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Modern injectors for supersonic combustors (hypermixers) augment the fuel–air
mixing rate by energizing the perturbation in the mixing layer. From an instability
point of view, the increased perturbation growth is linked to the increased complexity
of the equilibrium base flow when compared to the axisymmetric mixing layer.
Common added features are streamwise vortex streaks, oblique recompression shocks
and Prandtl–Meyer expansions. One of the main effects of such distortions of the
mean flow is to transform the instability responsible for the creation of fine scales
from a local amplified mode to a global self-sustained fluctuation. The focus of the
present research is on the flow distortion induced by flushed ramps for free-stream
Mach numbers in the range 2.5–3.5. The principal mean flow features are the
recirculation region due to the recompression of the flow after the ramp, the shear
layer over the recirculation region and the vortex streaks propagating from the
ramp corners. A global three-dimensional stability analysis and three-dimensional
direct numerical simulations of small perturbations of the mean flow are performed.
The growth and energy distribution of the dominant and subdominant fluctuations
supported by the three-dimensional steady laminar base flow are computed. The
main results are the growth rates of the self-sustained varicose and sinuous modes
and their correlation to the variation in the free-stream Mach number. The complex
three-dimensional wavemaker is investigated by evaluating the three-dimensional
eigenfunctions of the direct and adjoint modes, and the effects of the axial vorticity
generated by the ramp corners are discussed.

Key words: absolute/convective instability, compressible flows, mixing enhancement

1. Introduction

The reduction of the mixing layer spreading rate with an increased Mach number
poses a serious challenge to the flow-path design of supersonic combustors, e.g. those
used in scramjet engines (Curran, Heiser & Pratt 1996). The lower mixing rate is
correlated to the decrease in the growth rate of the shear layer instability with an
increasing convective Mach number (Jackson & Grosch 1990). Thus, supersonic
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404 L. Massa

combustion is a diffusion-limited process. In order to improve the performance of
supersonic air-breathing engines, the hypermixer injector design has been introduced,
whereby streamwise (axial) vorticity is added to the mean flow using different
mechanisms, e.g. wall-mounted ramps (Curran et al. 1996) and cross-flow injection
(Shan & Dimotakis 2006).

Recent experimental (Megerian et al. 2007) and numerical (Bagheri et al. 2009)
investigations have attributed the success of cross-flow injection in incompressible
flows to a change of the instability from an amplified Kelvin–Helmholtz mode to a
self-sustained global instability mode, rather than to the introduction of streamwise
vorticity. This change is associated with the presence of a wavemaker, a region of
self-excitation that sustains the self-coupled perturbation growth (Huerre & Monkewitz
1990). The presence of a recirculation zone behind ramps has been noticed in
several previous studies (Koike et al. 2006), but its ability to act as a wavemaker by
supporting self-sustained motion has not been previously studied. Counterflow leads
to a significant increase in the spatial growth rate of supersonic jets according to
the experiments of Strykowski, Krothapalli & Jendoubi (1996). The increased mixing
layer growth rate causes a reduction of the potential core length by a factor of two
in counterflowing jets at Mach 2, thus a significant mixing enhancement (Gutmark,
Schadow & Yu 1995).

The main contribution of the present investigation is to show that a wall-mounted
ramp injector in a supersonic free stream obtains an increased mixing by virtue of the
same mechanism as the cross-flow injectors in incompressible flow, i.e. it supports
a set of self-sustained global modes. Self-sustained modes are generally insensitive
to forcing (Hallberg & Strykowski 2006), feature large-wavelength fluctuations (the
wake-like modes described by Lin & Reitz (1998)), and are highly efficient: the
transition between convective and absolute behaviour leads to fast destabilization
(e.g. the rotating disk boundary layer studied by Lingwood (1996)). Therefore,
identifying the mixing instability supported by ramp injectors as self-sustained
leads to important practical consequences on the excitation and control of the flow
(Gutmark et al. 1995). Self-sustained instabilities in combustion systems lead to
self-turbulization of the reaction region as opposed to the forced turbulization process
primarily driven by turbulent eddies formed in the fresh mixture within the feeding
tube (Sivashinsky 1979).

The emphasis of the present investigation is on the existence, growth rate and
energy distribution of coherent self-sustained structures. A three-dimensional global
stability analysis, like the one performed in the present research, is often termed
triglobal (Theofilis 2003) to distinguish it from the biglobal approximation, whereby
the mean flow is assumed homogeneous in one direction, typically the span; thus,
the linear perturbation is expanded in Fourier terms. In triglobal theory, the coherent
modes are found by solving a temporal eigenvalue problem using a steady laminar
base flow as the initial unperturbed condition. The present linear global temporal
stability analysis has two limitations. First, it neglects the background turbulence
convected from both the free stream and the jet. Second, the linear fluctuation
dynamics does not account for the mean flow distortion caused by nonlinear
correlations (mainly the Reynolds stress) of the coherent modes. Reynolds & Hussain
(1972) find that the background turbulence interacts with the coherent modes in
two ways. First, the Reynolds stresses based on the background motion support a
mean flow distortion that changes the instability eigenvalue problem. Second, the
oscillations of the background velocity–velocity correlations when averaged over the
coherent fluctuation period dynamically interact with the coherent mode evolution. The
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Global mixing modes induced by ramp injectors 405

case of turbulent (convectively forced) jets was recently analysed by Gudmundsson
& Colonius (2011), who obtained a good agreement with experimental data by
including only the first contribution (mean flow distortion) in a weakly non-parallel
instability analysis. Numerical simulations of self-excited wakes with turbulent
boundary conditions (Sandberg 2012) have shown that a base flow calculated as
the mean of a turbulent profile induces global instability at lower Reynolds numbers
than laminar (axisymmetric) base flow profiles. Moreover, the same author finds that
the addition of a turbulent eddy viscosity to the stability calculations reduces the
growth rates, but does not change the self-excited character of the instability.

The present model accounts only for the mean flow distortion in the injection tube,
but neglects both the background and coherent nonlinear correlations outside of the
tube. These contributions can be determined by a weakly nonlinear modal expansion
together with a model for the nonlinear correlations of the background turbulence.
This task is outside the scope of the present investigation (i.e. global linear stability)
and will be performed in future research.

There are two major difficulties with carrying out a three-dimensional global
stability analysis of a self-excited flow. The first challenge deals with the necessity
to resolve both the vortical layers that support the short-wavelength shear modes
and the recirculation region that supports the long-wavelength wake modes identified
by Bagheri et al. (2009) in subsonic cross-flow injection. In order to resolve the
multiscale dynamics for Reynolds numbers typical of wind-tunnel experiments
(Vergine, Crisanti & Maddalena 2013), the block adaptive mesh refinement (AMR)
approach of Colella et al. (2006) is used, whereby the coarsest grid is chosen fine
enough to resolve the recirculation region, while the finest mesh is able to resolve the
vortical layers. The eigenspace of the linearized Navier–Stokes operator discretized
on such a multilevel mesh is projected on the Krylov subspace spanned by the
flow field snapshots using the implicitly restarted Arnoldi algorithm developed by
Lehoucq, Sorensen & Yang (1998). The outcomes of this analysis are the most
energetic (i.e. fastest-growing) sinuous and varicose modes supported by the ramp for
a range of Mach numbers. The second difficulty is related to the fact that a temporal
stability analysis requires a base flow (not properly a mean flow, even though the two
terms are here used interchangeably) that is a solution of the steady residual of the
Navier–Stokes equations without a subgrid model. Global instability implies that such
a base flow cannot be obtained using a time-marching procedure. The time-marching
algorithm must be stabilized by altering the system eigenvalues without changing
the steady state. A modification of the selective frequency damping (SFD) method
developed by Åkervik et al. (2006) is proposed and analysed in the present study.
The analysis is presented in five sections organized as follows: § 2 describes the
geometry and flow conditions, § 3 details the governing equations, § 4 presents the
flow solver, § 5 presents the main results and § 6 summarizes the major conclusions
supported by the present analysis.

2. Ramp geometry and flow conditions

A standard notation for the flow and geometry variables is assumed: x, y and z
denote the streamwise, cross-flow and spanwise coordinate directions; the velocity
vector u has Cartesian components u, v and w; ρ is the density; µ is the shear
viscosity (the bulk viscosity is neglected); κ is the thermal conductivity; ω is the
vorticity; T is the static temperature and T0 is the total temperature; M is the Mach
number; θ is the momentum thickness; and a is the speed of sound.
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FIGURE 1. Flushed ramp geometry. The top plane of the injecting ramp is horizontal, and
the ramp angle is ζ = 10◦. The disk indicating the location of the turbulent jet is centred
in the ramp injecting plane and has radius equal to h/4, where h is the ramp height.
This sketch represents only the near-ramp region of the computational domain. The actual
domain extends 15h downstream of the injection plane.

The single wall-mounted ramp aims to reproduce the experimental flow conditions
of Vergine et al. (2013). The ramp was designed to introduce axial vorticity by the
spanwise distortion of the incoming two-dimensional boundary layer, i.e. Dωz/Dt ≈
ωz ∂u/∂z, but without the complications of introducing oblique shocks (e.g. shock–
boundary layer interaction). The geometry is shown in figure 1.

The flow conditions at the free-stream plane located 0.1h before the beginning
of the ramp are M = M∞, T = T∞ = 300 K, θ/h = 1 × 10−2 and a self-similar
adiabatic boundary layer profile. The first parameter is varied while the other two
are maintained constant in the present study. The second parameter controls the
magnitude of µ′/µ through Sutherland’s viscosity formula. This parameter is higher
than typical wind-tunnel data, but a parametric analysis (not reported) has shown that
its influence on the eigenvalue is marginal.

The flow conditions at the jet injection plane are Mj = 1, T0
j = 2.8T∞ and pressure

adjusted to match the back-pressure behind the ramp, thus supporting a perfectly
expanded injection. The back-pressure does not vary significantly with the Mach
number; thus an injection pressure pj/p∞ = 0.31 has been selected based on a
preliminary analysis of non-injecting ramps. The injection profile is assigned in
terms of the streamwise velocity and typifies a turbulent jet at a short distance from
the injecting plane. The chosen Gaussian fit to the experimental data of Morrison
& McLaughlin (1980) is similar to that used by previous works (Gudmundsson &
Colonius 2011; Massa & Ravindran 2012),

u
uj
= exp

[
−2.773×max

(
r− r1/2

2b
+ 1

2
, 0
)2
]
, (2.1)

where r1/2 is the location such that u/uj = 1/2, b = 0.025h and uj is the centreline
velocity evaluated based on the previously reported values of Mach number and total
temperature, i.e.

uj

a∞
=

Mj

√
T0

j /T∞√
1
2(γ − 1)M2

j + 1
. (2.2)
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Global mixing modes induced by ramp injectors 407

Adiabatic wall boundary conditions are used at the ramp, while the inflow profile
at the free stream (the plane x = 0 in figure 1) is a laminar self-similar adiabatic
boundary layer with assigned momentum thickness θ . Symmetry or specular reflection
(antisymmetric case) boundary conditions are applied at the plane with maximum span,
while numerical boundary conditions are applied at the lowest spanwise coordinate and
the maximum normal plane. The numerical boundary conditions are implemented by
evaluating the fluxes on the domain boundary using a second-order extrapolation of
the nearest cell values.

3. Governing equations
The governing equations are the compressible laminar Navier–Stokes equations.

They contain the usual conservation laws for mass, momentum and energy, plus
models for the deviatoric stress tensor based on Stokes law of friction,

σ = λ∇ · uI +µ(∇+∇T)u, (3.1)

and the conductive heat flux based on Fourier’s law, q=−κ∇T . The shear viscosity
is a function of the temperature given by Sutherland’s law,

µ

µ0
= T0 +C

T +C

(
T
T0

)3/2

, (3.2)

where T0 = 273.15 K and C= 110.4 K.
The Reynolds number based on the ramp height is fixed at the wind-tunnel values

(Vergine et al. 2013) of Re = ρ∞u∞h/µ∞ = 2.5 × 105 and the Prandtl number is
Pr= 0.72.

3.1. Scales
In all the results reported in this paper, the unit length is the ramp height, the unit
velocity is the free-stream speed of sound, and the unit pressure and temperature are
the corresponding free-stream values. Although the free-stream speed of sound is taken
as the velocity scale, the Reynolds number based on the free-stream velocity and
density, Reh,∞ = 2.5 × 105, is maintained constant when changing the Mach number.
Finally, note that the modal frequencies and growth rate are reported with units of
a∞/h.

4. Flow solution
The flow solver is an AMR code based on the CHOMBO library (Colella et al.

2006). Complex boundaries are embedded in the grid using the cut-cell approach. The
fluxes at the solid surfaces are thus evaluated using the immersed boundary method.
The geometrical information about the injector is specified using a combination
of implicit geometric functions, allowing changes in its shape without the need to
preprocess the computational grid. The inviscid operator is treated explicitly and
discretized to the second order in both space and time using the Godunov method
with a Van Leer limiter (Van Leer 1977). The viscous operator is treated implicitly
because of the large refinement ratios necessary to correctly model complex shapes.
The temporal discretization of the viscous operator is either the first-order backward
Euler scheme for the time-independent base flow or the second-order Crank–Nicolson
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408 L. Massa

analogue for the time-dependent linearized perturbation equation. Central difference
formulas are used in all directions to discretize the spatial derivatives in the diffusive
terms.

The convergence of the linear system solvers necessary in the implicit updates is
accelerated using the multigrid technique coupled with Gauss–Seidel relaxations and
the biconjugate gradient method as bottom solver. Grid coarsening within the multigrid
is performed both within each level and across levels to obtain an efficient solution
of the viscous update.

4.1. Convergence to steady state (selective frequency damping)
The separation of the flow solution in base and fluctuation takes advantage of
the time independence of the base flow, which is a solution of the Navier–Stokes
residual equations. Convergence to steady state is challenging for globally unstable
compressible flows. On the one hand, a time-marching procedure does not succeed
because the fixed point solution is unstable. On the other hand, the application of the
Newton method to the steady part of the Navier–Stokes equations is problematic in
high-speed flow. The rationale is that the switch-on nature of both the limiters and
the Godunov method makes convergence very difficult. This research adopts the SFD
approach proposed by Åkervik et al. (2006). Selective frequency damping consists of
two modifications to the original Navier–Stokes equations: the fluid state is augmented
by adding the time-filtered solution (q) to the time-updated instantaneous variables
(q); the partial differential equations for the instantaneous part is modified by adding
a damping term proportional to q− q. For an exponential time filter, the augmented
Navier–Stokes system is

∂q
∂t
=N [q] − χ(q− q), (4.1a)

∂ q̄
∂t
= q− q̄

∆
. (4.1b)

Here χ and ∆ are parameters selected based on the unstable eigenvalues of the
original system. In general, χ is taken large enough to stabilize all eigenvalues of the
Navier–Stokes system; ∆ must be large compared to χ so that the scales of the filtered
and instantaneous solution are separated. At steady state the solution of the augmented
and original systems are identical. The application of SFD to flows featuring both
strongly unstable high-frequency shear modes and weakly unstable low-frequency
wake modes is challenging. The rationale is that increasing χ at constant ∆ leads
to the stabilization of the high-frequency modes, but the destabilization of the
low-frequency counterparts; while increasing ∆ at constant χ yields a marginal
improvement of the low-frequency stability region. To understand this point, consider
a complex eigenvalue α ≡ αr + iαi of the original linearized operator ∂/∂t −N ′ in
(4.1). An eigenvalue pair for the augmented system β1,2(α; χ, ∆) can be computed
from (4.1) by substituting q with the eigenvector associated with α and solving
a quadratic equation in β (see Åkervik et al. (2006) for details). The governing
equation (4.1) has only one explicit dimension, the time, and thus χ can be set to 1
and the remaining variables are transformed into α→ α/χ , β→ β/χ and ∆→∆χ .
The curve of marginal stability in the αi–αr plane is defined by the value of the
original eigenvalues such that the transformed system is marginally stable; i.e. the
real part of the maximum transformed eigenvalues is zero, max(βr,1, βr,2) = 0. In
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FIGURE 2. Comparison of SFD schemes: marginal stability curve. (a) Comparison of
single-damper schemes. Different line types indicate different values of ∆: solid, ∆ =
10; dashed, ∆ = 20; dot-dashed, ∆ = 40; dotted, ∆ = 250. (b) Comparison of different
multiple-damper schemes: thin solid, S(1, 100, 100); dashed, S(1, 200, 200); thick solid,
S(3, 12, 200); dotted, S(3, 12, 500). See the text for the naming convention of the damping
schemes.

the limit ∆ × χ →∞, the marginal stability curve for αi > 0 is composed of two
segments,

αr = 1, αr =
√

1
4 − (αi − 1

2)
2, (4.2a,b)

representing the high- and low-frequency regions, respectively. The solution is unstable
within a semicircle of radius χ/2 centred at the point α = χ/2 + 0i. Therefore, the
difficulty due to the coexistence of shear and wake modes can be summarized as
follows. An increase in the most unstable mode must be countered by a proportional
increase in χ to stabilize the high-frequency oscillations. This leads to a proportional
increase of the radius of the low-frequency instability semicircle and, possibly, to the
destabilization of the low-frequency perturbations. The low-frequency instability region
shrinks marginally with increasing ∆; see figure 2(a). Since (4.2) was obtained for
∆→∞, SFD fails to ensure convergence when highly energetic eigenvalues coexist
with weakly energetic low-frequency counterparts.

In order to stabilize the low-frequency wake modes, (4.1) is modified by adding
to the original problem a set of dampers (rather than a single one) with filter widths
spaced apart so that they operate independently. The idea is that dampers that operate
with a smaller value of χ feature a reduced region of low-frequency instability. The
augmented system of equations is

∂q
∂t
= N [q] −

N∑
i

χi(q− qi), (4.3a)

∂ q̄i

∂t
= q− q̄i

∆i
, i= 1, . . . ,N, (4.3b)

with the condition ∆i = f∆i−1 =∆1(∆N/∆1)
(i−1)/(N−1), χi = χ/N. Therefore, different

damping schemes are identified as S(N, ∆1, ∆N) by specifying the number of
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dampers, the smallest and largest filter widths ∆1 and ∆N , while maintaining the
overall damping χ = 1. A comparison between four damping schemes is shown in
figure 2(b). The region of stability is that below the curves. High-frequency modes are
well stabilized by all schemes. The analysis of the low-frequency region reveals that
increasing ∆ is of marginal benefit to improving stability when N=1. On the contrary,
the two N = 3 schemes behave much better at low frequencies and an increase in ∆N
leads to a significant improvement in the stability of the scheme. More importantly,
by keeping f ≡ ∆i/∆i−1 fixed and sending N →∞, it is possible to eliminate the
low-frequency instability region. This was not the case for the N = 1 scheme and
∆→∞. Unfortunately, N→∞ yields ∆N→∞, leading to the introduction of slow
filtering modes that significantly retard the evolution of the system. A three-dampers
S(3, 12, 300) scheme has been used for all the computations reported in this paper.

The base flows were driven to steady state on an increasing number of levels
starting with a single mesh at the coarsest level and ending with a six-level mesh.
Each computation except the first was initialized using the converged solution obtained
on the lower number of levels. Convergence was monitored by tracking both the
maximum residual and the maximum value of the damping Rχ ≡

∑N
i χi(q− qi), where

the maximum is taken over all the spatial locations. The two measures (damping
term and residual) gave very similar results. A plot of the history of convergence is
presented in figure 3, where Rχ is normalized by its maximum value within each
panel, and the time in the abscissa is restarted at the beginning of each multilevel
computation. The history plot shows that convergence becomes increasingly more
difficult as the number of levels increases. The single-level computation was stopped
when Rχ(t)/Rχ(0)< 1× 10−2, two to four levels when Rχ(t)/max(Rχ)< 1× 10−1, five
levels when Rχ(t)/max(Rχ)< 2× 10−1 and six levels when Rχ(t)/max(Rχ)< 5× 10−1.
It was not possible to reduce the convergence error for two to five levels beyond
the accepted tolerance. The rationale is the switch-on nature of the limiters and the
AMR that induced changes in stencils at the irregular points. The six-level case was
stopped earlier than the others because the convergence of the eigenvalue reported in
§ 5.2 was deemed an acceptable stopping criterion.

4.2. Grid adaptation
Grid adaptation to the flow gradients is performed by tagging cells with a module
of the vorticity larger than a user-defined threshold, ω > δ = 25a∞/h. All the cells
adjacent to the solid and symmetry boundaries are generated with the maximum
level of refinement. The clustering algorithm of Berger & Rigoutsos (1991) is used
to regrid the mesh based on the tagged cells. Up to six levels of grid refinement r
were used in the present investigation; thus, the minimum grid spacing is reduced
in all directions according to ∆ ∝ 2r−1. A buffer region of thickness two cells is
placed around each tagged cell for all levels but the last, r= 6, where only one layer
of cells is used to limit the computer time per step. The tagging criterion is based
on the base flow vorticity and is kept unchanged in the perturbation analysis. The
rationale is that the shear modes were found to be the fastest-growing fluctuations;
thus, the maximum energy exchanges between mean and fluctuation occur in the
vortical layers. The accuracy of the eigenvalue predictions is tested by comparing
simulations with different numbers of levels. The smallest mesh, where only the
coarsest spacing is used, has size 128 × 32 × 32, while those with maximum level
rmax = 3–6 have, in order, 1.74 × 106, 6.74 × 106, 26.2 × 106 and 75.9 × 106 mesh
points. The number of mesh points quadruples with the increasing level, because
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FIGURE 3. Convergence history for the M∞ = 2.5 case.

the three-dimensional vortical isocontours tend to have a constant extension as r
increases. The only exception is the rmax = 6 case, an outcome explained by the
above-mentioned reduction in buffer region.

An important drawback of the present block-structured hierarchical grid adaptation
strategy when compared to the use of body-fitting meshes is that the cells are refined
in all directions. The lack of highly stretched cells close to the boundary leads to a
quickly increasing cell count when resolving boundary layers. The magnitude of the
grid spacing close to the boundary can be estimated by expressing it in wall-normal
coordinates based on the upstream boundary layer. Noting that 1y/h = 2.5/(32 ×
2(r−1)), one has

1y+ ≡ 1y
µ

√
ρτw =1y

√
h
θ
× µ

µ∞

∂u
∂η
× Reh ×

∫ ∞
0

ρu
ρ∞u∞

(
1− u

u∞

)
dη. (4.4)

Here, η is the self-similar boundary layer coordinate (see e.g. Criminale, Jackson &
Joslin 2003, p. 157). Assuming a self-similar adiabatic laminar boundary layer with
Mach number M= 2.5, both the integral and derivative terms in (4.4) can be evaluated
by numerically solving an ordinary differential equation. For Reh = 2.5 × 105 and
θ/h= 0.01, this analysis leads to

1y+ ≈ 169/2r−1. (4.5)
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FIGURE 4. Computational meshes for M = 2.5 at x= 8.25 and two levels of refinement:
(a) four grid levels; (b) five grid levels. Contour lines at constant ū are superimposed onto
the meshes; 10 equally spaced contours between −1.5 and 2.75 are drawn; the negative
velocities are shown with dashed lines, the positive ones with solid lines.

Therefore, the finest grid considered has maximum wall spacing 1y+ ≈ 5, which
yields an acceptable accuracy according to previous studies (e.g. Spalart 2000). Based
on the physical dimensions of the ramps, the smallest dimensional mesh spacing is
approximately 10 µm.

A comparison of x= const. sections of the computational meshes for four and five
levels of refinements are shown in figure 4(a,b), respectively. The lines superimposed
onto the grid are isocontours of the mean axial velocity ū. Contours are drawn for 10
equally spaced values between −1.5 and 2.75. The solid lines correspond to positive
values of the axial velocity, the dashed lines to the negative analogues. The figures
correspond to the plane x = 8.25, which will be shown later to contain the location
of the maximum amplification for M = 2.5. The comparison between the velocity
contours on the two levels of mesh refinement suggests that the discretization error
is small on rmax = 5, and thus the base motion is converged. This outcome should be
compared with the analysis presented in § 5.2, where the convergence of the global
modes will be presented.

4.3. Perturbation evolution
The global eigenvalue analysis is carried out using the implicitly restarted Arnoldi
method implemented in ARPACK (Lehoucq et al. 1998). The convergence of the
Arnoldi algorithm is improved and the spurious eigenmodes are eliminated by using
a procedure identical to that proposed by Bagheri et al. (2009). The said authors
converted the problem of finding the eigenvalue of the linearized Navier–Stokes
operator with largest real part to one that seeks the eigenvalue with largest modulus
(dominant) of the update operator with a user-defined time interval.

The eigenvalue search method is based on the idea that, for a linear system with
few dominant modes, the vector sequence formed by repetitively applying the update
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operator to an initial guess q0 contains substantial information about the direction of
the dominant eigenvectors. Therefore, the eigenvectors are projected in the Krylov
subspace spanned by the solution snapshots

K ≡ span{q0, B(1T)q0, . . . , B(1T)m−1q0}, (4.6)

where B(1T) is the update operator of the linearized Navier–Stokes equations over
an interval 1T , i.e. q(1T) = B(1T)q0. While the system matrix has dimension
n ≡ size(q) that ranges in the hundreds of millions, an orthonormal basis V for K
containing substantial information about the direction of the dominant eigenvectors
is composed of only a few thousand vectors. The components of the eigenvectors
in V are determined by imposing a minimization condition on the error of the
eigenvalue problem. In particular, imposing that the error is orthogonal to the
Krylov subspace itself leads to the formulation of the small (of size m) eigenvalue
problem VTBVs= sΘ , where Θ is called the Ritz value and is an approximation for
the eigenvalue. The choice of a convenient orthonormal basis with the property that
VTBV≡H is an upper Hessenberg matrix leads to an efficient, iterative computational
procedure to determine V. Such a procedure, called the implicitly restarted Arnoldi
method, is described in details by Lehoucq et al. (1998).

5. Results
The base flow is specularly symmetric about the x–y plane containing the axis

of the jet. The first-order perturbations are, therefore, separated into symmetric and
asymmetric modes. The symmetric modes describe varicose fluctuations, while the
asymmetric analogues typify the sinuous perturbations. The two sets of modes are
evaluated independently by solving the eigenvalue problem over half of the domain
shown in figure 1 and imposing either symmetric, ∂ρ ′, u′, v′, T ′/∂z = w′ = 0, or
antisymmetric, ∂w′/∂z = ρ ′ = u′ = v′ = T ′ = 0, conditions at the centre plane. A
convergence study of the eigenvalues against the maximum number of levels in the
mesh will be presented only for the baseline case with free-stream Mach number
M∞ = 2.5, which corresponds to the experimental conditions (Vergine et al. 2013).
Linear stability and base flow results will be shown for M∞ = 2.5, 3.0 and 3.5.

5.1. Base flow
The presentation of the base flow focuses on three main features that affect the
global stability modes: the jet penetration, the recirculation region that acts as the
wavemaker, and the vortical layers that support the energy transfers between base
and fluctuation. The variation of the jet penetration with the Mach number is shown
in figure 5, featuring a colour map of the streamwise velocity component u over
the x–y plane of symmetry of figure 1. The solid ramp is shown in dark blue and
can be distinguished from the fluid by noticing a sharp change in colour from the
lighter blue representing the flow at rest next to the solid boundary. The increase in
jet penetration with the Mach number is linked to the decrease in the pressure at
the base of the ramp as a consequence of the strengthening of the Prandtl–Meyer
expansion.

A recirculation region extends downstream of the ramp. The recirculation is formed
by the recompression of the supersonic flow as it turns into itself, becoming parallel
to the solid wall after the ramp. The recompression induces a pressure gradient against
the low-pressure region generated by the Prandtl–Meyer expansion at the ramp base.
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FIGURE 5. Jet penetration as a function of the Mach number: (a) M∞=2.5; (b) M∞=3.0;
(c) M∞= 3.5. The streamwise velocity colour maps represent an x–y plane containing the
symmetry boundary of the ramp. Note that the discontinuous features at the right edge
of panel (a) are due to the coarsening of the grid and the lack of interpolation from cell
centres to cell faces by the visualization software.

The envelope of the recirculation bubble is shown in figure 6, where the contour u= 0
is visualized. Similarly to the jet penetration, the extension of the recirculation region
increases with the Mach number.

The third outstanding feature of the flow over the flushed ramp is the existence
of multiple vortical layers formed by the injection and the sharp ramp profile. Mean
vorticity magnitude contours for ω = 25 are drawn in figure 7. This figure identifies
three regions of strong vorticity induced by the combination of the ramp and the jet:
the mixing layer supported by the wall jet, the shear layer formed by the flow over the
ramp and the recirculation region, and the vortex streaks generated by the turning of
the boundary layer over the ramp corners. The third contribution is best shown in the
M∞= 3.0 case of figure 7(b), where the undulation in the vorticity contours indicates
the existence of a local maximum propagating from the corner. The vorticity contours
for the three Mach number cases are similar. The emphasis of the global stability
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(a) (b) (c)

FIGURE 6. (Colour online) Recirculation as a function of the Mach number: (a) M∞=2.5;
(b) M∞= 3.0; (c) M∞= 3.5. The darker region shows a three-dimensional contour drawn
for ū= 0 and representing the envelope of the recirculation bubble.

(a) (b) (c)

FIGURE 7. (Colour online) Vorticity magnitude contours drawn for ω̄ = 25: (a) M∞ =
2.5; (b) M∞ = 3.0; (c) M∞ = 3.5. The lighter shaded region is an embedded boundary
representation of the ramp, while the darker region is the vorticity contour.

analysis presented in the next sections is on understanding how the combination of
these vortical layers can affect the energy transfers between base flow and fluctuation.

5.2. Fluctuation: self-sustained modes
Global modes are expressed as the product of a three-dimensional spatial amplitude
function and a wave-like term representing variation in time,

λ′j = λ̂j(x, y, z) exp(λjt). (5.1)

The numerical convergence of both varicose and sinuous modes is assessed by
comparing the computed growth eigenvalue against the number of refinement levels.
The three most unstable varicose modes for rmax= 3, 4, 5 and the most unstable mode
for rmax = 6 are shown in figure 8. A well-identified dominant mode is found for
all refinement levels. The convergence error for the most energetic mode evaluated
using the rmax = 5 and rmax = 6 solutions is approximately 5 %, which is considered
acceptable given the sensitivity of the eigenvalue to the grid refinement level, i.e. the
rmax = 7 is expected significantly closer to the rmax = 6 value than the reported 5 %.
Similar convergence results were obtained for the M∞ = 3.5 mode.

The three most unstable sinuous modes for rmax = 4–6 are shown in figure 9 along
with the fastest-growing varicose mode (marked as symmetric). The convergence
of the modal frequency is good (lower than 1 % for the two most unstable modes)
while the relative error on the growth rate is approximately 5 %. A comparison
between sinuous and varicose modes (diamond symbol) suggests that varicose modes
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FIGURE 8. Grid convergence study for the varicose (symmetric) modes.

are significantly more energetic than sinuous modes, while their frequencies are
comparable. The first part of this conclusion is antithetical to that drawn by Bagheri
et al. (2009), who found that the sinuous modes were the fastest-growing. Vice versa,
the second part is in agreement with the work of Bagheri et al. (2009). This outcome
is probably due to the much larger Reynolds number used in the present simulation,
rather than to the different geometry. The analysis of the compressible cross-flow
injection at high Reynolds number is currently being analysed by the author of this
paper and will be published elsewhere.

The convergence analysis presented in figures 8 and 9 neglects two other possible
sources of numerical error, namely that associated with the Rayleigh–Ritz projection
in the Krylov space and that associated with replacing the Navier–Stokes operator
with the update mapping B(1T) discussed in § 4.3. The two discretization errors are
estimated by comparing the perturbation growth rate of the most unstable varicose
mode to that calculated based on the growth rate of the perturbation kinetic energy
result of a time-marching simulation starting with a random initial condition. The
results shown in figure 10 verify the correctness of the real part of the global modes
evaluated with rmax = 5 (five levels of refinement). The correctness of the imaginary
part is verified in figure 11 by matching the period of the mass oscillations against the
linear analysis prediction, i.e. T = 2π/λi. The results for rmax = 6 essentially overlap
those for rmax = 5, thus are not shown.

5.2.1. Mach number effects on varicose mode growth rate
The effect of changing the free-stream Mach number on the most excited varicose

instability modes is shown in figure 12. The result that an increase in the Mach
number leads to a more energetic mixing is not surprising, if one considers that
the jet Mach number is fixed and the recirculation region becomes stronger as M∞
increases as a consequence of the stronger shock recompression. The frequency of
the most unstable fluctuation weakly increases with the Mach number.

Turbulence has not been included in the present instability analysis. An incoming
turbulent boundary layer is expected to have an overall energetic contribution to the
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FIGURE 9. Grid convergence study for the sinuous (antisymmetric) modes.
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FIGURE 10. Comparison of the most energetic self-sustained mode against the time
change in perturbation kinetic energy. Here Ke≡ (∫ (u′ 2 + v′ 2 + w′ 2) dx dy dz)/2. The left
and right plots show the symmetric and antisymmetric modes, respectively.

development of the instability, based on previous research (Sandberg 2012). On the
one hand, a turbulent time-averaged base flow will support a stronger recompression
shock and recirculation than laminar conditions. Thus, it will have an effect similar
to the increase in Mach number on the dominant instability discussed in this section.
On the other hand, the correlation terms based on turbulent and coherent variables are
expected to have a (rather weaker) stabilizing effect. Nakagawa & Dahm (2000) find
that the mean flow in the near region of two-dimensional supersonic turbulent wakes
is weakly affected by the Mach number, while the self-sustained fluctuations further
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FIGURE 11. Comparison of the mode frequency against the period of integrated mass
oscillations. Here M ≡ ∫ ρ ′ dx dy dz. The left plot is the symmetric (varicose) mode, the
right one is the antisymmetric (sinuous) mode.
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FIGURE 12. Variation of the most excited varicose mode with the free-stream Mach
number: (a) growth rate; (b) Strouhal number.

downstream are strongly affected. This result suggests that the effect of turbulence
in changing the near-field mean profile is marginally dependent on the Mach number.
Therefore, the conclusions about the global modes reported in this section are expected
to be valid also in turbulent conditions.

5.3. Fluctuation: analysis of modes
The eigenfunctions corresponding to the most energetic varicose and sinuous modes
are analysed with respect to the kinetic energy per unit volume ke′ ≡ ρ̄(u′ 2 + v′ 2 +
w′ 2)/2 and the pressure component of the acoustic energy fluctuation ae′ ≡ p′ 2/(ρ̄c̄2

f ).
The interest in the pressure contribution to the total fluctuation energy budget (defined
by Nicoud & Poinsot (2005) as the sum of vortical, acoustic and entropic fluctuation
energies) is related to the importance of finite Damköhler number effects in chemically
reactive conditions (note that the simulations reported in this work are unreactive).
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Finite Damköhler number effects in supersonic free-shear instability are linked to
two dynamic contributions: changes in the mean profile and effects of the time scales
of the kinetic rates. On the one hand, in parallel free-shear instability, changes in
the mean profiles affect primarily the energy exchanges at the critical layer of the
inflectional modes by modifying the velocity derivative of the base flow (Massa 2012).
On the other hand, the kinetic time scales are introduced in the perturbation equation
by the Jacobian of the source term. The most important contribution is typically
the source pressure derivative, which appears in the perturbed energy conservation
through correlation of pressure and heat release. This term leads to a thermoacoustic
coupling between the thermo-fluid and chemical variables (Nicoud & Poinsot 2005),
which are not passive scalar in the instability evolution. The first dynamic contribution
(i.e. mean flow variations) is (in atmospheric conditions) not strongly dependent on
the Damköhler number, while the second contribution significantly varies with the
scaling between fluid and kinetic times if the exchanges between chemical and
acoustic energies become resonant.

The fundamental question at the basis of the present research is whether the
coupling between shear modes (supported by a hydrodynamic instability) and
chemical kinetics can lead to significant changes in the perturbation growth rate.
Massa & Ravindran (2012) found that the thermoacoustic energy exchanges between
mean and perturbation are related to the ratio between the pressure (acoustic) and
kinetic energy magnitudes in the shear modes. The rationale is that the average time
change of the total acoustic energy balance associated with a parallel shear mode is
composed by both hydrodynamic terms, based on velocity–velocity correlations, and
thermoacoustic terms, based on pressure–heat release correlations. A global mode
in a chemically reactive fluid will behave similarly to the unreactive counterpart
when the hydrodynamic terms dominate the total acoustic energy balance; otherwise
thermoacoustic instability will be significant and the reactive growth rate will be
dependent on the Damköhler number. Finally, note that ae′ is referred to as the
pressure acoustic contribution, because (for a one-dimensional base flow) the modal
decomposition of the fluctuation energy into entropic, vortical and acoustic modes
leads to only the acoustic energy having a pressure contribution (Buckmaster &
Ludford 1988).

5.3.1. Varicose modes
The kinetic and pressure energy eigenfunctions for the fastest-growing varicose

modes are shown in figures 13–15. A comparison between the eigenfunctions for the
various cases highlights the regions of largest energy transfer between the mean flow
and the fluctuation. Such a comparison confirms that the most energetic instability
mode is a mixing mode, in the sense that the highest energy exchanges occur in
the vortical layers at the periphery of the jet. As the Mach number increases, the
location of the maximum energy exchange moves towards the tip of the jet. Thus,
the interaction between the shear layer and the mixing layer support a stronger
energy transfer. Conversely, for all the Mach cases, the vorticity associated with the
corner vortex streaks plays a marginal role in transferring energy to the fluctuation.
In fact, the value of the eigenfunctions is small away from the symmetry plane
– see figure 13(c,d) and the analogues for the higher Mach number cases. In all
Mach number cases, the pressure acoustic eigenfunction is distributed over a thicker
area than the kinetic energy analogue, which is concentrated in the vortical layer
surrounding the jet. The z–y views of the fluctuation field (panels (c) and (d) of
figures 13–15) show that a pair of counter-rotating streamwise vortices are created
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FIGURE 13. Spatial variation of the energy eigenfunctions for M∞= 2.5: (a) kinetic, x–y
symmetry plane; (b) acoustic, x–y symmetry plane; (c) kinetic, x= 8.25 cross-flow plane;
(d) acoustic, x= 8.25 cross-flow plane. The black lines are mean vorticity contours drawn
for ω̄= 10, 20 and 25.

in the base flow underneath the jet (the half-domain figures show only one). Such
structures support the majority of the energy exchanges near the symmetry plane.
The importance of these streamwise vortices diminishes with the free-stream Mach
number. In fact, at M∞ = 3.5, the shear layer plays a more prominent role than the
counter-rotating vortices on the energy exchanges.

5.3.2. Sinuous modes
The sinuous modes are significantly less energetic than the varicose analogues, and

therefore only the eigenfunctions for the M∞ = 2.5 case have been analysed. The
kinetic and pressure eigenfunctions are shown in figure 16. Such a view of the flow
field corresponds to a Y–Z section in figure 1. The main purpose of this visualization
is to analyse the contribution of the sinuous motion of the jet on the fluctuation energy
budget. Because of the symmetry condition, the pressure perturbation is zero, while
the kinetic energy is equal to the contribution of w′ on the symmetry boundary, i.e. the
top edge of both panels. The spanwise velocity contribution is locally maximum
(its first derivative is zero) on the boundary. Therefore, figure 16 shows that the
energy transfer due to the sinuous movement induced by the ramp wake is marginal
when compared to the kinetic energy produced in the vortical layers.

5.3.3. Spectrum
The focus of the convergence study in § 5.2 was on the most amplified modes,

which manifest themselves with fluctuations concentrated in the lower region of the jet.
Bagheri et al. (2009), analysing global instability of cross-flow injection at zero Mach
number, distinguished between two types of instability modes based on the magnitude
of the associated eigenfunction: ‘jet modes’ that sustain fluctuation energy at the jet
perimeter, and ‘wake modes’ that sustain the majority of the fluctuation energy at the
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FIGURE 14. Spatial variation of the energy eigenfunctions for M∞= 3.0: (a) kinetic, x–y
symmetry plane; (b) acoustic, x–y symmetry plane; (c) kinetic, x= 8.25 cross-flow plane;
(d) acoustic, x= 8.25 cross-flow plane. The black lines are mean vorticity contours drawn
for ω̄= 10, 20 and 25.
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FIGURE 15. Spatial variation of the energy eigenfunctions for M∞= 3.5: (a) kinetic, x–y
symmetry plane; (b) acoustic, x–y symmetry plane; (c) kinetic, x= 8.9 cross-flow plane;
(d) acoustic, x= 8.9 cross-flow plane. The black lines are mean vorticity contours drawn
for ω̄= 10, 20 and 25.

solid wall downstream of the injection. The wake modes are typically characterized
by a lower frequency and lower growth rate than the jet modes.

In the present research, the dominant modes were shown to support large fluctuation
energy in the region between the jet and the recirculation region (shear modes).
Alongside such modes, subdominant modes (wake modes) are expected to manifest
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FIGURE 16. (Colour online) Eigenfunction of the most energetic sinuous mode on an x–z
plane including its maximum value, y≈ 0.66, corresponding to yinj + h/20, where yinj is
the vertical coordinate of the centre of the jet: (a) kinetic energy ke′; (b) acoustic energy
ae′. The thin black lines are vorticity isocontours at ω̄= 10, 20 and 25.

themselves at lower frequency and with substantial fluctuation energy in the wake
behind the sharp-cornered ramp.

The search of the spectrum has been carried out by determining the Jacobian of
the update operator in a matrix form and performing the restarted Arnoldi method on
both the original operator and its spectral transformation. The search has been divided
into three steps that focused on the low-, medium- and high-frequency ranges.

The analysis of the medium-frequency range carries out the Arnoldi factorization
of the discrete operator in its original form. Because of the slow convergence of the
Rayleigh–Ritz projection for interior eigenvalues, a large basis for the low-dimensional
subspace is necessary. The calculations were performed with a subspace of dimension
500 elements. Approximately a thousand Arnoldi restarts were necessary to converge
200 eigenvalues. The procedure was repeated five times with different random initial
guesses until no new eigenvalue was added.

A complex shift-and-invert transformation was used to focus the search on
the low- and high-frequency ends of the spectrum, which are characterized by
modes with significantly weaker amplification than those in the middle range of
frequency. The main drawback of shift-and-invert transformations in the evaluation
of three-dimensional spectra is that LU (or ILU (incomplete LU)) factorizations of
the system matrix are impossible owing to memory limitations, and thus the linear
systems must be solved iteratively. In the present research, the accelerated GMRES
algorithm of Baker, Jessup & Manteuffel (2005) has been used together with three
levels of preconditioning. The preconditioner is necessary because of the lack of
diagonal dominance of the shifted systems. Moreover, for the restarted Arnoldi
method, the preconditioner information can be saved and need not be updated after
the first system solution. The first level of preconditioning used is a multiplicative
split between real and imaginary parts of the shifted problem (note that the shift is
complex). At the second level, each field is preconditioned with an additive Schwartz
method (Bjorstad & Gropp 2004) based on a geometrical domain decomposition
and using a single block overlap between subsystems. The geometrically split
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FIGURE 17. Spectrum of self-sustained varicose modes supported by the ramp injector at
free-stream Mach number 2.5.

problems are preconditioned with a classical single-level ILU factorization. The
domain decomposition is necessary to perform the ILU for linear problems of the
present size. In the present analysis, 4000 subdomains have been used, one per each
core of a multiprocessor computation. One level of ILU fill was found to be optimal
for the system under consideration. The software package PETSC (Balay et al. 2013)
has been used for all the linear system inversions. Three shifts at low frequency
(λi = 2, 3, 4) and three at high frequency (λi = 44, 47, 51) have been carried out.

The spectrum of varicose modes supported by the ramp injector at free-stream
Mach number 2.5 is shown in figure 17. The spectrum features a well-identified
dominant mode and supports dimensionless wavenumbers λi ≡ 2π f ∗M∞h/V∞ in the
range (2.1, 48). There is a considerable separation in growth rate between the two
dominant jet modes and the rest of the spectrum. As the growth rate decreases, the
modes are packed together. The mixing instability is expected to be dominated by
the two modes at frequency λi ≈ 10. A comparison between figures 8 and 17 shows
that all the five-level modes shown in the former figure are included in the six-level
spectrum, indicating their convergence. Nonetheless, figure 8 focuses on the dominant
mode, and thus the Krylov space used is too small to obtain a complete spectrum.
Therefore, the lack of some highly energetic modes in the five-level discretization
(filled squares in figure 8) does not imply that they are absent from the spectrum of
that discrete system.

The eigenfunctions of four low-frequency modes are shown in figures 18 and 19 for
the values of λj indicated in the figure captions. In figure 18, the grey solid contours
represent the mean streamwise velocity and are indicative of the position of the jet
and the shear layers over the ramp. The two lowest-frequency modes displayed in
figure 18 feature significant fluctuation energy on the symmetry axis downstream of
the ramp, which are indicative of wake-like fluctuations. The other two modes (c) and
(d) show considerable fluctuation energy in the vortex streaks created by the corners.
This particular feature of the low-frequency modes is shown in greater detail in the y–z
pseudo-colour plots of figure 19. In each plot, mean vorticity lines are superimposed
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(a)

(c)

(b)

(d )

FIGURE 18. Three-dimensional contours of the perturbation kinetic energy for four low-
frequency modes identified by dimensionless wavenumber: (a) λ= 1.88+ 2.11i; (b) λ=
1.61 + 2.69i; (c) λ = 2.44 + 3.56i; (d) λ = 2.23 + 4.57i. Five equally spaced contours
are shown, in ascending magnitude order: red, green, blue, cyan, purple. The grey colour
represents a contour of the mean streamwise velocity and identifies the jet structure and
the shear layers.

onto the kinetic energy eigenfunction contours. Fluctuation with a substantial energy
is found to correspond with the corner vorticity of these subdominant modes.

An experimental investigation of the mixing supported by a ramp injector was
conducted at the same time as this computational investigation. The experimental
investigation, which is in progress at the time of writing, also determined the
proper orthogonal decomposition (POD) modes in transverse planes starting at
10h from the injection plane. The experiments were not time-resolved, so frequency
information could not be extracted. The yet to be published POD of the measurements
(L. Maddalena, private communication, 2014) shows the most coherent fluctuation
concentrated in the corner vortex streaks. We interpret the experimental results by
inferring that only the low-frequency modes were captured by the experiments because
of the large distance of the measurement planes from the injection location. In fact,
the unstable vortex streaks extend downstream far beyond the recirculation region
(which supports the most energetic shear modes) as shown in figure 18(d).

5.3.4. Wavemaker
Globally unstable modes are self-excited through a resonance process established in

the absolutely unstable region of the flow. The conditions for self-excitation develop at
a specific location characterized by the maximum structural sensitivity of the global
mode. This location in the flow is termed the wavemaker (Huerre & Monkewitz
1990). Giannetti & Luchini (2007) find the wavemaker by evaluating the product of
the norms of direct and adjoint eigenfunctions. In this section, a similar argument is
used in order to determine the wavemakers for the most amplified global modes. The
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(a) (b)

(c) (d )

FIGURE 19. Two-dimensional pseudo-colour plots of the perturbation kinetic energy for
four low-frequency modes identified by dimensionless wavenumber: (a) λ= 1.88+ 2.11i;
(b) λ= 1.61+ 2.69i; (c) λ= 2.44+ 3.56i; (d) λ= 2.23+ 4.57i. The y–z section is drawn
for x= 8.25, which corresponds approximately to 2.2h downstream of the injection plane.
The thin solid (white) lines represent contours of the mean vorticity magnitude for ω̄ =
15 and 25.

use of the product of norms leads to the definition of a function

σj(x, y, z)≡ ‖λ̂j‖ ‖λ̃j‖
|〈λ̃j, λ̂j〉|

, (5.2)

based on the direct λ̂ and adjoint λ̃ mode amplitudes, which is identical to that
introduced by Giannetti & Luchini (2007). The inner product between eigenfunctions
in (5.2) is defined as the volume integral of the dot product of the perturbation
velocity vectors weighted by the mean density. The adjoint modes are calculated as
the eigenvectors of the transpose of the discrete update operator (see (4.6)). The main
difference between the operator analysed in this section and that described in § 4.3
is that here only one computational time step is used per update and no subcycling
is performed between grid levels. In other words, all grid levels are advanced at
the smallest time step. This choice was necessary to maintain sparsity in the system
matrix. The two operators give very similar results for the growth rate of the dominant
mode, with an error of approximately 0.5 %.

The function σ for the most amplified modes at the three Mach numbers under
investigation is shown in figure 20, where, together with the σ contours (red, cyan and
yellow), the contour of the mean streamwise velocity is visualized in grey to locate
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(a)

(b)

(c)

FIGURE 20. Wavemaker location identified as contours of σ (see (5.2)) for the most
amplified modes at three free-stream Mach numbers: (a) M∞ = 2.5; (b) M∞ = 3.0;
(c) M∞ = 3.5. Three contours are shown per each plot, showing 12 % (red), 25 %
(cyan) and 50 % (yellow) of the maximum value. Together with the perturbation
contours, the mean streamwise velocity is visualized in light grey by plotting its contour
for the value 1.2.

the jet and wake structures. The results of figure 20 show that the wavemaker for the
most amplified modes is located in a narrow region on the bottom of the jet. The
self-excitation mechanism is thus associated with the recirculation region underneath
the jet. The location of the wavemaker moves downstream as the free-stream Mach
number increases.

A structural sensitivity analysis of the subdominant modes at Mach 2.5 previously
shown in figure 18 is carried out to characterize their wavemaker. The results shown
in figure 21 identify their self-excitation region as the lower portion of the jet. The
wavemaker distributions are very similar to those obtained for the dominant jet
modes. Notice that in figure 21 an extra contour showing 6 % of σ is added to those
shown in figure 20 to investigate the importance of wake and corner vorticity regions
on the structural sensitivity of the modes. Both the wake region for figure 21(a)
and the corner region for figure 21(b) feature a weak structural sensitivity of the
self-sustained modes. These results are not unexpected and are a consequence of
the spatial separation between direct and adjoint modes that causes the wavemaker
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(a)

(b)

FIGURE 21. Wavemaker location identified as contours of σ (see (5.2)) for two of the
low-frequency modes discussed in figure 18: (a) λ = 1.88 + 2.11i; (b) λ = 2.23 + 4.57i.
Four contours are shown per each plot, showing 6 % (green), 12 % (red), 25 % (cyan) and
50 % (yellow) of the maximum value. Together with the perturbation contours, the mean
streamwise velocity is visualized in light grey by plotting its contour for the value 1.2.

to form where the overlapping between the respective eigenfunctions is maximum.
Because of such a separation, the overlapping occurs upstream of the region of large
fluctuation intensity that is typically associated with a large convective spatial growth.
On the one hand, the σ contours identify the region of absolute instability, where
the self-induced perturbation forms. This region is the same for both jet and wake
modes. On the other hand, the eigenfunction contours (figure 18a,d) identify the
region of convective instability, where the fluctuation is amplified (Chomaz 2005;
Bagheri et al. 2009). While for the dominant jet modes the wavemaker is very close
to the region of large fluctuation intensity, for the subdominant wake modes there
exists a considerable separation between the region of excitation and the downstream
region of amplification. It is concluded that the role of the corner vortices in the
process of generation of the fine scales is to amplify fluctuations that are excited
in the recirculation region, rather than participating in the feedback mechanism that
sustains the formation of the perturbation.

5.3.5. Analysis of pressure contribution to the fluctuation energy budget
The contribution of the pressure fluctuation to the total perturbation energy

budget of the most energetic varicose modes is investigated by evaluating the
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FIGURE 22. Ratio between pressure component of the total acoustic energy budget and
kinetic energy in the eigenfunctions of the most energetic varicose modes.

integral Γ ≡ (
∫

ae′ dV)/(
∫

ke′ dV). The variation of Γ with the three free-stream
Mach numbers considered in the present research is shown in figure 22. An increase
in the Mach number leads to an increase in the contribution of the pressure acoustic
energy to the total fluctuation budget. This outcome is in line with the results obtained
by Massa & Ravindran (2012) for the local/parallel modes of jets. The present
unreactive analysis leads one to deduce that the effect of finite-rate chemistry on the
self-sustained perturbation induced by ramp injectors increases with the free-stream
Mach number. Finally, the value of Γ for the sinuous modes is consistently lower
than that for the varicose modes. Values in the range 1/3 to 1/4 were calculated for
the different modes supported by the M∞ = 2.5 case.

6. Conclusions

The objective of the present computational study is to determine how modern
injectors improve supersonic mixing by introducing non-parallel global instability
modes. This objective is accomplished by analysing the effect of the base flow
distortions induced by ramps on the round jet instability in the supersonic regime. In
injectors without ramps, the turbulization of the jet is forced by fresh mixture eddies
amplified by the Kelvin–Helmholtz instability, yielding a convective weakly parallel
process. The presence of the ramp significantly changes the character of the instability,
leading to self-sustained global modes and a self-turbulization of the mixing layer.
The characterization of these modes and their variation with the Mach number has
been the principal result of the present investigation. The most important findings
are summarized below: the mixing modes induced by the ramp are characterized
as varicose and sinuous; both are self-sustained shear modes, and the wavemaker
lies in the recirculation region supported by the recompression downstream of the
ramp; varicose modes are more energetic than the sinuous counterparts at the present
Reynolds number; an increase in the free-stream Mach number leads to an increase
in the instability growth rate and frequency (i.e. the Strouhal number); and in the
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sinuous modes, the contribution of the spanwise velocity component to the total
kinetic energy at the symmetry boundary is generally marginal.

The analysis of the adjoint eigenfunctions provides insights into the wavemaker
process by revealing the regions of strong self-excitation. The main observations are
that the most energetic interactions occur in the bottom side of the mixing layer,
which confirms the idea that the global modes are mixing modes supported by the
recirculation region. The interaction between the mixing layer and the other vortical
layers induced by the ramp is also investigated. The importance of the shear layer
grows with the free-stream Mach number, as the peak in the eigenfunction moves
towards the intersection of the shear and mixing layers. Contrariwise, the vortex
streaks propagating from the corners of the ramps have a marginal effect on energy
exchanges supporting the dominant fluctuation, which is classified as a shear or
jet mode. The vortex streaks support energetic regions of subdominant fluctuations,
having a significantly weaker energy in the mixing layer than the jet modes. These
subdominant modes are characterized as wake modes, and their role in supporting
mixing is likely to be of secondary importance.

The analysis presented in this study is for a perfect gas. Nonetheless, the importance
of chemical reactions has been deduced by linking the effect of finite-rate chemistry
on the fluctuation energy to the thermoacoustic interaction between pressure and
heat release fluctuations. The main conclusion of this analysis is that the pressure
acoustic energy content of the self-sustained modes increases with the free-stream
Mach number M∞, leading one to infer that the effects of finite Damköhler numbers
on the modes are likely to increase with M∞.
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