of temporal variation of the water-surface profile in the x–z plane
(parallel to the sidewall). The water depth h0= 6.0 cm. The colliding waves are of equal
amplitude εR = εL = 0.40. The data were obtained with the LIF method.

Figure 4 compares snapshots of the collision process, extracted from the water-
surface profiles presented in figure 3, together with the linear superposition of two
counter-propagating KdV soliton profiles for comparison. The time origin is set at the
moment of the maximum amplitude, so negative time means before the collision and
positive time means after the collision. Note that the soliton profiles were fitted to the
experimental wave profiles at t=−0.58 s, well before the collision. When t=−0.21 s,
the two waves start elevating the water surface by interaction. At t = −0.05 s,
the linear superposition of KdV solitons peaks (ε = 0.80), while the experimental
data show that the two waves are still climbing until t = 0 s. The wave profile at
t=−0.05 s is very close to that of the linear superposition of the two solitary waves.
Evidently, the phase lag must result from this extra runup process beyond the linear
superposition. The water surface peaks at εmax = 0.902, which is 12.8 % higher than
linear superposition of the two incident wave amplitudes. The theoretical prediction
(2.1) yields εmax = 0.928 for ε = 0.40, which is slightly higher (2.9 %) than the
measurement but considered in good agreement. After peaking, the water level starts
to fall. When t= 0.14 s, the two waves start to separate from each other. There is an
apparent phase difference between the linear superposition and the experimental result.
At t= 0.48 s, the spatial profile of each wave becomes asymmetrical, tilting slightly
backward with respect to the direction of its propagation. During t= 0.48–0.79 s, two
small humps appear that start to trail each solitary wave. The tilting wave profile, as
well as the trailing small waves, will be discussed in detail later. All the foregoing
collision behaviours are in accord with the theoretical predictions of Su & Mirie
(1980), as well as the numerical results of Craig et al. (2006).

The amplitude variations of the left- and right-running waves are plotted in
figure 5(a). After collision, the amplitude of each wave decreases. Our results
show practically equal amplitude reduction for the left-running wave (−6.62 %)
and right-running wave (−6.67 %), reflecting the symmetric nature of the collision.
To compare the measured amplitude variation with the numerical simulation of the
Euler model given by Craig et al. (2006), the temporal variation of the amplitude
is plotted in figure 5(b). The agreement is excellent, although the slightly lower
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FIGURE 4. Water-surface profile during symmetric head-on collision of two solitary waves
with height εR= εL= 0.40: ———, experimental data; – – – – –, linear superposition of the
counter-propagating KdV solitons.
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FIGURE 5. (a) Amplitude of the right-running (———) and left-running wave (– – – – –)
at the location of symmetric head-on collision (α= 1.1348 is maximum amplification over
linear superposition of the two incident waves); (b) temporal variation of the measured
maximum amplitude (———) in comparison with the numerical simulation (– – – – –)
given by Craig et al. (2006). Here εR = εL = 0.40.

maximum amplitude in the experiment is a result of dissipation and surface tension
effects of the real fluid, which is expected.

The phase shift caused by the collision is obtained as follows. The wave-crest
trajectory is assumed to be asymptotic to the line x = cjt + aj before collision and
x= c+j t+ a+j after collision, in which the subscript j= (R, L) denotes the right-running
and left-running solitary waves, respectively. The midpoint of the interaction is
defined as the time τ . The phase shift 1θ in the laboratory data is calculated by the
difference in the intercept of the asymptotic lines at t= τ : 1θ = (a+j − aj)+ τ(c+j − cj).
Note that Craig et al. (2006) used this method to determine the phase shift. Figure 6
shows the space–time trace of the local maximum (wave crest) of the experimental
data of figure 3 as the two individual crests merge and then separate; also plotted is
the numerical result from Craig et al. (2006). Excellent agreement of the measured
phase shift with the numerical simulation is evident. The measured phase shift for
the right-running wave is 1θR/h0 = 0.98, while the shift for the left-running wave
is 1θL/h0 = 1.1. On the other hand, the shift predicted by (2.2) is 0.49, which is
not in agreement. Such a discrepancy was also reported by Su & Mirie (1980), who
made the comparison of their prediction (2.2) with Maxworthy’s (1976) laboratory
data. The discrepancy in phase shift must result from an ambiguity in defining the
phase shift from the measured water-surface profiles. Immediately after the collision,
the wave profile becomes asymmetric, tilting backward with respect to the direction
of its propagation. Consequently, the phase shift based on the wave-crest trajectory
yields a larger shift than the asymptotic value of (2.2). Our laboratory measurements
were taken following the wave-crest trajectory along a span of approximately 100 cm.
The colliding solitary waves lose amplitude after collision, hence their propagation
speed is slowed. This transient collision behaviour also makes defining the phase
shift difficult.

Fenton & Rienecker (1982) showed in their numerical analysis that the spatial phase
shift is very sensitive to the distance from the collision location. They compared their
numerical results with the two phase-shift limits from Su & Mirie (1980): one is for
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FIGURE 6. Wave-crest trajectory of symmetric head-on collision of two solitary waves
of equal height ε= 0.40. Solid lines represent the measured wave crest trajectory; dotted
lines represent the crest trajectory of the numerical prediction (Craig et al. 2006). The thin
lines represent traces of the left- and right-running wave crests before and after collision
extracted from the simulation.

the asymptotic shift given in (2.2) representing the phase shift after a long time, and
the other is for immediately after the collision:

1θR/h0 =
(εL

3

)1/2
(

1+ εL

8
+ 23εR

4

)
,

1θL/h0 =−
(εR

3

)1/2
(

1+ εR

8
+ 23εL

4

)
.

 (4.1)

For εL = εR = 0.40, (4.1) yields the phase shift 1θ/h0 = 1.22, which is in better
agreement with both the results of our laboratory measurements and the numerical
simulation by Craig et al. (2006).

Figure 7 shows waterfall plots of the collision process, presenting the runup
motion (t < 0) that overshoots the linear superposition, and the subsequent rundown
motion (t> 0) that penetrates below the still-water level. Figure 8(a) presents a time
sequence of the rundown motion leading to the penetration. The process shown in
the figure suggests that this disturbance from penetration is responsible for creating
the dispersive trailing wavetrain as shown in figure 8(b). The measured dispersive
wavetrain is compared in figure 8(b) with the theoretical prediction (2.3). Considering
its very small and transient waves, the measured wave amplitudes and wavelengths
in the laboratory are in good agreement with theory.

Figure 9 shows a snapshot of the wave profile after the collision (t = 0.35 s),
demonstrating the backward-tilting profile formation in both departing waves; the
tilting behaviour is predicted by Su & Mirie (1980) as discussed earlier. To see
the asymmetric profile explicitly, the linear superposition of two KdV solitons is
depicted on the figure, positioning their crests at the corresponding waves. The tilt
in the right-departing wave is evident, as is that in the left-running wave but with a
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FIGURE 7. Waterfall plots of the temporal variation of the water-surface profile for εL =
εR = 0.4: (a) before the collision for 0.7 s; (b) after the collision for 0.7 s. The time
interval of the profiles is 1t= 0.05 s.
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FIGURE 8. (a) Time sequence of the detailed rundown motion for εR = εL = 0.40 that
penetrates below the still-water level; (b) comparison of the measured dispersive trailing
wavetrain (———) with the theoretical prediction (– – – – –) by (2.3) at t= 0.96 s.

smaller tilt. Also note that the measured wave profile immediately after the collision
is broader than that of the KdV soliton.

Figure 10 shows the symmetric head-on collision for the highest waves that we
could produce. Recall that our experimental procedure is to generate one of the
colliding waves by reflection at the endwall of the wave tank. This limits the highest
wave, because of the amplitude attenuation by the time it comes back to the collision
site. We could not produce any case with εL = εR > 0.60, for which Chambarel et al.
(2009) claimed that a thin residual jet will form. The maximum wave amplitude prior
to the collision we were capable of obtaining is εL = εR = 0.52.

Figure 10 shows that the collision runup and rundown processes are different. In the
runup process, the colliding waves gradually merge, increasing their amplitudes; the
inflection point of the water-surface profile occurs at η/h0≈ 0.7. The rundown process,
on the other hand, shows that the inflection point occurs at η/h0 ≈ 0.50. The time-
lapse profiles in figure 10(b) also show the formation of nodes around η/h0 ≈ 0.45
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FIGURE 9. Water-surface profile after symmetric head-on collision of two solitary waves,
t = 0.35 s, with height εR = εL = 0.40: ——–, experimental data; – · – · –, linear
superposition of the KdV solitons positioned at the wave crests. The measured wave
profiles are tilted backward.

during the rundown process. Also observed is that the amplitude of each departing
wave momentarily becomes smaller than that of the subsequently formed outgoing
waves.

Figure 11 shows the measured amplitudes for symmetric head-on collisions together
with the theoretical prediction (2.1) and the previous numerical and experimental data.
The present laboratory results are in excellent agreement with the theoretical and
numerical predictions. It is also observed that the present measurements are in better
agreement than the laboratory data provided by Maxworthy (1976).

Maxworthy performed his laboratory experiments in a flume 5 m long, 20 cm
wide and 30 cm deep, with the water depth h0 = 4.5–6.7 cm. He conducted two
different experiments: (i) examining wave reflection at the tank endwall, and (ii)
wave–wave interaction by generating the same wave from each end of the tank. For
the former case, the initial wave generation was done by manually moving a vertical
plate, utilizing the dispersive characteristic to generate a leading solitary wave within
a sufficient propagation distance. For the latter case, he installed a movable partition
gate at each end and generated two counter-propagating waves by lifting the gates
simultaneously. The propagation distance for this case is one-half the former case
because of the collision location at the middle of the tank. Maxworthy’s (1976) data
for amplitude of the wave reflection at the endwall are in good agreement with the
theoretical prediction. On the other hand, the data for his wave–wave collision at the
middle of the tank exhibit approximately 10 % greater amplitude than the predictions.
It is speculated that this discrepancy could be attributed to the lack of sufficient
propagation distance for clean solitary waves to emerge prior to the collision.

The phase-shift data resulting from the head-on symmetric collisions are plotted
in figure 12, together with the previous laboratory data (Maxworthy 1976), the
theoretical predictions for the asymptotic shift (2.2) and the phase shift at the collision
(4.1). Su & Mirie (1980) commented in their analysis that their theory (2.2) cannot
account for Maxworthy’s experimental results for the phase shift that appear to be
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FIGURE 10. Waterfall plots of the temporal variation of the water-surface profile for εL=
εR = 0.52: (a) before the collision for 0.3 s; (b) after the collision for 0.3 s. The time
interval of the profiles is 1t= 0.01 s.

amplitude-independent. The present laboratory results show otherwise: there is a clear
dependence on wave amplitude, and our laboratory results are in fair agreement with
the prediction (4.1). The reason for Maxworthy’s laboratory data being independent of
the wave amplitude is not clear. It is noted that Maxworthy performed his experiments
using the equipment available at that time. As discussed, to study wave reflection at
the endwall, a solitary wave was generated by pushing a plate manually in a narrow
tank. To study the wave–wave collisions, Maxworthy created the counter-propagating
waves by removing a vertical partition to release excess water at each end of the
tank. His wave-generation method relied on the dispersive effect in the propagation
distance to the collision. Consequently, the lee side of the emerging leading solitary
wave could have been contaminated with unwanted trailing noise, and the lee-side
condition is crucial to measure the phase shift accurately. It must be emphasized,
however, that Maxworthy’s crude but cleverly designed experiments provided a good
dataset of the maximum wave amplification at the vertical reflective endwall of the
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FIGURE 11. Maximum amplitudes of symmetric head-on collisions of solitary waves.

2.5
Present symmetric collision measurements

Maxworthy’s (1976) endwall reflection

Maxworthy’s (1976) wave–wave collision

Su & Mirie’s (1980) long term post-collision
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FIGURE 12. Phase shift 1θ versus wave amplitude ε for symmetric head-on collisions
of solitary waves: ———, asymptotic value of phase shift (2.2); – – – – –, phase shift
immediately after the collision (4.1); symbols show the present measurements and
Maxworthy’s (1976) experimental results.
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FIGURE 13. Pre-collision total wave energy ε2
L + ε2

R versus the energy loss by collision:
(ε2

L − ε′2L )/ε2
L + (ε2

R − ε′2R )/ε2
R where ε′ is the wave amplitude after collision.

tank as shown in figure 11. On the other hand, good measurement of the wave phase
requires a more precise apparatus and procedure.

As demonstrated in figure 5, the amplitudes of the post-collision outgoing waves
are smaller than the amplitudes of the pre-collision waves. In figure 13, the parameter
ε2

L + ε2
R that represents the total wave energy prior to collision is plotted versus the

energy loss in the separating waves after collision: (ε2
L − ε′2L )/ε2

L + (ε2
R − ε′2R )/ε2

R in
which ε′ is the wave amplitude after collision. The monotonic relation shown in
the figure indicates that the energy loss (i.e. amplitude reduction) is greater for the
greater pre-collision waves. The reduction of the wave energy must be attributed to
the energy transfer to the generation of trailing wavetrain. The very good agreement
in figure 5(b) between the measured amplitude and the predicted amplitude based on
the Euler model indicated that viscous energy dissipation must be insignificant.

In addition to symmetric head-on collisions, we studied asymmetric head-on
collisions, symmetric oblique collisions and asymmetric oblique collisions. Typical
results are shown in figure 14. The phase shift and secondary dispersive trailing
waves were observed for all cases. Because the interaction of two counter-propagating
solitons is ‘weak’, our laboratory data indicate that the oblique angle apparently does
not affect the collision process: we see no significant difference in the wave patterns
of figures 3 and 14(b) for the symmetric cases, and figures 14(a) and 14(c) for the
asymmetric cases.

Figure 15 compares measured and theoretical maximum amplifications for head-on
collisions with equal and unequal amplitudes and also the collisions with oblique
angles. Note that amplifications are presented as the ratio of the measured value
to the linear superposition of the two colliding waves. Figure 15 indicates that the
experimental results agree well with theoretical predictions even though the theory
was developed for the head-on collisions only: oblique collisions are not considered
in the theory. It must be recalled that the oblique collisions that we examine are
those with oblique angles less than 20◦ because of the limitation of the laboratory
basin width as discussed earlier.

The phase shift resulting from a variety of soliton collisions is compared with the
theoretical prediction of (4.1) in figure 16. Again, the theory (4.1) is only for normal
head-on collisions, not for oblique collisions. Note that (4.1) does not represent the
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FIGURE 14. Two views of temporal–spatial variations of the colliding water-surface
profiles in the x–z plane, obtained by the LIF method. Water depth h0 = 6.0 cm.
(a) εR = 0.47, εL = 0.19, ψ = 0◦; (b) εR = εL = 0.47, ψ = 10◦; (c) εR = 0.49, εL = 0.15,
ψ = 10◦.
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FIGURE 15. Measured maximum amplification εmax/(εL + εR) versus the prediction (2.1)
by Su & Mirie (1980). Value obtained from the maximum amplitude divided by the linear
superposition of the amplitude of the two colliding waves.

asymptotic phase shift (2.2) but rather the shift immediately after the collision. In
spite of the uncertainty in interpretation of the transient behaviour of the phase shift,
figure 16 shows fair agreement with theory (4.1), including the cases of oblique
collisions.

5. Summary and conclusions
A series of laboratory experiments were performed to study the collision phenomena

of dual counter-propagating solitary waves. The experiments were conducted for a
variety of collision conditions, including symmetric head-on, asymmetric head-on,
symmetric oblique, and asymmetric oblique collisions. The laser-induced-fluorescent
(LIF) technique was used to capture the water-surface variations in space and time.

During the collision, the maximum wave amplitude exceeds that calculated by
superposition of the incident solitary waves, and the measured amplitude agrees well
with the prediction of the nonlinear theory (2.1) by Su & Mirie (1980). The collision
causes attenuation in wave amplitude: the larger the wave, the more the relative
amplitude reduction. Judging from the excellent agreement between the present
laboratory measurements and the predictions of the Euler model (Craig et al. 2006),
this amplitude reduction must be related to the energy transfer to the generation of
secondary trailing dispersive waves.

The collision also causes phase shifts in the interacting waves. Maxworthy’s
(1976) experimental results show that the phase shift is independent of incident wave
amplitude, which disagrees with Su & Mirie’s (1980) theoretical prediction. On the
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FIGURE 16. Measured phase shift 1θR/h0 and 1θL/h0 versus the third-order prediction
(4.1). The dotted line shows theory equal to measured values.

contrary, the present laboratory results show the dependence on wave amplitude,
which agrees with Su & Mirie’s prediction (4.1). The secondary dispersive wavetrain
resulting from solitary wave collision is compared with (2.3). In spite of its very
small and transient wave characteristics, the laboratory observations of the wave
amplitude and length agree well with the theory.

We also investigated the symmetric head-on collisions of the highest waves possible
in our laboratory, and found that the runup and rundown process is not symmetric.
There is penetration of the rundown motion below the still-water level: this penetration
results in departing post-collision waves with an asymmetrical waveform with each
wave tilting slightly backward with respect to the direction of its propagation. The
penetration further causes the generation of the secondary dispersive waves. In
this study, we could not generate a collision of two incident waves larger than
ε = 0.60: therefore we could not confirm the thin residual jet phenomenon claimed
by Chambarel et al. (2009).

Su & Mirie’s (1980) theory was developed for head-on collisions, while our
laboratory results include oblique collisions. The oblique collision cases that we
investigated are those with small oblique angles (up to 20◦). It was found that
the theory serves well for oblique collisions at small angles, which suggests that
the obliqueness of the collision may not be important for this ‘weak’ interaction
process.
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