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We study analytically the joint dispersion of Gaussian patches of salt and colloids
in linear flows, and how salt gradients accelerate or delay colloid spreading by
diffusiophoretic effects. Because these flows have constant gradients in space, the
problem can be solved almost entirely for any set of parameters, leading to predictions
of how the mixing time and the Batchelor scale are modified by diffusiophoresis. We
observe that the evolution of global concentrations, defined as the inverse of the
patches’ areas, are very similar to those obtained experimentally in chaotic advection.
They are quantitatively explained by examining the area dilatation factor, in which
diffusive and diffusiophoretic effects are shown to be additive and appear as the
divergence of a diffusive contribution or of a drift velocity. An analysis based
on compressibility is developed in the salt-attracting case, for which colloids are
first compressed before dispersion, to predict the maximal colloid concentration
as a function of the parameters. This maximum is found not to depend on the flow
stretching rate nor on its topology (strain or shear flow), but only on the characteristics
of salt and colloids (diffusion coefficients and diffusiophoretic constant) and the initial
size of the patches.
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1. Introduction
The transport of colloidal particles by a flow can be greatly modified by the

presence of a scalar in the fluid. In the case of an electrolyte, (salt) concentration
gradients are at the origin of diffusiophoresis which results in a drift velocity
vdp = Ddp∇ log S between the colloids and the flow, where S and Ddp are the salt
concentration and the diffusiophoretic coefficient (Anderson 1989; Abécassis et al.
2009).

Recent experimental and numerical studies showed how the mixing of colloids
undergoing chaotic advection is strongly modified by diffusiophoresis. In particular,
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Deseigne et al. (2014) showed that the time needed to mix the colloids can be
strongly increased or decreased depending on whether salt and colloids are released
together or not, an effect further explained based on the compressibility of the drift
velocity (Volk et al. 2014). Investigating gradients of the colloid concentration field
in more recent experiments, Mauger et al. (2016) demonstrated diffusiophoresis acts
both at large and small scales, resulting in a modification of the Batchelor scale
at which stretching and diffusion balance (Batchelor 1959). All these observations
were made in a limited range of Péclet numbers, and no general prediction was
made concerning diffusiophoresis in the limit of large stretching, or vanishingly small
colloid diffusion coefficient. In this article, we obtain analytical predictions on the
dispersion of two-dimensional (2-D) patches of salt and colloids advected by linear
velocity fields (pure deformation and pure shear) which are chosen to correspond
to fundamental examples at the heart of our understanding of mixing (Townsend
1951; Taylor 1953; Batchelor 1959; Bakunin 2011). Diffusion and diffusiophoresis
are examined in light of the area dilation factor of the patches, in which diffusive
and diffusiophoretic effects are shown to be additive and appear as the divergence of
a diffusive contribution or of a drift velocity. This allows for a quantitative prediction
of the maximum concentration of the colloids in the salt-attracting case, for which
colloids are first compressed before dispersion. This maximum is found not to depend
on the flow stretching rate nor its topology (strain or shear flow), but only on the
characteristics of salt and colloids (diffusion coefficients and diffusiophoretic constant)
and the initial size of the patches.

In the presence of diffusiophoresis, the salt and colloids with respective concentra-
tions S(x, y, t) and C(x, y, t) evolve following the set of coupled advection–diffusion
equations:

∂S
∂t
+∇ · [Sv] =Ds ∇

2S, (1.1)

∂C
∂t
+∇ · [C(v + vdp)] =Dc ∇

2C, (1.2)

vdp =Ddp ∇ log S, (1.3)

where v is a divergence free velocity field, and Ds, Dc, Ddp are respectively the
diffusion coefficients of both species and the diffusiophoretic coefficient (Deseigne
et al. 2014; Volk et al. 2014; Mauger et al. 2016). Here we take v = (σx, −σy)
(pure deformation), or v= (γ y, 0) (pure shear). When the patches of colloids and salt
are released at the origin with initial sizes y0,c and y0,s, their dispersion is governed
by the colloids Péclet number Pec = σy2

0,c/Dc, the salt Péclet number Pes = σy2
0,s/Ds

and the diffusiophoretic number Ddp/Ds, where σ would be replaced by γ when
considering the case of shear instead of deformation.

As the velocity fields we consider are linear, patches of salt released with Gaussian
profiles will remain Gaussian at all times (Townsend 1951; Batchelor 1959; Bakunin
2011), resulting in a drift velocity vdp = Ddp ∇ log S which is also a linear flow.
Assuming the colloids are released with a Gaussian profile too, both cases of
deformation and shear can be analytically solved almost entirely, leading to predictions
in the limit of large Péclet numbers.

The article is divided as follows: § 2 is devoted to the evolution of the patches
under pure deformation in the velocity field v = (σx, −σy), which corresponds
to a stagnation point. This example is solved analytically using the method of
moments, and allows for a prediction of the Batchelor scale for the colloids
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`B,c =
√

DcDs/σ(Ddp +Ds) at which occurs an equilibrium between advection and
diffusion (Batchelor 1959). Section 3 deals with the more complex case of a pure
shear flow v = (γ y, 0), that can be solved numerically for the colloids with any
set of parameters. Section 4 is the heart of the article where it is shown that the
present results, although corresponding to academic cases, are very similar to those
obtained experimentally. This section discusses the time evolution of the colloid
concentration using arguments based on compressibility, and allows for a prediction
of (i) how the mixing time varies in the limit of small diffusivities with or without
diffusiophoresis. (ii) what is the maximum concentration that can be obtained when
salt and colloids are released together, corresponding to a configuration in which the
colloid concentration is first amplified before being attenuated. We show here that
this maximum (divided by its initial value) is independent of the flow parameters and
scales as

c̃max =

(
Ddp

Dc

)Ddp/2(Ddp+Ds)

, (1.4)

when the patches have the same initial size. Finally, § 5 gives a summary of the
various results and explains why these are not modified in the large stretching limit.

2. Dispersion under pure deformation
2.1. Initial configuration and notations

The first problem we address is the joint evolution of 2-D patches of salt and colloids,
released together at the origin, under pure deformation by a linear velocity field v =
(σx,−σy) (σ > 0). This corresponds to a stagnation point with a dilating direction (x)
and a contracting direction (y). Assuming the patches have initial Gaussian profiles

S(x, y, t= 0)=
Ns

2π

√
x2

0,sy
2
0,s

exp
(
−

x2

2x2
0,s
−

y2

2y2
0,s

)
, Ns > 0, (2.1)

C(x, y, t= 0)=
Nc

2π

√
x2

0,cy
2
0,c

exp
(
−

x2

2x2
0,c
−

y2

2y2
0,c

)
, Nc > 0, (2.2)

we define the Péclet numbers along the contracting direction (y) for both salt
Pes = σy2

0,s/Ds and colloid Pec = σy2
0,c/Dc.

The different configurations under study in this articles are chosen to correspond to
those studied in Deseigne et al. (2014), Volk et al. (2014), Mauger et al. (2016):

(i) No salt: Ddp = 0 which is the reference case (no diffusiophoresis) and
corresponds to simple advection–diffusion of both species.

(ii) Salt attracting: Ddp > 0 which leads to delayed mixing at short time due to the
drift velocity vdp =Ddp∇ log S.

(iii) Salt repelling: Ddp < 0 which leads to accelerated mixing at short time due
to the drift velocity vdp =Ddp∇ log S. Such situation would be obtained by replacing
classical salt with a ionic surfactant such as sodium dodecyl sulfate (SDS) (Banerjee
et al. 2016). (In experiments, the salt-repelling case could also correspond to Ddp > 0
and an initial profile of the form C′=max(C)−C, which would have infinite colloid
content and variance. However, as the salt concentration field is Gaussian, ∇ · vdp is
constant in space which would lead to an artificial amplification of the concentration C
in this case. We thus chose to treat the salt-repelling case by reversing the sign of Ddp.
Note that those two situations led to similar mixing times when tested numerically
with flow fields that display chaotic advection.)
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2.2. Case of salt, pure deformation
As mentioned before, when advected by a linear velocity field, an initially Gaussian
profile will remain Gaussian at all times. Introducing the total salt content∫∫
∞

S(x, y, t) dx dy=Ns, and the moments of the concentration profile

〈xαyβ〉s(t)=
1
Ns

∫∫
∞

xαyβS(x, y, t) dx dy, (2.3)

the salt concentration writes at all times

S(x, y, t)=
Ns

2π
√
∆s(t)

exp
(
−

1
2∆s(t)

[
〈y2
〉s x2
− 2〈xy〉s xy+ 〈x2

〉s y2
])
, (2.4)

where ∆s(t) = 〈x2
〉s〈y2
〉s − 〈xy〉2s is related to the area (As) of the salt patch by the

relation As =
√
∆s. In the case of Gaussian profiles, equation (1.1) can be solved

by using the method of moments (Aris 1956; Birch, Young & Franks 2008). This
method transforms the original equation for the concentration S(x, y, t) in a set of
ordinary differential equations (ODEs) for the moments, which are obtained by taking
corresponding moments of (1.1). For the case of Gaussian profiles we consider, only
second-order moments are needed and the system writes:

d〈x2
〉s

dt
− 2σ 〈x2

〉s = 2Ds (2.5)

d〈xy〉s
dt
− σ 〈xy〉s = 0 (2.6)

d〈y2
〉s

dt
+ 2σ 〈y2

〉s = 2Ds, (2.7)

with initial conditions 〈x2
〉s(0)= x2

0,s, 〈y
2
〉s(0)= y2

0,s and 〈xy〉s(0)= 0. The second-order
moments form a closed set of ODEs (Young, Rhines & Garrett 1982; Rhines & Young
1983) which has solutions (Bakunin 2011):

〈x2
〉s(t)=

(
x2

0,s +
Ds

σ

)
exp(2σ t)−

Ds

σ
, (2.8)

〈y2
〉s(t)=

(
y2

0,s −
Ds

σ

)
exp(−2σ t)+

Ds

σ
, (2.9)

〈xy〉s(t)= 0. (2.10)

The salt patch is then exponentially stretched in the dilating direction (x) while it is
compressed in the (y) direction toward the salt Batchelor scale `B,s =

√
Ds/σ , which

corresponds to a quasi-static equilibrium between compression and diffusion.

2.3. Case of colloids, pure deformation and diffusiophoresis
When released together with salt, colloids will have a drift velocity vdp =Ddp ∇ log S
with respect to the flow v= (σx,−σy). As obtained from equations (2.4), (2.8)–(2.10),
the salt concentration is of the form

S(x, y, t)= A(t) exp
[
−

1
2

(
x2

〈x2〉s(t)
+

y2

〈y2〉s(t)

)]
, (2.11)
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so that the drift velocity, vdp =Ddp ∇ log S, writes

vdp(x, y, t)=Ddp

(
−x
〈x2〉s(t)

,
−y
〈y2〉s(t)

)
. (2.12)

It is also a linear flow whose gradients are functions of time only so that the colloid
concentration will also remain Gaussian at all times. Although vdp looks similar to
v, it has a non-zero divergence ∇ · vdp=−Ddp(1/〈x2

〉s+ 1/〈y2
〉s) which is constant in

space. This drift therefore acts as a compressing motion if Ddp> 0 while it accelerates
mixing if Ddp < 0. Nevertheless

∫∫
∞

C(x, y, t) dx dy= Nc is still a conserved quantity,
and one can compute moments of the colloid concentration field as

〈xαyβ〉c(t)=
1

Nc

∫∫
∞

xαyβC(x, y, t) dx dy, (2.13)

to get the instantaneous colloid concentration field

C(x, y, t)=
Nc

2π
√
∆c(t)

exp
(
−

1
2∆c(t)

[
〈y2
〉c x2
− 2〈xy〉c xy+ 〈x2

〉c y2
])
. (2.14)

Applying the same procedure as in the previous section, second-order moments are
solutions of the system:

d〈x2
〉c

dt
=−2Ddp

〈x2
〉c

〈x2〉s
+ 2σ 〈x2

〉c + 2Dc (2.15)

d〈xy〉c
dt
=−Ddp

[
〈x2
〉
−1
s + 〈y

2
〉
−1
s

]
〈xy〉c (2.16)

d〈y2
〉c

dt
=−2Ddp

〈y2
〉c

〈y2〉s
− 2σ 〈y2

〉c + 2Dc, (2.17)

with initial conditions 〈x2
〉c(0)= x2

0,c, 〈y
2
〉c(0)= y2

0,c, 〈xy〉c(0)= 0 so that 〈xy〉c(t)= 0.
The solutions to ODEs for 〈x2

〉c and 〈y2
〉c can be obtained analytically and write:

〈x2
〉c(t) =

(
x2

0,c −
Dc

Ddp +Ds
x2

0,s

)(
Ds

x2
0,sσ

[
1− exp(−2σ t)

]
+ 1
)−Ddp/Ds

exp(2σ t)

+
Dc

Ddp +Ds
x2

0,s

(
exp(2σ t)+

Ds

x2
0,sσ

[
exp(2σ t)− 1

])
, (2.18)

〈y2
〉c(t) =

(
y2

0,c −
Dc

Ddp +Ds
y2

0,s

)(
Ds

y2
0,sσ

[
exp(2σ t)− 1

]
+ 1
)−Ddp/Ds

exp(−2σ t)

+
Dc

Ddp +Ds
y2

0,s

(
exp(−2σ t)+

Ds

y2
0,sσ

[
1− exp(−2σ t)

])
. (2.19)

Figure 1 displays the time evolution of the lengths 〈x2
〉c(t) and 〈y2

〉c(t) for a
set of parameters corresponding to those of the experiments, with Pec = 5. 105 and
Pes = 735. It shows that the evolution along the dilating direction, which corresponds
to an exponential growth, is almost not affected either by diffusion or diffusiophoresis.
On the other hand, we observe a clear influence of diffusiophoresis on the small scale,
e.g. in the contracting direction (y). This is especially true in the initial stage, before
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FIGURE 1. (Colour online) Time evolution of 〈x2
〉c, 〈x2

〉s and 〈y2
〉c, 〈y2

〉s in
the case of a pure deformation. Parameters are similar to those of experiments
(Ds = 1360 µm2 s−1, Dc = 2 µm2 s−1, Ddp = 290 µm2 s−1), y2

0,c = x2
0,c = 1 mm2

and σ = 1 s−1, corresponding to Pec = 5 × 105 and Pes = 735. – · – · –:
‘salt-attracting’ case, Ddp = 290 µm2 s−1; ——: ‘no-salt’ case, Ddp = 0 µm2 s−1; – – –:
‘salt-repelling’ case, Ddp =−290 µm2 s−1; — · · —: salt.

〈y2
〉c reaches its final value 〈y2

〉c(∞) = DcDs/(σ (Ddp + Ds)). As a consequence, the
Batchelor scale is affected by diffusiophoresis so that the small scale becomes finer in
the salt-attracting case (Ddp> 0) while it is coarser in the salt-repelling case (Ddp< 0),
which is consistent with experimental results obtained in Mauger et al. (2016). The
Batchelor scale can be computed as `B,c =

√
Deff /σ , where Deff = DcDs/(Ddp + Ds).

This relationship could serve as a definition for an effective diffusivity as was initially
proposed in Deseigne et al. (2014) to interpret the salt-repelling case, although it can
be seen in (2.19) that the evolution of 〈y2

〉c(t) is not obtained by replacing Ds by
Deff in (2.9). Diffusiophoresis does not result in a process that can be considered
as purely diffusive, with an effective diffusivity, as already stressed in Volk et al.
(2014).

3. Dispersion in a shear flow
3.1. Shear dispersion of salt

The second problem we address is shear dispersion of Gaussian patches of salt and
colloids under the action of the linear velocity field v = (γ y, 0) (γ > 0). We define
again the Péclet numbers using the (y) direction for both salt Pes = γ y2

0,s/Ds and
colloid Pec = γ y2

0,c/Dc.
Applying the method of moments, one gets the coupled set of equations:

d〈x2
〉s

dt
− 2γ 〈xy〉s = 2Ds (3.1)

d〈xy〉s
dt
− γ 〈y2

〉s = 0 (3.2)

d〈y2
〉s

dt
= 2Ds, (3.3)

which can be integrated with initial conditions (〈x2
〉c(0), 〈y2

〉c(0), 〈xy〉c(0)) =
(x2

0,c, y2
0,c, 0) to obtain

〈y2
〉s = y2

0,s + 2Dst (3.4)
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FIGURE 2. (Colour online) Time evolution of 〈X′2〉c, 〈X2
〉s and 〈Y ′2〉c, 〈Y2

〉s for γ = 1 s−1.
Parameters are the same as in the experiments (Ds= 1360 µm2 s−1, Dc= 2 µm2 s−1 and
Ddp = 290 µm2 s−1), y2

0,c = x2
0,c = 1 mm2, corresponding to Pec = 5 × 105 and Pes = 735.

– · – · –: ‘salt-attracting’ case; ——: ‘no-salt’ case, Ddp = 0 µm2 s−1; – – –: ‘salt-repelling’
case, Ddp =−290 µm2 s−1; — · · —: evolution for the salt.

〈xy〉s = γ y2
0,st+ γDst2 (3.5)

〈x2
〉s = x2

0,s + 2Dst+ γ 2y2
0,st

2
+

2
3γ

2Dst3. (3.6)

Inserting those functions in expression (2.4), one recovers the Gaussian solution to
this problem obtained by Okubo (1967). As can be observed, 〈x2

〉s, 〈xy〉s and 〈y2
〉s are

increasing functions of time with a diffusive growth in the (y) direction and a super
diffusive growth in the (x) direction, although it could have been expected that the
patch is compressed in some direction. This is due to the shear motion which tilts
the patch toward the (x) direction as indicated by the growth of 〈xy〉s. It is possible
to define the variance of a large scale 〈X2

〉s and of a small scale 〈Y2
〉s by using the

principal axes of the quadratic form 〈y2
〉s x2
− 2〈xy〉s xy+〈x2

〉s y2. With these new axes,
one has 〈XY〉s = 0, and:

〈X2
〉s =

2∆s

〈x2〉s + 〈y2〉s −
√
(〈x2〉s − 〈y2〉s)2 + 4〈xy〉2s

(3.7)

〈Y2
〉s =

2∆s

〈x2〉s + 〈y2〉s +
√
(〈x2〉s − 〈y2〉s)2 + 4〈xy〉2s

, (3.8)

so that the area of the patch is As=
√
∆s=

√
〈X2〉s〈Y2〉s. As opposed to the previous

case of pure deformation, the small scale does not converge toward a final value as
shown in figure (2). The small scale 〈Y2

〉s is first compressed as expected, but reaches
a minimum value before slowly increasing again toward infinity. This is because here
diffusion cannot be balanced in any direction as none of the (x) or (y) directions are
dilating nor compressing as the eigenvalues of the velocity gradient matrix are zero.

3.2. Shear dispersion of colloids under diffusiophoresis
Due to the action of shear which tilts the salt patch, the diffusiophoretic drift is now
more complex. However vdp is still a linear velocity field as S(x, y, t) is Gaussian, and
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involves gradients in all directions:

vdp =
Ddp

∆s(t)

(
−〈y2
〉s x+ 〈xy〉s y

〈xy〉s x− 〈x2
〉s y

)
. (3.9)

Taking moments of (1.2) with this more general velocity field, moments of the colloid
concentration field are solutions of a system of fully coupled ODEs:

d〈x2
〉c

dt
− 2

(
γ +

Ddp〈xy〉s
∆s(t)

)
〈xy〉c + 2

Ddp〈y2
〉s

∆s(t)
〈x2
〉c = 2Dc (3.10)

d〈xy〉c
dt
− γ 〈y2

〉c −
Ddp〈xy〉s
∆s(t)

[
〈x2
〉c + 〈y2

〉c
]
+

Ddp[〈x2
〉s + 〈y2

〉s]

∆s(t)
〈xy〉c = 0 (3.11)

d〈y2
〉c

dt
− 2

Ddp〈xy〉s
∆s(t)

〈xy〉c + 2
Ddp〈x2

〉s

∆s(t)
〈y2
〉c = 2Dc (3.12)

with same initial conditions as in the previous case. Such system has no known
analytical solutions but can be integrated numerically for any set of parameters
using standard techniques (fourth-order Runge–Kutta in the present case). As already
observed for the salt, the colloid patch is expected to be tilted toward (x) axis so that
we introduce its principal axes and compute

〈X′2〉c =
2∆c

〈x2〉c + 〈y2〉c −
√
(〈x2〉c − 〈y2〉c)2 + 4〈xy〉2c

(3.13)

〈Y ′2〉c =
2∆c

〈x2〉c + 〈y2〉c +
√
(〈x2〉c − 〈y2〉c)2 + 4〈xy〉2c

. (3.14)

Note that the axes for the salt and colloids do not coincide so that the small and
large scales are not measured exactly along the same direction. Figure 2 displays
the time evolution of the lengths 〈X′2〉c(t) and 〈Y ′2〉c(t) for a set of parameters
corresponding to those of the experiments, with Pec = 5. 105 and Pes = 735. As
already observed in the case of compression, we find that diffusiophoresis mostly
affects the small scale, which again becomes finer in the salt-attracting case (Ddp > 0)
while it is coarser in the salt-repelling case (Ddp < 0), the effect being slightly larger
in this second configuration.

4. Mixing and compressibility
4.1. Compressibility and its link to changes in colloid concentration

In the two previous cases, we found that both salt and colloid concentration profiles
remain Gaussian with areas As =

√
∆s and Ac =

√
∆c changing as functions of time.

Because the total colloid and salt content are conserved, the areas of the patches
can be used as a measure of the respective concentrations s(t)= Ns/

√
∆s and c(t)=

Nc/
√
∆c.

As all equations are linear, we will focus on the non-dimensional quantities
s̃(t) =

√
∆s(0)/∆s(t) and c̃(t) =

√
∆c(0)/∆c(t). Figure 3 displays the time evolution

of the concentrations c̃(t) and s̃(t) for the two cases of pure deformation (left) and
pure shear (right), with the very same set of parameters and σ = γ = 1 s−1. As
already observed in chaotic advection (Deseigne et al. 2014; Volk et al. 2014), the
concentration decays much faster in the salt-repelling configuration (enhanced mixing),
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FIGURE 3. (Colour online) Time evolution of c̃ =
√
∆c(0)/∆c in the case of pure

deformation (a) and pure shear (b). Same set of parameters as in experiments (Ds =

1360 µm2 s−1 and Dc = 2 µm2 s−1, Ddp = 290 µm2 s−1), y2
0,c = x2

0,c = 1 mm2. Pure
deformation case, σ = 1 s−1, Pec = 5 × 105. Pure shear γ = 1 s−1, Pec = 5 × 105.
Legends are – · – · –: ‘salt-attracting’ case, Ddp= 290 µm2 s−1; ——: ‘no-salt’ case, Ddp=

0 µm2 s−1; – – –: ‘salt-repelling’ case, Ddp =−290 µm2 s−1; — · · —: case of salt. The
horizontal line y= 1/2 serves as measuring the mixing time, Tmix, such that c̃(Tmix)= 1/2.

while it first increases toward a maximum in the salt-attracting configuration, resulting
in a delayed mixing. This is here a direct consequence of the patches aspect ratio
evolution which is strongly modified by diffusiophoresis at short time. All these
changes can be interpreted by examining the area dilation factor, χ , defined as:

χ =
1
Ac

dAc

dt
=−

d ln
(
c̃(t)
)

dt
=

1
2∆c

d∆c

dt
. (4.1)

This equation establishes a direct link between the evolution of c̃ and compressible
effects as pointed out in Volk et al. (2014). Indeed, using second-order moments for
both salt and colloids ∆c(t)= 〈x2

〉c〈y2
〉c − 〈xy〉2c , one obtains the general expression:

χ =
1

2∆c(t)
d∆c(t)

dt
(4.2)

=
1

2∆c

(
d〈x2
〉c

dt
〈y2
〉c + 〈x2

〉c
d〈y2
〉c

dt
− 2〈xy〉c

d〈xy〉c
dt

)
. (4.3)

In the case of pure deformation, the cross-term vanishes. Using equations (2.15) and
(2.17), the area dilation can be rewritten:

χ =Dc

(
1
〈x2〉c
+

1
〈y2〉c

)
−Ddp

(
1
〈x2〉s
+

1
〈y2〉s

)
. (4.4)

Equation (4.4) shows that the area of the colloid patch varies as a sum of the diffusion,
which tends to make it grow in size, and diffusiophoresis: when Ddp>0 (salt-attracting
configuration), the area first contracts because here Dc�|Ddp|, while the patch spreads
faster when Ddp < 0 (salt-repelling configuration). It is interesting to note that the
diffusiophoretic contribution to the dilation factor is exactly ∇ · vdp, in agreement
with the colloid concentration budget established in Volk et al. (2014), or with more
general results for inertial particles (Metcalfe et al. 2012).
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In the case of shear dispersion, the cross-term does not vanish as both salt and colloid
patches are tilted by the flow. Using equations (3.10), (3.11) and (3.12), the area
dilation has the more complex form:

χ =Dc
〈x2
〉c + 〈y2

〉c

∆c
−Ddp

〈x2
〉s + 〈y2

〉s

∆s
. (4.5)

Introducing the two systems of principal axes for the colloids (X′, Y ′), and for the
salt (X, Y), one can obtain a similar expression as in the case of pure deformation.
The equation writes:

χ =Dc

(
1
〈X′2〉c

+
1
〈Y ′2〉c

)
−Ddp

(
1
〈X2〉s

+
1
〈Y2〉s

)
, (4.6)

from which it is visible that the second term is again exactly ∇ · vdp. This shows that
the interpretation of diffusiophoresis in terms of a competition/cooperation between
diffusion and compressible effects is very robust and general. In both cases we find
that the flow parameters do not enter the result explicitly because v is divergence free.
The effect of the velocity field is in fact hidden and it is only when investigating the
evolution of the various length scales that its properties are directly visible.

4.2. Evolution of the mixing time in the limit Dc→ 0
We now investigate how much time is needed to mix the patches in the different
cases. From the previous section, it may be thought that mixing processes in both
flows are similar because the two graphics displayed in figure 3 look similar on
first inspection. However, because of exponential stretching in the pure deformation
versus algebraic stretching in the pure shear, the mixing efficiencies of these two
flows are in fact very different, although they correspond to the same Péclet number
Pec = 5 × 105. This can be quantified by the mixing time, Tmix, defined as the
time when the relative concentration is divided by 2: c̃(Tmix) = 1/2. From figure 3,
we have σTmix(deformation) ' 6.5, which is one order of magnitude smaller than
γTmix(shear)' 150.

Figure 4 displays the evolution of Tmix in both cases when increasing Pec by
decreasing the colloid diffusion coefficient Dc with all other parameters maintained
fixed so that the salt Péclet number remains Pes = 735. (Parameters are Ds =

1360 µm2 s−1, Ddp= 290 µm2 s−1, y2
0,c= x2

0,c= 1 mm2, the shear rate being σ = 1 s−1

(deformation) and γ = 1 s−1 (shear).) In the case of pure deformation, Tmix increases
logarithmically with Pec, and we find that the ratio of the mixing times with and
without diffusiophoresis is nearly constant at moderate Péclet number Pec 6 105. Such
a result can be explained by recalling that the large scale is weakly affected by
diffusiophoresis and expands exponentially 〈x2

〉c ∼ x2
0,c exp 2σ t while the small scale

is compressed toward the modified Batchelor scale 〈y2
〉c = `

2
B,c = DcDs/(Ddp +Ds)γ .

Defining Tmix as the time needed for the concentration to be half of its initial value,
one obtains:

〈x2
〉c〈y2
〉c

x2
0,cy

2
0,c
= 4, t= Tmix (4.7)

Tmix =
1

2σ
ln
(

4Pec
Ddp +Ds

Ds

)
, (4.8)
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FIGURE 4. (Colour online) Evolution of the mixing time Tmix in the case of pure
deformation (a, σ =1 s−1) and pure shear (b, γ =1 s−1) for a fixed shear rate and variable
colloid diffusion coefficient Dc ∈ [0.2, 2 × 105

]µm2 s−1. Same set of parameters as in
experiments; Ds = 1360 µm2 s−1, Ddp = 290 µm2 s−1, y2

0,c = x2
0,c = 1 mm2. Legends are

– · – · –: ‘salt-attracting’ case, Ddp = 290 µm2 s−1; ——: ‘no-salt’ case, Ddp = 0 µm2 s−1;
– – –: ‘salt-repelling’ case, Ddp =−290 µm2 s−1.

which gives a qualitative picture of how the Tmix is affected by diffusiophoresis at
moderate Pec.

In the case of pure shear, Tmix is found to increase as a power law Tmix ∝ Pe1/3
c /γ .

Such algebraic scaling is a direct consequence of equation (3.6), and is typical
of shear dispersion (Young et al. 1982; Rhines & Young 1983). It is obtained by
assuming that the patch grows as 〈x2

〉c ∼ Dcγ
2t3 in the x direction so that it has

doubled in size in a time Tmix (here x2
0,c = y2

0,c). In this second case too, we find that
in the moderate Péclet number range the mixing time is always slightly larger in
the salt-attracting configuration (Ddp > 0) whereas Tmix is smaller in the salt-repelling
configuration (Ddp < 0). These observations are consistent with previous experimental
and numerical studies of the mixing time (Deseigne et al. 2014; Volk et al. 2014),
especially in the case of pure deformation for which the mixing time presents the
same logarithmic scaling as in the chaotic regime due to the action of compression.

In the high Péclet number range, we observe that Tmix saturates (close to
σTmix(deformation)=6.5 and γTmix(shear)=88 respectively). This is a very interesting
behaviour because it shows that the colloids can be mixed efficiently although they
have a vanishingly small diffusion coefficient. Such a property is uncommon, and is
not explained by the two qualitative pictures given previously. In order to understand
this behaviour we plot the evolution c̃ in figure 5 for four values of the Péclet
number Pec = 5 × 103, 5 × 105, 5 × 107, 5 × 109. From figure 5, we observe that
increasing the Péclet number results in a shift of c̃(t) toward larger times both for the
reference and the salt-attracting configuration so that Tmix increases at increasing Pec.
On the opposite, no such shift is observed in the salt-repelling configuration for which
increasing the Péclet number no longer changes the evolution of c̃(t) at short time as
soon as Pec > 105, and it is only on a longer time scale that differences between the
curves can be observed. We thus conclude that the saturation values reported above
strongly depends on the precise definition of Tmix. Indeed, defining Tmix as the time
needed to divide the concentration by 10 (90 % decrease) would extend the range of
Péclet number in which we observe an increase, with larger saturation values. If this
shows that the present result is robust, it points out the difficulty of defining a mixing
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FIGURE 5. (Colour online) Time evolution of c̃ =
√
∆c(0)/∆c in the case of pure

deformation (a, σ = 1 s−1) and pure shear (b, γ = 1 s−1) for a fixed shear rate and four
values of the colloid diffusion coefficient Dc=[0.02, 2, 200, 20 000] µm2 s−1. Same set of
parameters as in experiments Ds= 1360 µm2 s−1, Ddp= 290 µm2 s−1, y2

0,c= x2
0,c= 1 mm2.

Legends are – · – · –: ‘salt-attracting’ case, Ddp= 290 µm2 s−1; ——: ‘no-salt’ case, Ddp=

0 µm2 s−1; – – –: ‘salt-repelling’ case, Ddp =−290 µm2 s−1.
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FIGURE 6. (Colour online) Time evolution of c̃ =
√
∆c(0)/∆c for a fixed colloid

diffusion coefficient and different values of the shear. (a), pure deformation σ = 1 s−1,
0.5 s−1, 0.25 s−1, 0.125 s−1; (b), pure shear γ = 0.02 s−1, 0.1 s−1, 1 s−1, 10 s−1. Same
set of parameters as in experiments (Ds = 1360 µm2 s−1, Dc = 2 µm2 s−1, Ddp =

290 µm2 s−1), y2
0,c = x2

0,c = 1 mm2. Legends are – · – · –: ‘salt-attracting’ case, Ddp =

290 µm2 s−1; ——: ‘no-salt’ case, Ddp = 0 µm2 s−1; – – –: ‘salt-repelling’ case, Ddp =

−290 µm2 s−1.

efficiency through a single quantity, such as Tmix, as soon as the curves change their
shape when varying the parameters.

4.3. The maximum concentration does not depend on flow properties (Ddp > 0).
When investigating the influence of the colloid diffusivity Dc in the salt-attracting
case (figure 5), it appears that c̃(t) reaches a maximum value which increases when
decreasing Dc. Moreover this maximum of concentration seems not to depend directly
on the flow. Indeed, the maximum c̃max is found to be nearly the same in the two
cases of deformation and shear displayed in figure 5 (see also figure 3). Moreover,
all parameters the same except γ or σ , we observe in figure 6 that c̃max is insensitive
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to the stirring properties of the flow. In this large Péclet number range Pec > 103, c̃max
seems to depend only on chemical properties and initial lengths.

A qualitative analysis developed below shows that in the case of initially round
patches, the maximum of colloid concentration is well predicted by the relation:

c̃max =

(
Ddp

Dc

〈Y ′2〉c(0)
〈Y2〉s(0)

)Ddp/2(Ddp+Ds)

. (4.9)

In order to establish this relation, we first start with equations (4.2) and (4.6) which
describe the evolution of both salt and colloids compressibilities, and rewrite them as:

1
2∆s

d∆s

dt
=Ds

(
1
〈X2〉s

+
1
〈Y2〉s

)
(4.10)

1
2∆c

d∆c

dt
=−Ddp

(
1
〈X2〉s

+
1
〈Y2〉s

)
+Dc

(
1
〈X′2〉c

+
1
〈Y ′2〉c

)
, (4.11)

where we used the principal axes of both Gaussian distributions. In the initial stage of
colloid mixing, diffusive effects are negligible as compared to diffusiophoretic effect
because Dc�Ddp, so that

1
2∆c

d∆c

dt
≈−Ddp

(
1
〈X2〉s

+
1
〈Y2〉s

)
. (4.12)

In this first stage, the area of both species are related to each other by the relation

1
Ddp

ln
∆c(t)
∆c(0)

+
1

Ds
ln
∆s(t)
∆s(0)

≈ 0, (4.13)

which explains why all curves for the salt-attracting configuration follow the same
initial evolution in figure 5 where only Dc is varied. We will assume that this relation
holds for t 6 t? such that c̃(t?) = c̃max, which is an approximation as the role of Dc
is neglected and may lead to a slight overestimation of c̃max. When c̃ reaches its
maximum value, diffusive and diffusiophoretic effects compensate so that ∆c reaches a
minimum and its time derivative is zero. As the small scales of both species are much
smaller than the corresponding large scales, 〈Y2

〉s(t?) and 〈Y ′2〉c(t?) are then linked by
the relation (equation (4.11)):

〈Y ′2〉c(t?)=
Dc

Ddp
〈Y2
〉s(t?). (4.14)

In the case of initially round patches, the large scales of both species are only
weakly affected by diffusion and diffusiophoresis so that 〈X′2〉c(t)/〈X′2〉c(0) ≈
〈X2
〉s(t)/〈X2

〉s(0) at any time. This leads to the relation:

∆c(t?)=
Dc

Ddp

〈X′2〉c(0)
〈X2〉s(0)

∆s(t?), (4.15)

which we chose to write

∆s(t?)
∆s(0)

=
∆c(t?)
∆c(0)

Ddp

Dc

〈Y ′2〉c(0)
〈Y2〉s(0)

. (4.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.335


Advection and diffusion in a chemically induced compressible flow 241
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FIGURE 7. (Colour online) Evolution of the relative maximum measured from c̃(t) as
a function of the predicted value using (4.9). Legends are (E): pure shear. (@): pure
deformation. (– –): straight line of equation y= x.

This last relation can be combined with (4.13) to get the formula given in (4.9).
Note that in the case of pure deformation x and y directions decouple so that equation
(4.9) holds also for non-round patches (i.e. with arbitrary initial aspect ratios). Note
also that we used the hypothesis that the distributions of salt and colloids possess a
large and a small scale, so that (4.9) would not hold in the absence of flow (pure
diffusiophoresis).

The prediction of c̃max has been tested with initially round patches in both cases
of pure shear and deformation by varying independently all parameters (Ds, Ddp, Dc,
x0,s = y0,s, x0,c = y0,c) over two decades with fixed values σ = 1 s−1 and γ = 1 s−1.
Figure 7 displays the maximum concentration measured from c̃(t) as a function
of the predicted value. It is remarkable that the maximum is very well predicted
by the relation (4.9) with less than 10 % error. This shows that the hypothesis of
taking into account colloid diffusion only very close to the maximum is a good
approximation. As seen from this figure is an other striking result: by setting the
experimental configuration of a small salt patch (y0,s ≈ 1 mm) and a larger colloid
patch (y0,c ≈ 10 mm), it is in principle possible to increase the colloid concentration
by a factor larger than 10, which would correspond to strong demixing of the colloids.

5. Conclusion
We have studied analytically the dispersion of patches of salt and colloids in

linear velocity fields. The velocity fields (pure deformation and pure shear) were
chosen to correspond to fundamental examples at the heart of our understanding of
mixing (Bakunin 2011). Assuming the patches were initially released with Gaussian
profiles, both cases could be analytically solved almost entirely so that results could
be obtained for any set of parameters.

An analytical solution was obtained in the case of pure deformation, which
showed that diffusiophoresis led to a modification of the Batchelor scale `B,c =√

DcDs/σ(Ddp +Ds). The case of pure shear was found to be more complex, but
equations for the evolutions of colloid concentration moments were obtained and
solved numerically for various sets of parameters.

Using the area of the patches A, the evolution of the colloid global concentration
(rescaled by its initial value) was studied. A prediction for the time, Tmix, needed
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to decrease the concentration by a factor 2 was obtained. In both cases, we found
that in the moderate Péclet number range the mixing time is always slightly larger in
the salt-attracting configuration (Ddp > 0) whereas Tmix is smaller in the salt-repelling
configuration (Ddp < 0). These observations are consistent with previous experimental
and numerical studies of the mixing time (Deseigne et al. 2014; Volk et al. 2014),
especially in the case of pure deformation for which the mixing time presents the
same logarithmic scaling as in the chaotic regime due to the action of compression.

In all cases, the evolution of the concentration was intriguingly similar to the
one observed experimentally in chaotic mixing, presenting a maximum in the
salt-attracting configuration as the colloid concentration is first amplified before
being attenuated. Using arguments based on compressibility, it was possible to
obtain a prediction of the maximum concentration when dealing with initially round
patches. This prediction involves the existence of a flow, but does not involve the
flow parameters, and compares very well with numerical and analytical results.
Finally, we stress that while established in the case of linear flows, it also gives the
correct order of magnitude (less than 3 % error) in the case of diffusiophoresis with
chaotic advection in our numerical paper (Volk et al. 2014). This points out that
diffusiophoretic effects are not changed when increasing stirring. This observation
also holds for the mixing time as we found that the ratio Tmix(Ddp 6= 0)/Tmix(Ddp= 0)
does not depend on the shear rate.
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