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The use of single-receiver single-satellite data validation parameters for numerical and
graphical diagnostics of the multi-frequency observations is presented. This method validates
Global Navigation Satellite System (GNSS) measurements of a single receiver where data
from each satellite are independently processed using a geometry-free observation model
with a reparameterised form of the unknowns. The method is applicable to any GNSS with
any number of frequencies. The diagnostic tools are based on checking agreement of
characteristics of the validation test statistics against theory. The use of these diagnostics
in static and kinematic modes is demonstrated using multiple-frequency data from three
GNSS constellations; Global Positioning System (GPS), Globalnaya Navigatsionnaya
Sputnikovaya Sistema (GLONASS) and Galileo.
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1. INTRODUCTION. A single receiver can track multi-constellation Global
Navigation Satellite Systems (GNSS), however, the data from these systems should be
validated before being used for positioning and navigation. Several methods have
been presented in the literature for data validation including detection of code and
phase observation outliers and cycle slips of phase data. For instance, some Receiver
Autonomous Integrity Monitoring (RAIM) algorithms check consistency of solutions
from different subsets of satellites (Farrell and Van Graas, 1992; Hwang and Brown,
2008; GEAS 2010). Other methods estimate cycle slips as additional unknowns in
a least-squares or Kalman filtering processing (Banville and Langley, 2010). Some
methods used linear combinations of the observations or their time-difference to
estimate cycle slips (Blewitt, 1990; Kim and Langley, 2002). Gui et al. (2011)
suggested a Bayesian approach for the detection of multiple gross errors. Detection-
Identification-Adaptation (DIA) is another method for quality control of single-
baseline GNSS models (Teunissen, 1990). De Bakker et al. (2009) used the DIA
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method to investigate quality control of single-receiver single-satellite with a focus on
the analysis of the Minimal Detectable Bias (MDB), which is a measure of the size of
the errors that can be detected with a certain power and probability of false alarm.
Yang et al. (2013a; 2013b) review the fault detection and exclusion approach and
discuss probabilities of different types of errors.
In addition to quality control of Global Positioning System (GPS) observations,

validation of data from other GNSS constellations was investigated in De Jong et al.
(2001) for GPS with GLONASS data, and in Ene et al. (2007) and Neri et al. (2011)
for GPS with Galileo observations. El-Mowafy (2013) investigated validation of
BeiDou observations in a standalone mode. A single-receiver single-satellite quality
control approach, which is applicable to any GNSS with any arbitrary number of
frequencies is discussed in Teunissen and De Bakker (2012a) and El-Mowafy (2014a).
This paper is a continuation of the work presented by the author (El-Mowafy,

2014a) using the single-receiver single-satellite approach for validation of GNSS data.
In this contribution, the use of the method validation parameters to provide
diagnostics of individual satellite observations and the used model is demonstrated,
which is a required task for several applications such as generation of Network Real-
Time Kinematic (NRTK) corrections and computation of precise orbits and clock
corrections. The diagnostics are based on checking agreement of characteristics of
the validation statistics with theory. Such agreement will take place when data are
modelled correctly and they do not have severe irregularities. The diagnostics of signal
irregularities in data sets from three GNSS constellations (GPS, GLONASS and
Galileo) is discussed. The data include observations collected over three consecutive
days in a static mode at a continuously operating reference station, and nine hours of
observations in a kinematic ship-borne mode.

2. SINGLE-RECEIVER SINGLE-SATELLITE GEOMETRY-
FREE MODELLING. In this section the single-receiver single-satellite method
is reviewed to make this paper self-contained and to provide the necessary details of
the validation parameters, based on which the diagnostics parameters are derived.
In this method, undifferenced code and phase observations of each satellite from a
single receiver are screened satellite by satellite, independently at each epoch, and in a
sequential manner. The method is applicable for real-time or post-mission processing,
in static or kinematic modes.
The carrier phase and pseudorange observation equations of a single satellite

tracked by a single receiver on frequency fj (for j=1 to n) at time instant t can be
formulated as follows:

ϕj(t) =ρ(t) + c(δtr(t) − δts(t)) + T(t) − μjI (t) + bϕj (t) + b̃ϕj (t) + εϕj (t)
pj(t) =ρ(t) + c(δtr(t) − δts(t)) + T(t) + μjI (t) + bpj (t) + b̃ pj (t) + ε pj (t)

(1)

where ϕj(t) and pj(t) denote the observed carrier phase and pseudo ranges in distance
units (m) respectively, with corresponding zero-mean noise terms εϕj (t) and ε pj (t). ρ(t)
denotes the receiver-to-satellite range, c is the speed of light, δtr(t) and δts(t) are the
receiver and satellite clock errors, and T(t) is the tropospheric delay. The parameter
I(t) denotes the ionospheric delay for code observations and advance for phase
observations expressed in units of distance with respect to the first frequency.
For frequency fj the ionospheric coefficient μj = f1

2/fj
2 is used to express its ionosphere
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error in terms of I(t). The parameters bϕj (t) and bpj (t) are the phase and code biases,
which are considered constant over a short period of time (Teunissen and De Bakker,
2012b; El-Mowafy et al., 2010), e.g. an hour, and therefore will be denoted thereafter
as bϕj (to) and bpj (to) . For phase measurements, this bias comprises the sum of the
initial phase bias, the phase ambiguity and the instrumental phase delay, and for code
measurements it comprises the instrumental code delay. b̃ϕj (t) and b̃ pj (t) denote the
unmodelled systematic errors that are not constant in nature or quasi-random, such as
multipath. A geometry-free processing is applied where positioning is of no interest
at this stage; thus the satellite orbital error is ignored.
The ionosphere delay I(t) can be decomposed into two components; its initial value

I(to) at the initial epoch to, and the difference from this value, which is denoted as (δI),
such that:

I (t) = I (to) + δI (t) (2)
Similarly, the bias parameters b̃ϕj (t) and b̃ pj (t) at time t can be split into two
components, the initial values, which are denoted as b̃ϕj (to) and b̃ pj (to) and the
components that will change with time, which are symbolised as δbϕ and δbp for phase
and code measurements, such that:

b̃ϕj (t) = b̃ϕj (to) + δbϕj (t) (3)
b̃pj (t) = b̃pj (to) + δbpj (t) (4)

The rank deficiency of the model in Equation (1) can be reduced by re-
parameterisation of the unknowns as follows:

ρ∗(t) = ρ(t) + c(δtr(t) − δts(t)) + T(t) (5)
ρ∗∗(t) = ρ∗(t) − ρ∗(to) (6)

b∗ϕj (to) = bϕj (to) + b̃ϕj (to) + [ρ∗(to) − μjI (to)] (7)

b∗pj (to) = bpj (to) + b̃pj (to) + [ρ∗(to) + μjI (to)] (8)
The observation equations in terms of the re-parameterised vector of unknowns
[ρ* * (t), δI(t), b∗ϕj (to), b∗pj (to), δbϕj (t), δbpj (t)]T then read:

ϕj(t) = ρ∗∗(t) − μjδI (t) + b∗ϕj (to) + δbϕj (t) + εϕj (t)
pj(t) = ρ∗∗(t) + μjδI (t) + b∗pj (to) + δbpj (t) + ε pj (t) (9)

b∗ϕj (to) and b∗pj (to) are constants and can be estimated during initialisation at

time to such that for all available phase and codes observations at frequency j (14
j4n) we have:

ρ∗∗

δI
b∗φ j=1..n

b∗Pj=1..n

δbϕ j=1..n

δbpj=1..n

2
6666664

3
7777775
t=to

=

0
0

ϕ j=1..n
P j=1..n

0
0

2
6666664

3
7777775
t=to

(10)
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and the corresponding initial covariance matrix reads:

Pxo/o = diag[0, 0, σ2φi=1..n
, σ2Pi=1..n

, 0, 0] (11)
where σ2φi=1..n

and σ2Pi=1..n
denote the phase and code variances, respectively.

The remaining unknowns in Equation (9) can be predicted using dynamic modelling
in a Kalman filtering processing, where the predicted unknowns are treated as pseudo-
observations; thus when updated by the code and phase observations, rank deficiency
is removed (similar to sequential least squares). The reparametrised unknown
range (ρ* *) can be considered unlinked in time and thus is not considered in the
prediction process. The ionospheric delay δI and the bias components δbϕj and δbpj are
considered changing relatively smoothly with time for a short period (El-Mowafy,
2009). This period can be taken between 15 and 30 minutes, as our tests show,
depending on ionospheric activity, time of day and year, location (latitude), and
observing conditions. The temporal correlations of δI is taken exponentially decaying
with time by using a first-order autoregressive stochastic process (Teunissen and De
Bakker, 2012b). Similarly, the temporal correlations of δbϕj and δbpj are expressed
using a first-order autoregressive stochastic process as they do not change much with
time. Thus, the transition matrix reads:

Φt/t−1 = diag βδI , βδbϕ j=1..n
, βδbp j=1..n

h i
(12)

where βδI, βδbϕj and βδbpj
are the temporal correlations for δI(t), δbϕj (t) and δbpj (t) for

a frequency j, where β=e− |Δ t|/τ. Δ t is the time interval between the epochs t−1 and t,
and τ denotes the correlation time length. The variance of each process noise is
computed as { ϑ

2/τ (1− β2)} (Gelb, 1974), where ϑ denotes its spectral density.
The next section describes a basic validation process using this method; from its

parameters the proposed diagnostics tools, which are the focus of this paper, can be
extracted.

3. LOCAL VALIDATION OF THE OBSERVATIONS USING
THE SINGLE-RECEIVER SINGLE-SATELLITE MODEL. The ob-
servation equation in Kalman filtering at time t in a linearised Gauss–Markov model
is given by:

yt = Atx̂t/t−1 + vt (13)
where yt is the vector of phase and code observations, x̂t is the estimated vector of
unknowns [ρ* * (t), δI(t), b∗ϕj (to), b∗pj (to), δbϕj (t), δbpj (t)]T. At is the design matrix, which

reads:

At = u −μj
u +μj

I 0
0 I

I 0
0 I

� �
(14)

where j=1 to n frequencies, u is a column vector of ones with a size n, I is the identity
matrix of size n. vt is the predicted observation residuals with a covariance matrix Qvt.
For detection of errors, local and global testing can be applied, where for local

testing one examines the observations at the present epoch and in global testing
observations from more than one epoch are considered (Teunissen and Kleusberg,
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1998; Knight et al., 2010). In general, the local test can be performed for detection of
outliers and the global test is needed for detection of cycle slips. In this paper, we will
restrict attention to local testing for demonstration of the diagnostics of measurement
and model errors, noting that the same diagnostic approach is applicable for the
global test mode.
Testing can be performed for q number of possible errors (or outliers) in the

observations, where q<df, and df is the degrees of freedom for m observations. If
errors are present in the observations, the best estimator of the error vector (∇̂t) can be
determined from (Teunissen and Kleusberg, 1998):

∇̂t = (CT
vt Q

−1
vt Cvt)−1CT

vt Q
−1
vt vt (15)

Q∇̂t
= (CT

vt Q
−1
vt Cvt)−1 (16)

Where Cvt in local testing is m×q matrix that describes which observations are
examined, such that each column of Cvt is a unit zero vector except the element
corresponding to the examined observation, which equals one. Possible detection of
the presence of model errors can be performed by examining the local over-all model
test statistic TLOM, which can be formulated as:

TLOM = ∇̂T
t Q

−1
∇̂t
∇̂t (17)

and measurement or model errors are suspected when:

TLOM 5 χ2α(df , 0) (18)
where χα

2 is the chi-squared value for a significance level α. Lehmann (2012)
investigated improving the test threshold by considering the dependencies between
the residuals.
Once the presence of model errors is detected, one needs to identify the erroneous

measurement(s) that cause such model errors. For the case of a single outlier in one
code or phase observation, i.e. q=1, the Cvt matrix reduces to a column vector, and ∇̂t

becomes a scalar. The test statistic can be computed for observation i as follows
(Baarda, 1968):

wi = ∇̂i

σ∇̂i

(19)

where σ∇̂i
is the standard deviation of ∇̂i , and an outlier is considered present in the

data when:

|wi| 5 Nα

2

(0, 1), |wi| 5 |wk| for k = 1 to m (20)

The error vector (∇x) in the dynamic model of the unknowns (states) can be
expressed as:

x̂t = Φt/t−1x̂t−1 + Cx ∇x + dt (21)
where dt represents the process noise and the matrix Cx maps the state model error of
dimensions, i.e. the number of predicted states × the number of model errors under
consideration (e.g. Hewitson and Wang, 2007). The matrix Cvt used in Equations (15)
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and (16) then reads:

Cvt = − At ψt (22)
where ψt describes the response of a model error on the predicted state vector, which
in the case of a jump in the state vector reads (Teunissen, 1990):

ψt = Φt, t−1 I − Kt At[ ]ψt−1 (23)
initialising with ψstart epoch=Cx, where Kt denote the Kalman gain matrix. For the case
of a permanent slip in the state vector, the error manifests itself as a systematic
disturbance, and ψt becomes:

ψt = Cx + Φt, t−1[I − Kt At]ψt−1 (24)
Effectiveness of the single-receiver single-satellite validation method in detection and
identification of outliers in the observations was demonstrated in El-Mowafy (2014a),
in which the ability of the algorithm to detect more than 6000 artificial errors in data
sets that span several days in March 2012 (a period of medium-to-high ionosphere
activity) was examined at a reference station CUT0 at Curtin University, Australia.
The range of inserted errors was selected such that the minimum errors tested were at
the level of the so-called Minimum Detectable Biases (MDBs). MDB is the error that
can be detected with the chosen probabilities of false alarm and misdetection
(Teunissen and Kleusberg, 1998). The MDBs are computed from the covariance
matrix of the observations and according to the observation model. For our model,
the MDBs were 0·6 m for code observations and less than one cycle for phase data for
the three constellations GPS, GLONAS and Galileo. The average rates of successful
detection of artificial errors (from 0·6 m to 5m) inserted in the code data were
between 94·3% and 99·63%, which varied according to signal quality and number of
observations. The method success rate in detetion of cycle slips between one cycle
and six cycles inserted in the data was 94·4%−100%. Evaluation of the method’s
performance in correct identification of code outliers showed that the method was
successful in identifying 90% to 99% of its outliers. For more details, interested readers
may refer to El-Mowafy (2014a).
The ionosphere level can affect performance of error detection. In addition to the

test results discussed above, which were achieved during a medium-to-high ionosphere
activity period at a mid-latitude point, two tests were carried out using two-day data
sets collected in July 2013 (high ionosphere activity) at the Intenational GNSS Service
(IGS) stations NKLG (Gabon-Africa) and SIN1 (Singapore-Asia). The data were
obtained online from the Multi-GNSS (MGEX) web portal. Both stations are close to
the Equator. Since the change in the ionosphere (δI) is estimated at each epoch as one
of the unknowns, its stochastic parameters were modified to account for possible
expected changes in ionosphere activity. A method for estimation of the stochastic
parameters of the presented method using the single-receiver single-satellite approach
is given in El-Mowafy (2014b). Similar to the above test, the performance of detection
of code outliers and phase cycle slips was evaluated by examining the ability of the
method to detect artificially inserted errors in the data (356 code outliers ranging from
0·6 m to 5 m and 220 cycle slips ranging between one cycle and five cycles). The
performance of the method in this test was consistent as testing results were almost at
the same level experienced at the mid-latitude station CUT0 with a success rate above
90%.
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The single-receiver single-satellite method for validation of GNSS data has the
advantage that since a geometry-free model is used, no satellite need be known
beforehand, thus no complete navigation messages need to be read and used. In this
case, observation weighting can be performed using, for instance, the signal-to-noise
ratio. In addition, detection can be performed for single or multi-frequency
observations, unlike most existing outlier and cycle slip detection methods, which
require the use of dual-frequency data. Furthermore, the approach is able to detect
faulty measurements for systems with a limited number of satellites, such as Galileo
and the Quasi-Zenith Satellite System (QZSS), without the need for a complete
solution. When using data from different constellations there is no need for the
determination of inter-system biases. Finally, the method allows one to present
numerical and graphical statistical diagnostics as will be discussed in the next sections.
In principle, the method is generic, and thus it is applicable in post-mission and
real-time to single-fequency or multi-frequency applications, such as single point
positioning (SPP), precise point positioning (PPP), differential positioning (for each
receiver separately), Real-time Kinematic (RTK), Network RTK and PPP-RTK.

4. DIAGNOSTICS TOOLS. The characteristics of the validation parameters
of the single-receiver single-satellite method provide numeric and graphical
diagnostics for the signals and the correctness of the model. One diagnostic tool is
checking that the estimated w-test statistic of the observed signals has a standard
normal distribution, N(0, 1). Such a condition would not occur if modelling or
observation weighting are incorrectly applied, or in the presence of a series of large
outliers or cycle slips in the tested data. Another diagnostic tool is to check the
distribution of the over-all model test statistic TLOM. This statistic, when divided by
the degrees of freedom df, should follow a Fisher distribution if the model is set
correctly and the stochastic assumptions are valid. In this section, the diagnostic
analysis and results for the two types of diagnostics will be performed for static and
kinematic test data.

4.1 Description of the data used. The use of the proposed approach for
diagnostics of the multi-frequency multi-constellation GNSS observations and the
used model is given through practical experiments in static and kinematic modes. In
the static test, the data used were collected at a continuously operating reference
station at Curtin University, Australia. The data span three days, 15 to 17 March
2012, with 30 seconds sampling interval. Observations from GPS, GLONASS and
Galileo were collected using a geodetic-grade multi-frequency multi-GNSS antenna
(TRM59800.00) and receiver (Septentrio POLARX4). Tracked signals in the test
included L1, L2 and L5 code and phase observations for GPS, L1 and L2 for
GLONASS, and E1, E5a and E5b for Galileo. The kinematic test was carried out on
26 April 2012, where a similar multi-constellation antenna was mounted on a boat,
starting its course from Fremantle harbour in Perth, Western Australia and reaching
a point located almost six kilometres offshore. GPS and GLONASS data that span
almost 9.3 hours with a sampling interval of one second were collected using a Sokkia
GSR2700ISX receiver.

4.2 Examples of w-test statistic results. Figures 1 to 4 show three examples of
processing data from the three GNSS constellations under consideration in the static
test. The figures depict the time-series and histograms of w-test statistic values on
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Figure 1. Time-series of w-test statistic for GPS phase and code measurements on frequencies L1
and L2, satellite elevation angles and SNRonL1 (left side); histograms of w-test statistic (right side).

Figure 2. Time-series and histograms of w-test statistic for GLONASS phase and code
measurements on frequencies L1 and L2 .
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15 March 2012 for GPS satellite PRN 13 (Block IIR satellite with Rubidium clock),
GLONASS satellite PRN 18, and the Galileo satellite GIOVE A (considered in this
context with PRN 51), using the letter identifiers G, R and E for the three systems

Figure 3. Time-series and histograms of w-test statistic for Galileo phase measurements on
frequencies E1 (ϕ1), E5a (ϕ5) and E5b (ϕ7).

Figure 4. Time-series and histograms of w-test statistic for Galileo code measurements on
frequencies E1 (p1), E5a (p5) and E5b (p7).
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respectively. The shown w-test statistic values are computed by weighting the
observations using an elevation-angle dependent model in the form [1+a0×exp
(−Eo/Eo

o)] (Euler and Goad 1991), where a0 is a weighting coefficient that is dependent
on the type and frequency of the observation, receiver and method used for the
observation tracking (e.g. Z-tracking, codeless, semi-codeless, etc.). Eo and Eo

o are the
observed elevation angle and a selected base value for the elevation angle in degrees.
In this study, the weight model is selected as (1+ 10× e(−Eo/10o))with an average value
of a0=10 (Teunissen and De Bakker, 2012b). The standard deviations along the zenith
used for the undifferenced observations were taken from the literature. The elevation
angles were obtained from satellite almanacs and approximate test point position
determined using single point positioning of available GPS satellites performed in a
prior step to the data screening process using the single-receiver single-satellite
method.
The left side of Figures 1 and 2 show time-series of the computed w-test statistic

values for ϕ1, ϕ2, p1, and p2, which refer to the phase and code measurements for the
frequencies L1 and L2 for GPS and GLONASS satellites. The change of the signal-to-
noise ratio (SNR) values in dB-Hz for L1 with respect to the observed satellite
elevation angles are illustrated in the bottom of the left side of the Figures 1 to 4, where
the SNR is displayed in dark dots and the elevation angles are illustrated as solid lines.
The right sides of the Figures show the histograms and the probability density
function (pdf) of the corresponding w-test statistic values, where the computed
standard deviation (σw) and the mean (μw) of the w-test statistic are given on top of
each figure.
For GPS and GLONASS, the similarities shown in Figures 1 and 2 between w-test

values for ϕ1 and ϕ2 can be explained by their correlations, which results in an outlier
in one measurement influencing other measurements (Hekimoglu and Berber, 2003).
For observations i and j, and ignoring the time index, the correlation coefficient
between their corresponding outliers denoted as ξ∇̂i,∇̂j

reads:

ξ∇̂i,∇̂j
= cTviQ

−1
v cvjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTviQ
−1
v cvi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTvjQ

−1
v cvj

q (25)

where cvi and cvj are zero column vectors except for the elements corresponding to the
observations i and j which equal to 1. From Equation (25), the correlation between
errors is dependent on two factors; the functional relationship of the observations with
the unknowns (design matrix), and the precision of the observations (Qy). From the
anlysis of our model, the correlation between phase observation errors is almost -1
whereas the correlation between code observation errors is almost zero as shown in
Table 1. The table gives the average values of the correlations over the test period for
various types of observation errors for GPS satellite PRN 18, taken as an example,
where similar values are obtained for other satellites. The high correlation between

Table 1. Correlation between various types of observation errors

Observation types ϕ1-ϕ2 ϕ1-p1 ϕ1- p2 ϕ2- p1 ϕ 2- p2 p1- p2

Correlation coefficient −0·999 −0·376 −0·091 0·354 0·092 −0·004
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observations will result in Type III (Hawkins, 1980) error, where the null hypothesis
(assuming no outliers in the data) is correctly rejected but the wrong observation is
identified as being faulty. This means that specific phase observations that have
outliers will be hard to identify whereas identification of outliers is possible for code
observations.
Similarly, w-test statistic values for Galileo phase measurements ϕ1, ϕ5 and ϕ7

are shown from top to bottom in Figure 3, which are symbolised following the
Receiver-Independent-Exchange format (RINEX) version 3 convention, correspond-
ing to the frequencies E1, E5a and E5b, respectively. Again, the similarities shown
in the figure among w-test statistics for Galileo phase observations can be explained
by their correlations. The w-test statistic values for the associated code measurements
are depicted in Figure 4 in the same order. The critical values (thresholds) for w-test
statistic [Nα

2
(0, 1)] are shown in Figures 1 to 4 as solid red lines. In practice,

the significance level (α) needed for the computation of the critical values
should be selected based on the requirements of the application at hand. We
assume here that α equals 0·001, which is a reasonable value for precise positioning.
For q=1, the critical value for the w-test statistic is ±3·29. A possible outlier or cycle
slip (as low as one cycle) is suspected when the computed w-test statistic exceeds this
critical value.

4.3 Diagnostics analysis using the w-test statistic. The w-test statistic results
for the given examples from the three systems: GPS, GLONASSS and Galileo are
checked to see if they approximately follow a standard normal distribution with the
selected significance level, which may give a first indication about correctness of
the model used. The following checks were performed for each observation type in the
tested satellites:
(1) Visual inspection of the histograms to check if the w-test statistic varies in

a random manner, with a standard normal distribution. This is shown in Figures 1
to 4, for which the model and stochastic information are set correctly. On the other
hand, Figure 5 illustrates two examples of incorrect modelling for the same
observations of GPS satellite PRN 13 used in Figure 1. In the first example, shown
in Figure 5(a), the ionosphere was incorrectly modelled (replacing the positive
sign of the ionosphere error in the code observation model with a negative
sign, imitating a software coding mistake). In the second example, depicted in
Figure 5(b), the process noise parameters were incorrectly set (amplifying the code
spectral density to ten times the assumed correct value). As shown, the w-test
statistic histograms in both cases significantly deviate from the standard normal
distribution and when compared with Figure 1. Another example for diagnostics of
errors in the dynamic model is given in Figure 6 for GPS satellite PRN 31 in the
kinematic test data (after applying the process of detection and identification of
observation errors), where Figure 6(a) shows results of a correctly assumed first-
order Gauss-Markov model for the parameters δI, δbϕj , and δbpj . On the other
hand, Figure 6(b) depicts a case of using a dynamic model of these parameters
with artificial permanent slips inserted for testing purpose (which is arbitrarily
taken for illustration purposes approximately equivalent to three times the temporal
correlations used in the first case). As the figure shows, the presence of the slips
in the dynamic model has resulted in changing the graphical distribution of the
w-statistic as well as its mean value and standard deviation from that of the
theoretical standard normal distribution.
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(2) Inspection of the probability plots of the w-test statistic, which is a graphical
method for assessing whether it is approximately normally distributed. An example
of tested normal probability plots is given in Figure 7 for p1 code observations of
GPS satellite PRN 26. In this plot, the data are ordered and plotted against the
corresponding percentage points from a standard normal distribution in such a way
that the points should form an approximate straight line. Departures from this straight
line indicate departures from normality. An example of a normal plot with an accurate
variance is given in Figure 8. The skewness or short/long tails of points on the plot
indicate skewness and tailing of data distribution. Inference of the plot would help

(a)

(b)

Figure 5. Time-series of w-test statistic for measurements with incorrect stochastic modelling.
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(a)

(b)

Figure 6. Time-series of w-test statistic for measurements with correct dynamic model (a) and
incorrect dynamic model (b).
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in tuning the variance of the observations. For instance, long tails with an ‘S’ shaped-
curve, as in the case of the given example, indicates that the data have more variance
than expected from data of a normal distribution. On the other hand, short tails
indicate less variance than one would expect. The Q-Q plots can be used as an
alternative to the normal probability plots. The Q-Q plot is used to compare the
quantile of the data presented on the vertical axis to that of a standard normal
population exemplified on the horizontal axis. The quantiles can be obtained by
inverting the cumulative distribution function (CDF) of the data. Similar to the
normal plot, the linearity of the points suggests that the data are normally distributed.
The offset between the line and the points suggests that the mean of the data is not “0”.
(3) Examination of the mean using the z-test, computing the test statistic:

z = x̄− μ

σ/
ffiffiffi
n

√ (26)

under the assumption that w-statistic values are independent, where x̄ is the sample
mean, μ is the hypothesized population mean, σ is the population standard deviation,
and n is the sample size. Under the null hypothesis, the test statistic will have a
standard normal distribution, N(0,1). Test results showed that, in general, the test

Figure 7. Normal Probability plot of w-test statistic for p1 observations of GPS with correct
modelling.

Figure 8. Normal Probability plot of w-test statistic for p1 observations of GPS with incorrect
stochastic information.
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passes for the data at hand where the computed P-values were greater than the critical
value in more than 94% of the cases using α=0·05, which is usually considered for
similar type of testing. It was observed that the cases where the test fails are usually
coupled with failing the detection test given in Equation (18).
(4) Performing the Kolmogorov-Smirnov goodness-of-fit test (Marsaglia et al.,

2003) which compares the cumulative distribution function (CDF) of the time-series
of the w-test statistic to the hypothesized CDF of continuous distribution defined by
the standard normal distribution. For the test data considered here, the test was
successful in 91% of the cases. It was observed that the cases where the test fails are
usually associated with failing the detection test.
Another example is given for the kinematic test of the boat data, which is

illustrated in Figures 9 and 10, where for GPS satellite PRN 31, a five-minute
period of observations full of significant real outliers at the end of the satellite
observation period was experienced. Detection and removal of faulty observations
was performed before using the data in positioning. The errors resulted in the
distribution of the w-test statistic that does not agree with the standard normal
distribution as depicted in Figure 8, where the shown range of the w-test statistic
values in the histogram plots were limited to ±4 for better visual comparison with
other figures, and therefore the spikes in the figure corresponding to the maximum
values of w-statistic are not shown. Large standard deviations (approximately three to
nine) of the w statistic and some scattered spikes in the distribution can be seen. In
addition, a comparison between the probability density function of the data (pdf data)
against the pdf of the standard normal distribution (pdf snd) is illustrated on the right
hand side of the figure. As can be seen, the pdf of the data is very far from that of the
standard normal distribution. However, when these data with severe irregularities
were detected and removed using the single-receiver single-satellite method, the
distribution of the re-computed w-test statistic turned into reasonable agreement with
the standard normal distribution, with standard deviations close to one and pdf of
data is almost the same as pdf of snd, as illustrated in Figure 10.

pdf (snd) 

pdf data 

Figure 9. Kinematic test, w-test statistic with data of significant outliers (at the end).
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4.4 Diagnostic analysis using TLOM statistic. Another diagnostic tool that can be
utilised from the output of the single-receiver single-satellite validation method is to
check whether the test statistic TLOM when divided by the degrees of freedom df
follows a Fisher distribution if the model is set correctly and the observations do not
have significant irregularities. As an example, Figures 11 and 12 show the local
detection results of the tested data set of 15 March 2012 for the GPS PRN 13 and
GLONASS PRN 18. The left side of the figures shows the time-series of TLOM

df and its
critical value Fα(df, ∞, 0) denoted in the figures asKLOM, where df is extracted from the
number of observations at each epoch. The right side of the figures illustrates the
histogram of the shown TLOM

df values. From the figures, the few epochs where outliers

were detected can be identified when the test statistic exceeded the critical value. For
the shown data, the df did not change throughout the examined observation period as
no missing observations were encountered during this period. The Fisher distribution

pdf (snd) 

pdf data 

Figure 10. Kinematic test, w-test statistic with data of significant outliers removed.

UTC time (hr of day) T
LOM

/df 

Figure 11. Time-series and histogram of TLOM/df for GPS .
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UTC time (hr of day) T
LOM

/df 

Figure 13. Time-series and histogram of TLOM/df for GPS 31 in the kinematic test before removal
of bad data.

UTC time (hr of day) T
LOM

/df 

Figure 12. Time-series and histogram of TLOM/df for GLONASS.

  UTC time (hr of day) T
LOM

/df 

Figure 14. Time-series and histogram of TLOM/df for GPS 31 in the kinematic test after removal of
bad data.
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of the data associated with these df is depicted in the figures. As the figures illustrate,
the TLOM

df histograms are in a close agreement with the Fisher distribution for the

examined satellites’ data.
Similarly, Figures 13 and 14 show the time-series of TLOM

df , its critical value
Fα(df, ∞, 0), and its histogram for the kinematic ship-borne test data before and after
the removal of the bad period of GPS satellite PRN 31 data. As the figures illustrate,
the TLOM

df histogram in the first case has some spikes (some are at the maximum values

of TLOM
df , which are not shown for better visual comparison among the figures). When

the bad data were removed, the histogram better followed the Fisher distribution
as shown in Figure 14.

5. CONCLUSIONS. The single-receiver single-satellite validation method of
GNSS measurements is applicable to any GNSS with any arbitrary number of
frequencies. It is shown how the data validation parameters can provide numeric and
graphical diagnostics for the individual satellite observations, which is a desirable task
for several applications such as SPP, PPP, RTK and PPP-RTK. The diagnostics can
also show whether the model is set correctly. Two of these diagnostics were presented.
The first is by checking that the estimated w-test statistic of the observed signals
follows a standard normal distribution. The second diagnostic is to check that the
local overall model statistic in one form follows a Fisher distribution. The method was
demonstrated using phase and code data from GPS, GLONASS and Galileo on all
their frequencies for test data that span three days in a static test site, and for almost
nine hours in a kinematic ship-borne mode. The diagnoses for incorrect modelling and
severe irregularities in the data are demonstrated through some examples.
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