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A fast, yet unconditionally stable, solution of time-domain electric field integral equations (TD EFIE) pertinent to the scatter-
ing analysis of uniformly meshed and/or periodic conducting structures is introduced. A one-dimensional discrete fast Fourier
transform (FFT)-based algorithm is proffered to expedite the calculation of the recursive spatial convolution products of the
Toeplitz–block–Toeplitz retarded interaction matrices in a new marching-without-time-variable scheme. Additional saving
owing to the system periodicity is concatenated with the Toeplitz properties due to the uniform discretization in multi-level
sense. The total computational cost and storage requirements of the proposed method scale as O(Nt

2Nslog Ns) and O(Nt Ns),
respectively, as opposed to O(Nt

2Ns
2) and O(NtNs

2) for classical marching-on-in-order methods, where Nt and Ns are the
number of temporal and spatial unknowns, respectively. Simulation results for arrays of plate-like and cylindrical scatterers
demonstrate the accuracy and efficiency of the technique.
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I . I N T R O D U C T I O N

Time-domain boundary integral equation (TDIE) methods
are being increasingly applied to the analysis of complex
broadband electromagnetic (EM) scattering and transient
radiation problems [1]. Commonly, the marching-on-in-time
(MOT) schemes are the primary candidate to solve the TDIEs
numerically [2]. The MOT recipes, however, suffer from late-
time instability. Much work has been done to postpone or
filter out the occurrence of exponentially growing fluctuations
on the tail of response. Nonetheless, among generations of
TDIE-based solvers, the marching-on-in-order, also referred
as marching-on-in-degree (MOD) [3], schemes are solely
the only TDIE methods that are always stable [4]. In the
MOD, a set of causal and orthogonal entire-domain basis
functions, namely the weighted Laguerre polynomials, are
used to represent the temporal variation of the unknowns
[4]. This allows to handle the time integrations and derivatives
fully analytically and integrate out the time variable [2].
Recently, in an advanced version of the MOD (AMOD), the
temporal testing is performed before the spatial testing
whereby the unrealistic assumption of no changes for the
unknown transient quantity within the subdomains is
avoided and the accuracy is improved [5].

The dominant cost of the MOT and (A)MOD methods are
mainly the computation of past solution couplings involving
space–time convolution of the induced currents with the
Green’s function. The computational cost of the classical
MOT schemes scales as O(NgNtNs

2), where Nt and Ns denote

the number of subdomain temporal and spatial basis func-
tions, respectively, and Ng is the maximum number of the
last retarded time steps in which the scatterer subdomains
interact. Depending on the sizes of the scatterer, mesh, and
time step as well as frequency content of the excitation, the
longest tail of the delayed samples Ng may vary from Ng �

Nt to Ng of O(Nt), e.g., for planar surfaces Ng is typically of
O(

ffiffiffiffiffi
Ns
p

). In the MOD methods, independent from the
problem in hand always Ng ¼ Nt is obtained, which appar-
ently raises the total computational cost to O(Nt

2Ns
2).

However, Nt in the MOT and MOD methods is not concep-
tually the same. In the MOD methods, the temporal degrees
of freedom of the surface current density Nt represents the
time–bandwidth product of the waveforms to be approxi-
mated [4]. Thus, Jung et al. [6] concluded that the cost
of the MOD is larger than the MOT when the number of
time steps is not too large. Except the few low-order
Laguerre polynomials that contribute dominantly to the very
early stages, the entire-domain temporal expansion functions
of the MOD are much smoother than the Lagrange bases of
the MOT with local support in time. Moreover, the MOT
recipes generally use point matching testing in time whereas
the MOD schemes employ the Galerkin’s method for
temporal testing. As a result, the MOT methods are not as
accurate as the MOD methods [2, 6].

The MOT solvers have been accelerated by the plane wave
time-domain (analogous to the fast multiple method in fre-
quency domain) [7] and fast Fourier transform (FFT)-based
algorithms [1]. In the FFT-based TDIE methods, the convolu-
tion products are calculated based on (Toeplitz)–block–
Toeplitz properties (constant along diagonals) of the impedance
matrices [8, 9]. In [10], the unknowns of uniformly meshed
planar structures are separated into the local x and y com-
ponents (i.e., four mutual orientations) and a two-dimensional
(2-D) FFT has been exploited for circular convolutions. On the
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other hand, the periodicity-based method of moment (MoM)
takes advantages of similar properties to analyze large finite
antenna arrays [11]. Nevertheless, the archival literature
suffers from lack of detailed guidelines on amalgamation of
the Toeplitz arrangements because of system periodicity and
uniform meshing. The gap can be well filled by the multi-level
Toeplitz matrix–vector multiply algorithm in [12].

The FFT process, however, perishes the sparsity of the MOT
matrices. The hierarchical grouping of sparse interactions has
been suggested to alleviate the redundancy in FFT convolution
of sparse matrices in the MOT methods [13]. On the other
hand, the MOD methods generate dense matrices and, as
explained above, they appeal more than the MOT methods
for exploiting auxiliary techniques to reduce the CPU cycles
and memory demands. Nevertheless, no accelerating or com-
pression technique has yet been introduced for the MOD
recipes. Fortunately, interaction matrices in the (A)MOD
methods can also be arranged in a two-level block–Toeplitz
form due to the translationally invariant nature of the Green’s
function [14]. Based on this property, the present work intro-
duces an efficient FFT algorithm for matrix compression and
fast matrix–vector multiplication in solving the surface integral
equations pertinent to the analysis of periodic planar or rota-
tionally symmetric structures by the AMOD. The Toeplitz
properties due to the space periodicity and uniform meshing
are merged together in a multi-level fashion. The algorithm
reduces the serial complexities and storage requirements,
respectively, to O(Nt

2Ns log Ns) and O(NtNs). Principal aspects
of implementation are discussed as well.

I I . T D I E A N D A M O D M E T H O D S

Let S denote the surface of a perfectly electric conducting (PEC)
body that is excited by a transient EM field Ei(r, t). The total
tangential electric field on S remains zero for all times. As a
result, the induced surface current vector J(r, t) satisfies the fol-
lowing time-domain electric field integral equation (TD EFIE):

m

4p
@

@t

ð
S

J(r0, t)
R

dS0

�
rr

4p1

ð
S

ðt
�1

rr0 � J(r0, t0)
R

dt0dS0 ¼ n̂� (n̂� Ei(r, t)), (1)

where R ¼ jr 2 r0j, and the observation point r and the source
point r0 indicate arbitrarily located points on the surface S.
The variable t ¼ t 2 R/c is the retarded time, the parameters
m and 1 are the permeability and permittivity of the surround-
ing environment, and n̂ denotes an outward-directed unit
vector normal to S at field point r.

To numerically solve (1), the induced surface current is
approximately expanded by spatial vector basis functions
fk(r) in conjunction with a complete orthogonal set of entire
domain but causal temporal basis functions that decay to
zero as t!1, i.e.,

J(r, t) ¼
XNt

j¼0

XNs

k¼1

ck,jfj(st)fk(r), (2)

where fj(st) ¼ e2st/2Lj(st) are the weighted Laguerre poly-
nomials and the scaling factor s controls the temporal support

provided by the expansion [4]. The Laguerre polynomial
of order j, Lj(st), can be recursively generated from their
lower orders [4]. The closed-form analytical expressions for
the time derivatives and integration of (2) are available [2].
Substituting (2) into (1) and then applying the temporal
testing followed by spatial testing in Galerkin sense [5] give
a recursive relation between different orders of the Laguerre
polynomials,

Xi

j¼0

XNs
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Amk,n

2
þ fmk,n

� �
ck,j

þ
Xi

j¼0

Xj�1

i¼0

XNs
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(Amk,n þ 2(�1) jþifmk,n)ck,i ¼ vm,i,

(3)

where

vm,i ¼

ð1

0
fi(st)

ð
S

fm(r) � n̂� (n̂� Ei(r, t))dS d(st), (4)

fmk,n ¼
2
s

1
4p1

ð
S
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(5)
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m

4p

ð
S

fm(r) �
ð

S
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fk(r0)dS0dS, (6)
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R
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� �
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R
c

� �� �
, n . 0,

e�(sR=2c), n ¼ 0,
0, n , 0,

8>><
>>:

(7)

and n ¼ i 2 j. The discretized form of (3) is constructed and
solved for first all m ¼ 1, . . . , Ns and then i ¼ 1, . . . , Nt. It
should be noted that in the present new AMOD formulation
(3), regardless of all previously introduced (A)MOD types, the
summations over the contributions of all spatial sources

P
k

are applied before the accumulations of the expansion
orders

P
j. Assuming that all the lower orders of the expan-

sion coefficients up to i 2 1 are known, they are moved to
the right-hand side of (3) whereas the coefficients associated
with the present order j ¼ i are retained on the left side to
establish such a following matrix equation:

Z0Ii ¼ Vi �
Xi�1

j¼0

ZnIj �
Xi

j¼0

Xj�1

i¼0

(Z
A

n þ (�1) jþiZ
f

n )Ii: (8)

I I I . S P A C E C O N V O L U T I O N
P R O D U C T S

The left-hand side of the TD EFIE (1) is the tangential com-
ponent of the scattered field. Principally, J(r, t) is convolved
by the Green’s function to generate the scattered fields [2].
The free space Green’s function d(t 2 R/c)/R and accordingly
its time convolution with the weighted temporal expansion
functions In(s(R/c))/R are translational invariant, i.e., they
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are a function of Rmk ¼ jrm 2 r0kj, the distance between
the observation and source points. Therefore, when S is
uniformly meshed, the dense and possibly asymmetric
square matrices fZngm,k can be represented only by their
unique entries fZngm�k. In other words, the matrices Zn are
(Toeplitz)–block–Toeplitz, and hence, the matrix–vector pro-
ducts on the right-hand side of (8) are convolution products
and they can be efficiently calculated via element-by-element
multiplication in the spectral domain as

Xi�1

j¼0

ZnIj ¼
Xi�1

j¼0

yy (Zn � Ij)

¼ yRe FFT�1
Xi�1

j¼0

FFT Zn

� �
FFT Ij

n o !( )
,

(9)

where Zn is a vector consisting of the unique entries of blocks
in Zn and the auxiliary vector Ij is the flipped up/down and
zero-padded extension of Ij with the same size as Zn.
Operators †† and † extract only the desired entries of the
product, namely †Refg flips the resulting sequence in down/
up direction and picks up the real parts of those array
elements located corresponding to the positions of the original
nonzero entries in Ij. The same procedure is applied to the
matrix–vector products of Z

A

n Ii and Z
f

n Ii in (8). The compu-
tational expenses of evaluating the double surface quadratures
in the AMOD, namely (6) and (5), are relatively high. Hence,
the compressed versions of Zn, Zn with dimensions of O(Ns),
are stored in memory for further usage in constructing (8)
through (9) and solving it for next higher orders of i.
Besides, when symmetrical quadrature routines are used to
numerically calculate the double surface integrals over non-
overlapped source and observation subdomains in (5) and
(6), Zn

� �
m�k reduces to Zn

� �
jm�kj, i.e., the number of

unique entries Nu halves and the cost of products may be
further reduced.

To better explain fast computation of the spatial convolu-
tion products, we consider an inclined wire antenna
modeled by a narrow strip, on which the current distribution
has been approximated by Nsþ 1 rectangular surface patches.
Approximating the outer integrals in (5) and (6) by the value
of the integrands at the center of observation patch, ZnIj find
the following pattern:

Z0 Z1 � � � ZNs�1

Z�1 Z0 � � � ZNs�2

..

. ..
. . .

. ..
.

Z1�Ns Z2�Ns � � � Z0

2
6664

3
7775

I1

I2

..

.

INs

2
6664

3
7775: (10)

Thus, Zn ¼ [Z1�Ns Z2�Ns . . . ZNs�2ZNs�1]1�Nu
and Ij ¼ [INs

INs�1 . . . I2I10 . . . 0]1�Nu
where Nu ¼ 2Ns 2 1. As the second

example, assume a tapered transmission line consisting two
unparallel microstrips each paved with Nsþ 1 rectangle sub-
domains defining Ns rooftop basis functions, the associated
portion of the impedance matrices forms two Toeplitz con-
stellations as follows:

ZnIj ¼
Z Z0

Z0 Z

� �
I
I0

� �
, (11)

where the submatrices Z(0) and subarrays I(0), respectively, have
the same structure as the asymmetric matrix and vector shown
in (10). As a result, Zn ¼ [Z1�Ns . . . ZNs�1Z01�Ns

. . . Z0Ns�1] and
Ij ¼ [I0Ns

. . . I 010 . . . 0INs . . . I10 . . . 0]. The number of intermedi-
ately inserted zeros is Ns 2 1, one less than the separation
length of the Toeplitz blocks. For a parallelogram sheet parti-
tioned by (Nx þ 1)� (Ny þ 1) series of parallelogram patches
whose corresponding edges have been numbered sequentially,
the impedance matrices are (can be ordered in the form of)
such four Toeplitz–block–Toeplitz submatrices,

ZnIj ¼

Z
_

P�P Z
_P�Q

Z
^Q�P

Z
^

Q�Q

..

.

� � �

2
66666664

3
77777775

I
_

P�1

I
^

Q�1

..

.

2
6664

3
7775, (12)

where P ¼ Nx(Nyþ 1), Q¼ NxNy, and the two-level block–

Toeplitz submatrices Z
_

, Z
_

, Z
^

, and Z
^

contain repeated blocks of
size Nx� Nx, each with pattern similar to that of (10) (Fig. 1).
Therefore, the product of the four submatrices with the corre-
sponding two subarrays can be obtained by (9) including four
parallel FFT executions with respective lengths of N

_

u ¼

(2Nx � 1)(2Ny þ 1), Nu
_
¼ Nu

^
¼ (2Nx � 1)(2Ny), and N

^

u ¼

(2Nx � 1)(2Ny � 1). The remaining Ny rows and columns as
well as the rest down left corner of Zn relating interactions
with possibly non-uniformly meshed parts of the body are
multiplied in the conventional way. Here, the rooftop edges
are not indexed by canonical numbering along the two distinct
directions, but rather to gain the block–Toeplitz characteristic
for Z

_
and Ẑ additionally, the numbering of unparallel groups

of edges is counted one group after the other. Identification
numbers are assigned first to the all codirectional edges
oriented in the larger dimension, that is the dimension with

Fig. 1. Positions of the unique elements of the submatrix Ẑ (P ¼ 16, Q ¼ 12)
that may have been generated by a parallelogram plate (Nx ¼ 4, Ny ¼ 3) or
inclined cylinder (Nf ¼ 4, Nz ¼ 5) case studies. The second level of Toeplitz
property has been highlighted by the dashed lines encompassing the blocks.
The numbering of elements infers the calling sequence in constructing Zn .
Periodically Nx 2 1 ¼ 3 zeros are inserted between every Nx consecutive
current elements (level borders) to build Ij .
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more divisions or so to say Nx � Ny, excluding Ny horizontal
ending edges that are enlisted at the end. Thus, there is no
need to transfer the plate geometry to the x 2 y plane,
anchor its corner to the origin, and canonically number it in
the y-direction as suggested by Yilmaz et al. [10]. Of course,

Z
_

and Ẑ parts of Z
A

n are zero due to the orthogonal orientation

of spatial bases.
Geranmayeh et al. [15] proposed uniform discretization of

cylindrical parts of the scatterer for proper local alignment
of the surface normal vectors n̂, e.g., modeling tube-like parts
of the structure such as accelerator cavity arms, via intercon-
nects, etc., by the rooftop bases. The sequential edge indexing
of (inclined) cylinder parts with rotationally (a)symmetric
cross sections directly renders interaction matrices containing
Toeplitz–block–Toeplitz-shaped submatrice(s) associated to
the mutual coupling of the rooftop bases on the tube parts.
Considering that a tube is partitioned into Nf subdomains
in azimuthal and Nz subdomains in longitudinal directions,
P ¼ Nf Nz and Q ¼ Nf (Nz 2 1) in (12) and N

_

u ¼

(2Nf � 1)(2Nz � 1), Nu
_
¼ Nu

^
¼ (2Nf � 1)(2Nz � 2), and

N
^

u ¼ (2Nf � 1)(2Nz � 3). Here also Z
_

A and ẐA are zero.

Figure 1 typically illustrates how the compression algorithm
serially puts in order the unique entries of block aggregates to
fill in Zn for a resulting two-level block–Toeplitz submatrix.

In general case, according to the block–Toeplitz structure
of the submatrices, zeros are first inserted at appropriate
locations [12] into the reversed version of Ij so as to
obtain the auxiliary current vector with proper alignment,
suitable for direct convolution with Zn. The auxiliary
vector Ij is then zero padded to the length of Zn before
the FFT and subsequent multiplication in Fourier domain.
The convolution is readily accomplished in O(Ns log Ns)
operations. The location of initially inserted zeros is then
used directly to suppress the extra terms and recover the
reconstructed product in the final step. Note that some
algorithms, such as the one proposed by [8], only exploit
the Toeplitz structure of blocks, rather the block–Toeplitz
property in companion as explained here. In addition, we
have shown that the present extended algorithm, inspired
from [12], can also be applied to rectangular matrices
Z
_

and Ẑ when P=Q (Fig. 1).

I V . P E R I O D I C I T Y A N D
M U L T I - L E V E L T O E P L I T Z M A T R I C E S

Let S consist of duplications of a cell S0 at regularly space pos-
itions with Dp centric spacing, where the integer p is the sub-
system repetition label in alignment with the specific direction
D̂. The interaction matrix elements can then be computed
from (5) and (6) alternatively in local groups (p, q) by consid-
ering

ð
S

(rr �)fm(r)
ð

S

In sR=cð Þ

R
(rr0 �)fk(r0)dS0dS

¼

ð
S0

(rr�)fm(r)
ð

S0

In sRd=cð Þ

Rd
(rr0 �)fk(r0)dS0dS,

(13)

where Rd ¼ jr� r0 þDp�qj in which the variation range of
the global coordinates r and r0 are confined to the primary

subsystem S0. The dependency on Dp2q substantiates a (addi-

tive) Toeplitz property in Zn when all identically ordered
unknowns corresponding to the cells along D̂ are listed
sequentially one after the other. Figure 2 exhibits the fractal-
like pattern of the interaction matrices Zn for a set of periodic
non-uniformly meshed objects with four-level Toeplitz prop-
erty on the fundamental blocks independent from the island
meshing, two interior levels due to the inherent subsystem
periodicity along x and y axes (nx ¼ 2, ny ¼ 2), and two
additional outer levels owing to nyy ¼ 3 and nxx � 4 times
nxny-cell group replication along the y and x directions,
respectively. Matrix–vector multiply can be computed using
the FFT approach (9) in block-wise form, that is correspond-
ing elements from every block are multiplied collectively, so as
to scale the complexity to O(Nt

2Ns
2 (1/nxy) log nxy), where

nxy ¼ nxnynxxnyy. The outermost corner subblocks (ending
branches) in Fig. 2 are related to the far subsystems, and
they may be approximated equally by the interaction of
centric elements.

Assuming that a 2-D periodic rectangular-shaped PEC
patch (a capacitive mesh filter) with finite size of nxny cells
is meshed by nxnyNs0

rooftop basis functions (where Ns0
¼

(Nxþ 1)NyþNx(Nyþ 1)), the submatrices in (12) are
expanded to P ¼ nxnyNx (Nyþ 1), Q ¼ nxnyNxNy.
Resembling the former nested periodic case in Fig. 2, the
encompassed block-wise Toeplitz property because of the
periodicity can be concatenated to the every Toeplitz–block–
Toeplitz interaction submatrices of the underlying uniformly
meshed subsystemes in (12) when the periodicity effects are
exerted in the most outer Toeplitz levels. Figure 3 illustrates
how the periodicity along two different axes can be incorpor-
ated within the third and fourth levels of the four block–
Toeplitz submatrices when the subsystems are composed of
either of the generic case studies in Fig. 1. Dots in Fig. 3
specify the primal location of the required elements to be
calculated and emplaced in Zn for the first quarter of the
matrices. Starting from the down-left corner entry in every
one of the four submatrices, among the unique elements,
whose column and row indices are, respectively, greater and

Fig. 2. All (partially) filled square blocks are lined up corresponding to the
distances between the (groups of) array elements. The matrix is fully dense
and only the replicas of the original subblocks have not been depicted to
reflect the shift invariancy (diagonal displacement) of the (sub)blocks on the
four outermost nested Toeplitz levels.
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smaller than the others are emplaced prior to the rest in the
auxiliary array sequence. This is equivalent to include only
the elemental coupling of the basis functions while moving
first toward the positive x-axis and then along y-axis in each
cell and considering the mutual couplings between the
primal cell and the repeated copies afterwards. To fill the
auxiliary current vector Ij, in transition to one higher level,
different number of zeros has to be inserted between the cor-
responding current elements [12]. The three different stages
happen between every Nx, nyNx, and nxnyNx (that is every 4,
12, and 36) elements of the flipped current vector, where,
respectively, Nx 2 1, bN̂u=2c, and nyN̂u � bN̂u=2c (in the
example 3, 17, and 87) zeros have to be inserted in between.
The obtained vector Ij is finally zero padded up to the
length nxnyN̂u. Here, xb c denotes the greatest integer less
than or equal to x. The first submatrix–vector product can
be retrieved following the inverse FFT, once after every
Nx 2 1, bN̂u=2c, and nyN̂u � bN̂u=2c elements of the flipped
array, correspondingly Nx, nyNx, and nxnyNx redundant
elements are skipped.

Although for the ease of explanation, this paper frequently
explicates the ordered selection of the unique matrix elements,
no element picking-up procedure is to be developed in prac-
tice, rather the unique interactions of the basis functions are
directly addressed for proper alignment in the auxiliary
vectors and there is no need to build the complete (sub)
matrices. In the phased array antennas, frequency-selective
surfaces (FSS), photonic bandgap materials, artificial
left-handed materials (metamaterials), etc., where the unit
cell is composed of arbitrarily shaped patches, the auxiliary
uniform meshes of the adaptive integral methods (AIM)
[16] can be interrelated with the present algorithm. A

similar principle can be applied to a 3-D uniform auxiliary
grid [17] that encases every scatterer cell as well as 3-D period-
icity (an extra outer level with 2nz 2 1 inclusive blocks), which
culminates the nested Toeplitz levels to six.

V . N U M E R I C A L R E S U L T S

The incident field is a Gaussian-shaped plane wave with
the full-width half-max of 0.7 light meter (lm). A flat
1 m � 1 m square conducting plate of zero thickness located
in the x 2 y plain and centered at the origin is considered
first. Six and five divisions are made along the x and y direc-
tions, respectively (Nx ¼ 5, Ny ¼ 4), which result in Ns ¼ 49
common edges. The governing TD EFIE (1) is solved by the
AMOD with s ¼ 3�108 for Nt ¼ 80. Figure 4 shows
the induced current at the middle of the plate. Continuing
the marching process for the higher orders of Laguerre poly-
nomials (Nt . 120), the early ripples are totally vanished.
As Fig. 4 illustrates, there is a good agreement between the
results of the introduced AMOD scheme and its
FFT-accelerated version in which every full matrix–vector
multiplication is replaced by a convolution with a reversed

Fig. 3. Location of the unique entries in Z
_

P�P when the mesh structure
associated with Fig. 1 is repeated three and two times along different
directions. The periodicity orders (nx ¼ 2, ny ¼ 3) are visible at the outer
(third and fourth) Toeplitz levels. As many as the already picked entries in
Zn (the number of unique elements in the lower triangle part of the
fictitious square box anchored to the level-border corner) intermediate zeros
have to be inserted in Ij once the up-right moving selection pointer jumps
into another Toeplitz level.

Fig. 4. Induced surface current density at the center of the conducting sheet.

Fig. 5. Average marching time in the AMOD and MOT methods versus the
FFT-based counterparts in Fig. 4.
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vector, which is implemented through a double precision
outer product in the Fourier domain. Considering the plate
meshed with Nx ¼ 11, 13, . . ., 21 and Ny ¼ Nx 2 1 divisions,
the computing times of the marching process for the
AMOD method up to Nt ¼ 80 and the MOT algorithm till
Nt ¼ 100 are plotted in Fig. 5 versus the number of spatial
unknowns. As seen in this figure, the MOD method benefits
from the space-FFT approach more markedly than the
MOT method does.

As the second example, a 0.5 m long hollow tube with
radius 0.1 m is uniformly meshed by (Nf ¼ 18, Nz ¼ 20) rec-
tangular planar patches and is analyzed by the MOT scheme
with Ns ¼ 666 rooftop bases for Nt ¼ 150. Figure 6 demon-
strates that using the proposed algorithm for NgNt ¼ 900
matrix–vector multiplications does not degrade the accuracy
or perturb the late-time tranquilness of the response.
Simulation results of 100-wavelength long strips also affirm
that the algorithm (9) is aliasing free. Note that misalignment
of even one entry during the FFT immediately causes
explosion of the response amplitude. Figure 7 shows a 5�5
array of 1 m�1 m patches separated by 0.5 m. For the
doubly periodic distribution of the antenna array, the algor-
ithm exploits the block–Toeplitz structure of the interaction

matrices in four nested levels to multiply all matrix–vectors
by the FFT, nx ¼ ny ¼ 5, Nx ¼ 7, Ny ¼ 6, and Ns ¼ 2425.
The four nested Toeplitz levels (while the outer two levels
are dealt with the periodicity) totally reduce the compu-
tational effort to O(Nt

2Ns log Ns).

V I . D I S C U S S I O N A N D
C O N C L U S I O N S

Although the MOD schemes are the only approaches that
thoroughly eliminate the late-time instabilities in numerical
solution of field integral equations, the high computational
expenses yet preclude their application in large-scale scatter-
ing problems. In this paper, a new formulation for the
AMOD in conjunction with a parallelizable FFT-based algor-
ithm with complexity of O(Ns log Ns) was proposed for accel-
erating the O(Nt)Nt retarded matrix–vector multiplications in
the numerical solution of the TDIEs. Eventually, owing to the
convolutional characteristic of the Toeplitz kernel, the current
distribution was efficiently computed by O(Nt Ns log Ns) oper-
ation cycles per iteration. The method is also a minimal
memory with O(Nt Ns) storage demands because only non-
redundant entries of the block–Toeplitz matrices are stored.
The exterior multi-level Toeplitz arrangement due to the
(multipath) periodical extension was incorporated into
the deep block–Toeplitz structures relevant to the uniform
meshing. This facilitates accurate analysis of large-scale peri-
odic and partially periodic structure with finite size. The tech-
niques presented in this work are directly usable for possible
extension to the AIM (precorrected FFT) for fast analysis
of irregular cell shapes. The temporal translation invariance
can also be exploited for the MOD schemes similar to the
spatial shift invariance [18]. Most efficiently, the temporal
translation invariancy can be adjoined to the aggregates of
spatial Toeplitz matrices in an additional Toeplitz level
above all the present levels. Since the algorithm does not
benefit from symmetricity of the matrices, it can also be
employed for fast numerical solution of the magnetic (and
combined) field integral equations [2].
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