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We consider long-term data from direct numerical simulations of turbulent Rayleigh–
Bénard convection inside two-dimensional (2-D) square cells. For the range of
Rayleigh numbers Ra = 107–108 and Prandtl numbers Pr = 3.0–4.3 considered, two
types of flow regimes are observed: a regime consisting of consecutive reversals, when
the global rotation switches sign; and a regime consisting of an extended cessation,
when global rotation is absent. A filtering method discriminates these two regimes
and allows us to identify two characteristic time scales for the former regime. A time
rescaling is then used to tune our records to a common duration, thus putting into
evidence a generic reversal cycle. This cycle is composed of three successive phases:
acceleration, accumulation and release including a rebound event. We complement
this view in terms of a global angular impulse, available mechanical energy, global
kinetic energy and their corresponding transfer rates. For a particular realisation of
a reversal, each phase is described in terms of the flow patterns (large diagonal
roll, counter-rotating corner flows and thermal plumes) and tied to the corresponding
energy processes. We conclude by performing linear as well as nonlinear stability
studies to account for the triggering mechanism of the release.

Key words: Bénard convection, convection in cavities, turbulent convection

1. Introduction

Decaying or stochastically forced two-dimensional (2-D) turbulence in the presence
of rigid boundaries is characterised by self-organised coherent structures. For a
square domain (Clercx, Maassen & Van Heijst 1998; Molenaar, Clercx & Van
Heijst 2004), a spontaneous spin-up is observed which leads to the formation of
a single vortex structure. This structure can persist for very long periods of time,
before suddenly breaking and reorganising itself, in some cases with a reversed
rotation sense. A similar process occurs in the geomagnetic field under the form of
polarity switches (Wicht, Stellmach & Harder 2009; Valet et al. 2012). In turbulent
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Reversal cycle in Rayleigh–Bénard cells 615

Rayleigh–Bénard (RB) convection experiments, this phenomenon is also observed:
a large-scale circulation (LSC), commonly referred to as the wind, changes sign
intermittently. Several models have been proposed to describe this process in RB
convection through either stochastic differential equations (Sreenivasan, Bershadskii
& Niemela 2002; Benzi 2005; Brown & Ahlers 2007; Podvin & Sergent 2015) or
phenomenological and physically motivated assumptions (Araujo, Grossmann & Lohse
2005; Resagk et al. 2006; Brown & Ahlers 2007).

The LSC structure, its global properties and the transition between dominant flow
structures are found to be dependent on the cavity shape (Grossmann & Lohse
2003; Xi & Xia 2008b; van der Poel, Stevens & Lohse 2011). Inside cylindrical
cells, a change of sign of the LSC occurs either by a rotation-led reversal through
an azimuthal rotation of the near-vertical circulation plane known as azimuthal
meandering, or by a cessation-led reversal through the breakdown of the existing
LSC before reorganising in a different spatial direction (see, for instance, Niemela
et al. 2001, Sreenivasan et al. 2002, Brown & Ahlers 2007, Funfschilling, Brown
& Ahlers 2008, Xi & Xia 2008a,b). One approach to separate rotation-led from
cessation-led reversal events consists in restricting the experimental study to a square
box of small aspect ratio in the transversal direction (Xia, Sun & Zhou 2003;
Sugiyama et al. 2010; Wagner & Shishkina 2013; Ni, Huang & Xia 2015). Another
viewpoint uses 2-D direct numerical simulations (Sugiyama et al. 2010; Chandra
& Verma 2011; Petschel et al. 2011; Podvin & Sergent 2015; Verma, Ambhire &
Pandey 2015) since rotation-led reversals are not possible in such a configuration.
However, it is not entirely clear whether 2-D reversals and cessation-led reversals
correspond to the same phenomenon. Sugiyama et al. (2010) have identified a region
in the (Ra, Pr) space in which reversal events are observed experimentally inside
quasi-2-D cells as well as numerically in 2-D simulations. For this range of (Ra, Pr),
the flow inside a square cell is mainly composed of a large diagonal roll and two
counter-rotating corner rolls. Sugiyama et al. (2010) and Chandra & Verma (2013)
pointed out the feeding of corner rolls by plumes detached from horizontal boundary
layers. Both papers proposed that the growth of corner rolls ended by a sudden LSC
transition.

The presence of such coherent structures has been investigated by computing the
first Fourier modes (Chandra & Verma 2011; Verma et al. 2015), or by obtaining these
modes from a proper orthogonal decomposition (Bailon-Cuba, Emran & Schumacher
2010; Podvin & Sergent 2015). Coherent structures are actually associated with a
sum of various such modes: a large-scale monopole, a quadrupole and a vertically or
horizontally stacked dipole. A study of the transition sequences between these first
Fourier modes indicated the presence of a reversal path (Petschel et al. 2011). To
analyse such a process, one could adopt the perspective used in geomagnetic fields
combining a careful selection of reversal records as well as a time rescaling (Valet
et al. 2012; Lhuillier, Hulot & Gallet 2013). In geomagnetism, this method led to
the definition of three successive phases: a precursory event, a polarity switch and
a rebound.

Another viewpoint is based on energetic considerations. For instance, available
potential energy is key to understanding how mechanical energy is transported, stored
and dissipated in RB convection (Winters et al. 1995; Hughes, Gayen & Griffiths
2013). This approach could make more precise the idea of an avalanche mechanism
(mentioned in Sreenivasan et al. 2002), due to a localised accumulation of energy,
which increases local gradients until a certain threshold is reached and energy is
expelled as a single burst.
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616 A. Castillo-Castellanos, A. Sergent and M. Rossi

In the present paper, we propose for RB convection, a formulation similar to the
one proposed in geomagnetism (Valet et al. 2012): the main objective is to establish
the existence of a generic reversal cycle and to identify in this cycle three phases
(release, accumulation and acceleration). This analysis combines a statistical analysis
with a physical approach relying on the angular momentum as well as kinetic and
potential energy to highlight the underlying physical mechanisms. In addition, we
identify flow patterns corresponding to each phase of the generic cycle by using a
conditional averaging. A threshold state in generic reversal cycles is identified from
which the release is inevitable.

The paper is organised as follows. Section 2 introduces the model equations
and global quantities: global angular impulse, available mechanical energy and
corresponding conversion rates. A brief description of the numerical method and
the spatial resolution is presented in § 3. In § 4, a filtering method is proposed that
identifies two regimes, and then allows us to perform a statistical study of reversals.
The dynamics of a generic reversal mechanism is described as composed by three
phases in § 5. These results are then analysed in terms of coherent flow structures
and physical mechanisms in § 6 for particular realisations. In § 7, a stability analysis
is applied on the generic cycle. Section 8 contains a brief comparison of the present
analysis with previous works. Finally, some prospective works are mentioned in
conclusion.

2. Model equations and analysis tools
Consider a fluid contained in a square cell, cooled at the top with constant

temperature Ttop and heated at the bottom with constant temperature Tbot > Ttop.
The flow equations are based on the Boussinesq approximation. The flow regime is
defined as a function of the Rayleigh and Prandtl numbers,

Ra≡ gH3β
(
Tbot − Ttop

)
κν

, Pr≡ ν
κ

(2.1a,b)

where g denotes gravity, H the cell height and β, κ , ν are respectively volumetric
thermal expansion, thermal diffusivity and kinematic viscosity coefficients. The values
of (Ra, Pr) used for direct numerical simulations (DNS) correspond to a weakly
turbulent flow regime where reversals have been reported (Sugiyama et al. 2010). As
far as notations are concerned, x (respectively u) and y (respectively v) stand for the
horizontal and vertical directions (respectively velocities). Coordinate vector x= (x, y)
is equal to (0, 0) at the cavity centre. One introduces the reduced temperature
θ(x, t)≡ (T − T0)/(Tbot − Ttop), with T0 ≡ (Tbot + Ttop)/2 as well as the only vorticity
component ω(x, t)≡ ∂xv− ∂yu. For a field a(x, t), the fields a(x) and σ(a)(x) denote
the time average and standard deviation computed using the full long-term time series.
In addition, quantity 〈a〉vol(t) stands for the volume average of a(x, t).

Based on the cell height H as characteristic length scale and κ
√
(Ra)/H as velocity

scale, the dimensionless velocity u = (u, v) and reduced temperature θ satisfy the
dimensionless system of equations

∇ · u = 0,
∂tu+∇ · [u⊗ u] = −∇p+ Pr Ra−0.5∇2u+ Prθey,

∂tθ +∇ · [uθ ] = Ra−0.5∇2θ.

 (2.2)

A no-slip condition for the velocity field is ensured on the walls. On the top
(respectively bottom) walls, one imposes θ = −0.5 (respectively θ = 0.5) while
adiabaticity ∂xθ = 0 is satisfied on side walls. From now on, quantities are written in
dimensionless form only.
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FIGURE 1. (Colour online) Time evolution of L2D(t)/|L2D| shown for (Ra = 5 × 107,
Pr = 3). Light blue areas correspond to a consecutive reversal (CR) regime, while blank
areas correspond to an extended cessation (EC) regime. Some events (darker blue areas)
may not be clearly assigned to the CR regime, see text. The two continuous lines
correspond to the thresholds used by the filtering procedure. Value of the normalised
standard deviation: σ(|L2D|)/|L2D| = 0.499.

2.1. Global angular impulse
The global angular momentum

L2D(t)≡−1
2

∫
x2ω(x, t) dx dy (2.3)

serves as a measure of organised rotation (see for instance Molenaar et al. 2004).
Figure 1 shows a time series of the normalised angular momentum L2D/|L2D|. Two
different regimes are observed. Blue areas correspond to periods of time where
L2D changes sign spontaneously over time: positive (respectively negative) peaks in
L2D alternate that are associated with a dominant counter-clockwise (respectively
clockwise) central vortex. The blue areas consisting of a sequence of consecutive
transitions is hereafter called the consecutive reversal (CR) regime. Outside this
regime, the LSC is no longer well defined and one observes an extended cessation.
Such complementary region is denoted here as the extended cessation (EC) regime.

In order to differentiate in a precise manner the CR regime from the EC regime,
a filtering algorithm has been devised which is modelled after (Lhuillier et al. 2013;
Podvin & Sergent 2015). We identify the set of consecutive times ri at which L2D

changes sign. The time interval [ri, ri+1] is considered to be inside the CR regime
if, during this interval, the value of |L2D| reaches at least once the threshold value
|L2D| + σ(|L2D|) (light blue area in figure 1). A time interval where such threshold
is not reached can be of two kinds corresponding to the darker blue areas or the
white areas in figure 1. The first kind is sandwiched between two CR intervals and
corresponds to a ‘rogue’ reversal, which likely belongs to the CR regime but has been
filtered out by our criterion (the criteria for the selection of events in the CR regime
is rather stringent as seen from the ‘rogue’ events displayed in figure 1). The second
type, displayed in white, corresponds to an extended cessation.

For any interval [ri, ri+1], its duration τ1,i ≡ ri+1 − ri is also computed. When both
intervals [ri−1, ri] and [ri, ri+1] are inside a CR regime, the duration τd,i of the jump
occurring around time ri between a clockwise and counter-clockwise central vortex or
vice versa can be evaluated. It is computed by identifying the times located just before
and just after time ri such that |L2D| reaches the threshold value |L2D| − σ(|L2D|). τd,i

is simply the time lapse between these two events.
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The change of the global angular momentum L2D may be better understood
considering the relation directly obtained from the governing equation (2.2),

dL2D

dt
=M + Ia − Ib


M(t) ≡ 1

2
Pr
∫

x2 ∂xθ dx dy

Ia(t) ≡ Pr Ra−0.5
∮
[x · n] ω dl

Ib(t) ≡ 1
2

Pr Ra−0.5
∮

x2 n · ∇ω dl

(2.4)

where n stands for the outwards unit normal vector to the domain boundary and
dl for a contour line differential element. Note that it is assumed that line integrals
are performed in a counter-clockwise direction. The angular momentum thus evolves
because of a bulk forcing term M(t) known as the input torque (Molenaar et al. 2004)
and two boundary integral terms Ia(t) and Ib(t). Ib(t) is close, but not identical, to the
integrated vorticity flux over the domain boundary. For a square cavity, the boundary
term Ia(t) simplifies to Ia= (1/2)Pr Ra−0.5

∮
ω dl. Vorticity on the boundary is related

to the friction exerted by the fluid on the walls. This integral Ia(t) is thus quantifying
the friction along the boundary.

2.2. Mechanical energy balance
Other global quantities are useful to characterise at each time the instantaneous state
of the system: the global kinetic energy Ekin(t) ≡ (1/2)

∫
u2 dx dy and the global

potential energy Epot(t)≡−Pr
∫

yθ dx dy. This latter quantifies the energy required to
bring all fluid particles against gravity from their position at time t to the reference
level y = 0. However, one can introduce a more pertinent instantaneous quantity,
namely the available potential energy (Sutherland 2010), which is defined below. For
a given time t, the fluid is characterised by an instantaneous temperature field θ(x, y, t)
with a lower (respectively upper) bound at θmin(respectively θmax). Let us consider a
one-to-one mapping (xr(x, y), yr(x, y)) from the square onto the square. This may
be interpreted as a reordering of fluid particles inside the square cell. Rearranging
modifies the temperature field leading to a new field θr(x, y, t) but this process is an
adiabatic one i.e. θr(xr, yr, t)= θ(x, y, t). As a consequence, the probability distribution
function (PDF) of temperature in the rearranged state is identical to the PDF in the
instantaneous state. The potential energy of the rearranged state can be measured.
Among the set of such mappings, there exists a subset which corresponds to the
lowest potential energy. It is easy to understand that all mappings belonging to this
subset have identical rearranged temperature field θr(y, t), which does not depend
on x and monotonically increases with height (figure 2). This field characterises the
background state. Although yr(x, y, t) is not a simple function of (x, y), the above
remark implies that yr is a one-to one function of θ for a mapping in this subset. In
practice (see Tseng & Ferziger 2001), the field θr(y, t) is computed by the following
procedure. Firstly, the PDF of the instantaneous temperature at time t, which is
denoted by P(θ), is directly evaluated numerically within the interval [θmin, θmax]
since θ(x, y, t) is known on the whole square box. Secondly, the conservation of
temperature PDF with rearrangement imposes that yr(θ) be evaluated as a cumulative
density function

yr(θ)− ybot = yr(θ)− yr(θmin)=
∫ θ

θmin

P(θ) dθ. (2.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.647


Reversal cycle in Rayleigh–Bénard cells 619

–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4

–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4

–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4

(a) (b) (c)

FIGURE 2. (Colour online) Temperature field θ(x, y, t) at a given instant t (a), the
corresponding background state θr(y, t) (b) and height yr(x, y, t) (c) for a square RB cell.

This relation depends a priori on the domain geometry. For a square box of unit size,
however, the proportionality is factor is reduced to unity. Lastly, function θr(y, t) is
then obtained by a simple inversion of yr(θ, t).

The background state is characterised by the lowest potential energy that can
be reached by an adiabatic process starting from the instantaneous temperature
field θ(x, y, t). This quantity, called the background potential energy, is equal to
Ebpot ≡ −Pr

∫
yr(x, y, t)θ(x, y, t) dx dy. By a simple change of variable and using

adiabaticity θr(xr, yr, t)= θ(x, y, t), one gets

Ebpot =−Pr
∫

yrθr(yr) dxr dyr =−Pr
∫

yrθr(yr) dyr. (2.6)

The difference Eapot(t) ≡ Epot(t) − Ebpot(t) > 0 in potential energy between the
instantaneous state and its background companion is called the available potential
energy and represents the potential energy which could be effectively transformed
from the instantaneous field θ(x, y, t) into motion (Lorenz 1955; Winters et al. 1995).

In analogy with L2D, the process may be better grasped by considering the evolution
of the energies Ekin, Epot, Eapot, through some exact relations (see Winters et al.
1995, Hughes et al. 2013). For the kinetic energy Ekin, the following relation holds
(eij denotes the symmetric velocity gradient tensor)

dEkin

dt
= Pr Ra−0.5[Φy − ε],

{
Φy ≡ Ra0.5〈vθ〉vol

ε ≡ 〈∇u :∇u〉vol = 2〈eijeij〉vol.
(2.7)

The first bulk term Φy(t) is a convective heat flux. More precisely, let us introduce
the volume-averaged Nusselt number Nuvol ≡ Ra0.5〈vθ〉vol − 〈∂yθ〉vol. It is easily found
that, for RB cells, Φy(t)=Nuvol(t)− 1. The second bulk term ε(t) > 0 stands for the
viscous dissipation rate. Finally one may write

dEkin

dt
= Pr Ra−0.5[Nuvol − (ε + 1)]. (2.8)

The potential energy Epot verifies instead the relation

dEpot

dt
= Pr Ra−0.5[−Nuvol +Φb1], (2.9)
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which contains the bulk term Nuvol and a boundary term

Φb1(t)≡−
∮

y[n · ∇θ ] dl (2.10)

quantifying the conversion rate to Epot from external sources. More precisely, let us
introduce the Nusselt number Nutop(t)≡−

∫
∂yθ dx evaluated at the top y= 0.5 as well

as the Nusselt number Nubot(t) ≡ −
∫
∂yθ dx evaluated at the bottom plate y = −0.5.

For the present square cell, one easily verifies that Φb1 = (Nutop + Nubot)/2 and
consequently

dEpot

dt
= Pr Ra−0.5

[
−Nuvol + 1

2
(Nutop +Nubot)

]
. (2.11)

Finally, the evolution equation for the available potential energy Ebpot reads as

dEbpot

dt
= Pr Ra−0.5[Φd −Φb2],


Φd ≡

〈
∂yr

∂θ
∇θ · ∇θ

〉
vol

= 〈∇yr · ∇θ〉vol

Φb2 ≡
∮

yr[n · ∇θ ] dl,
(2.12)

where the bulk term Φd(t) quantifies the energy conversion rate due to diapycnal
mixing. Since by definition ∂yr/∂θ > 0, Φd(t) is bound to be positive. The boundary
term Φb2 provides the conversion rate from external sources. For the present RB cells,
since yr(x, 1/2, t) = −1/2 and yr(x, −1/2, t) = 1/2 and because adiabaticity of side
walls it is clear that Φb2(t)=Φb1(t). Finally by subtracting (2.9) by (2.12), one gets

dEapot

dt
= Pr Ra−0.5[Nubot +Nutop −Nuvol −Φd]. (2.13)

3. Numerical method
Simulations are carried out using a finite volume code using a semi-implicit

scheme based on the Bell–Colella–Glaz advection scheme (Bell, Colella & Glaz
1989), and a pressure-correction scheme for the velocity–pressure coupling, with a
global second-order precision. Numerical implementation is done using BASILISK C,
details of which can be found in Popinet (2016). Simulations listed in table 1 have
been performed on a uniform Cartesian grid with 512 points in each direction, with a
variable time step that verifies the Courant–Friedrichs–Lewy condition CFL < 0.5. In
the most unfavourable case (Ra= 108, Pr= 4.3) the thermal boundary layers contain
10 points along the vertical direction.

Spatial resolution is verified evaluating numerical convergence of time-averaged
Nusselt numbers obtained by different methods (Stevens, Verzicco & Lohse 2010).
Note that to perform the averaging, statistical sampling is obtained at regular intervals.
We compare Nuvol, Nutop and Nubot to the Nusselt numbers obtained from the thermal
and viscous dissipations

Nuθ ≡ 〈∇θ · ∇θ〉vol, Nuε ≡ ε + 1. (3.1a,b)

All these quantities should be equal (Shraiman & Siggia 1990). The value of Nu
shown in table 1 is the average value of Nuvol, Nutop, Nubot, Nuθ , Nuε while the
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Pr Ra Time Events Nu %Diff

3.0 107 9 600 48 12.5 0.30
3× 107 9 600 77 17.6 0.53
5× 107 9 600 83 20.7 0.69

108 12 000 83 25.6 1.44

4.3 3× 107 19 000 22 18.4 0.24
5× 107 29 000 161 21.0 0.70

108 19 000 156 25.9 1.38

TABLE 1. For various Prandtl and Rayleigh numbers, the table provides the simulation
length in convective time units, the number of reversal events, the average Nusselt number
and maximum relative difference between Nuvol, Nutop, Nubot, Nuθ , and Nuε .

maximum relative difference between any of them is shown as %Diff. These values
converge within 2 % of Nu for all (Ra, Pr) presented. We have also verified that our
numerical results are well converged in a completely different way. This check has
been performed by comparing results of the PDF of the time interval τ1 obtained
by our code against benchmark results. This computation requires to get long-term
simulations and was done for (Ra = 5 × 107, Pr = 4.3) since such parameter values
had already been computed by a spectral code (Podvin & Sergent 2015). The data
for this check are postponed to the end of § 4.

4. Temporal analysis and statistical characterisation

In the present work, we focus on turbulent RB systems for which flow reversals are
observed. For Pr = 3.0, this dynamics is associated with the interval Ra ∈ [5 × 106,

3× 108]. For Pr= 4.3, it corresponds to the interval Ra∈ [3× 107, 4× 108] (Sugiyama
et al. 2010). Note that, these boundaries are not clearly established. For instance, some
transitions were found for very long runs at (Pr = 4.3, Ra = 107) (not presented
here) but it is difficult to assert whether or not the few cycles observed correspond
to an established statistical steady state or to a transient behaviour. In the following,
we consider only values inside the aforementioned range for which the number of
events is large enough (see table 1): simulations are performed from 9600 to 29 000
convective time units (see table 1), which gives from 50 to 160 events (except for
Pr= 4.3 and Ra= 3× 107 which is situated close to the boundary region where the
reversal dynamics is established).

For a given couple (Ra, Pr), one computes the percentage of time, or equivalently
the probability, that the system be in one of the three states: pcr in the CR regime,
pec in the EC regime and prr inside a ‘rogue’ reversal. The probability prr of rogue
events is always of a few per cent (see table 2). For both Pr= 3.0 and Pr= 4.3, in
the interval where the CR regime is observed, pcr first decreases and then increases
with increasing Ra (see table 2).

The PDFs of τ1 and τd are measured based on the full simulation length and shown
in figure 3 (respectively figure 4) for Pr= 4.3 (respectively Pr= 3). Using the filtering
method of § 2.1, we separated the PDF of τ1 into three contributions: one for intervals
inside the CR regime (colour blue), one for intervals from the EC regime (colour
red) and one corresponding to rogue events (colour purple). This PDF shows that the
distribution of τ1 is not peaked inside the CR regime: intervals may have different
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FIGURE 3. (Colour online) PDF of τ1 (a,b) and τd (c,d) for Pr= 4.3, (a,c) Ra= 5× 107,
(b,d) Ra= 108. The PDF value is represented byE marks. For τ1 it is the sum of three
conditional PDFs: one shown by a thick blue line corresponding to the CR regime, a
smaller one shown by an intermediate violet line corresponding to ‘rogue reversals’ and
an additional part shown by a fine red line corresponding to the EC regime.

Pr Ra pcr (%) prr (%) pec (%)

3.0 107 85 1 14
3× 107 73 3 24
5× 107 77 3 20

108 96 4 0

4.3 — — — —
3× 107 95 1 4
5× 107 83 1 16

108 89 2 9

TABLE 2. Probabilities as a function of Ra and Pr. pcr (respectively pec) denotes the
probability that the system be inside the CR (respectively EC) regime. prr denotes the
probability of a ‘rogue’ reversal.

durations. This is also valid for the EC regime. For Pr = 4.3, a similar probability
distribution of τ1 is observed for both values of Ra (figure 3) and a characteristic time
scale τc≈60 exists which separates the EC and CR regimes. For Pr=3.0, a change in
the PDFs of τ1 and τd is observed as we increase the values of Ra (figure 4). For the
lowest Ra displayed, a characteristic time τc cannot be clearly defined. For the highest
Ra displayed Ra = 108, the EC regime completely disappears. For intermediate Ra,
reversal events become evenly distributed over a narrow band of τ1 (see figure 4b,e
and c, f ) and a clear separation of time scales between the EC and CR regimes is
observed at τc≈50 which is at least one order of magnitude larger than the large eddy
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FIGURE 4. (Colour online) PDF for τ1 (a–c) and τd (d–f ) for Pr= 3.0 and Ra= 107

(a,d), Ra= 5× 107 (b,e) and Ra= 108 (c, f ). Layout is similar to figure 4.

turnover time, τE≡ 4π/|ωc| (ωc denoting vorticity measured at the cavity centre). The
PDF of the inter-switch intervals observed for cylindrical convection cell experiments
is an exponential distribution (Sreenivasan et al. 2002). It is not seen here (figures 3
and 4) illustrating the fact that rotation-led reversals are not present here contrary to
cylindrical cells.

From the PDF of transition durations, τd, for the CR regime only (see figures 3c,d
and 4d–f ), the peak value tends to increase as Ra is increased for both Pr = 3.0
and Pr = 4.3. Concerning the numerical check, the average value τ1|cr during the
CR regime and the average duration τd of transition were both found to be in good
agreement with published results for (Ra=5×107,Pr=4.3): τ1|cr=146 and τd=11.5
convective time units (Podvin & Sergent 2015).

5. Dynamics of the generic reversal
We have shown above that reversals cycles have different durations τ1,i. A simple

time rescaling, however, can be used to identify features common to all reversal
cycles.

5.1. Averaging procedure and generic reversal as function of (Ra, Pr)
In order to identify similarities between different intervals in the CR regime, the
following procedure is proposed to treat time series of global quantities such as
L2D, Ekin and Eapot. Once the intervals [ri, ri+1] inside the CR regime are properly
identified, all these intervals with L2D > 0 (respectively L2D < 0) are stacked together
so that they have a common origin at ri (respectively ri+1). If the time axis of each
interval is rescaled by τ1, one obtains figure 5(a,d,g). If the time axis of each interval
is rescaled by its particular duration τ1,i, these curves display a consistent dynamical
pattern (see figure 5b,e,h). Note that, while figure 5 displays only 10 reversals to
avoid cluttered graphs, these events displayed are considered as representative of the
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FIGURE 5. (Colour online) From (a) to (i): normalised global angular impulse L2D/|L2D|,
normalised kinetic energy Ekin/|Ekin| and normalised available potential energy Eapot/|Ekin|
for (Ra= 5× 107,Pr= 4.3). (a,d,g) Each reversal cycle is centred and its time is rescaled
by τ 1 (only 10 reversals are displayed and each colour is a different reversal); (b,e,h) each
reversal cycle is centred and its time is rescaled by τ1,i; (c, f,i) average value of rescaled
curves obtained from the complete time series (thick lines) and curves corresponding to
one standard deviation (dashed lines).

entire set. Obviously, all of the events inside the CR regime are taken into account
in our procedure but ‘rogue reversal’ events are not. This procedure is similar to one
used in the study of statistical properties of magnetic switches in the geodynamo
problem (Valet et al. 2012; Lhuillier et al. 2013). For a sufficiently large number of
recorded events, the average over these rescaled curves is expected to remove the
noisy dynamics and to represent a generic reversal cycle (figure 5c, f,i). This averaging
technique, once applied to Ekin and Eapot, recovers the evolution of mechanical energies
during the generic reversal cycle.

Figure 6 shows the L2D/|L2D| curves for generic reversal cycle at Pr = 3.0: as
we increase Ra, the reversal cycle becomes more regular and the band representing
the standard deviation narrows. The same averaging procedure can be applied to
instantaneous temperature and velocity fields in order to obtain the evolution of a
conditionally averaged temperature θ o(x, y, t) and velocity uo(x, y, t) fields during the
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FIGURE 6. Curves corresponding to reversals for Pr= 3.0 as obtained using the procedure
described in figure 5. The average L2D/|L2D| is shown in thick lines and one standard
deviation in dashed lines. From (a) to (c): (a) Ra = 107, (b) Ra = 5 × 107 and
(c) Ra= 108.
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+0.5
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−0.5

FIGURE 7. (Colour online) Conditionally averaged fields uo(x, y, t) and yr(θ
o(x, y, t)) at

different instants during the generic reversal cycle for (Ra= 5× 107,Pr= 3.0). Fields are
obtained as the ensemble average over 83 particular reversal cycles. Streamlines of the
velocity field uo are superposed over the colour map of field yr(θ

o). Solid and dashed
streamlines indicate the two senses of rotation.

reversal cycle (e.g. figure 7 for (Ra= 5× 107,Pr= 3.0)). Despite fluctuations between
various realisations, dominant and persistent structures appear at specific times of the
generic cycle.

5.2. Phases of reversal cycle

In the phase space (L2D/|L2D|, Ekin/|Ekin|, Eapot/|Ekin|), let us consider the generic
reversal cycle (figure 8). Consecutive instants (a)–(e) pinpoints particular dynamical
times: L2D= 0 at instant (a); Ekin reaches a local maximum at instant (b), Ekin reaches
a local minimum at instant (c); Eapot reaches its minimum at instant (d); |L2D| reaches
its maximum at instant (e). Points (a′)–(e′) are similar but correspond to an opposite
rotation sign. Based on these instants, three successive phases are identified for the
generic reversal cycle. They are called accumulation, release and acceleration.
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FIGURE 8. (Colour online) Generic reversal cycle for (Ra= 5× 107,Pr= 3.0). (a) System
trajectory in phase space (L2D/|L2D|, Ekin/|Ekin|, Eapot/|Ekin|); (b–d) average curves for
L2D/|L2D|, Ekin/|Ekin| and Eapot/|Ekin|. Marks (i)–(x) and (a)–(e) indicate particular instants
(see text for explanations). The accumulation phase is shaded and indicated by a blue
colour bar. The release (respectively acceleration) phase is indicated by an orange
(respectively green) colour bar. The same colour code is used in the phase space trajectory
position.

The accumulation phase is located between points (e′) and (a). It is characterised
by a steady accumulation of Eapot and a progressive decay of |L2D| and Ekin. This
phase ends when Eapot reaches a maximum and Ekin a minimum (figure 8). In terms
of generic velocity field uo(x, y, t), a central vortex is present during this phase
(see figure 7i–iii) until the global rotation switches signs at point (a) i.e. L2D = 0
(figure 7iv).

The release phase located between points (a) and (d), is defined by a sudden
exchange from Eapot to Ekin. It can be split in three substeps. The first step from
point (a) to point (b) contains a rapid increase of Ekin to a maximum value and
a rapid decrease of Eapot. It corresponds to figure 7(v–vii). A second step follows
from points (b) to (c) in which Ekin suddenly decreases and Eapot remains almost
constant. This is associated with figure 7(viii,ix). After these two steps referred to as
a rebound, a new increase of Ekin is observed from points (c) to (d) concomitantly
with a decrease of Eapot until it reaches its minimum value.

Finally, the acceleration phase is located between points (d) and (e) and is
characterised by an increase of |L2D| and Ekin to peak values, whereas Eapot remains
almost constant. During this period, the flow reorganises gradually into a single
dominant vortex (figure 7x).

For the (Ra,Pr) considered inside the CR regime, we are able to recover a generic
reversal cycle expressed in terms of the available mechanical energy (figure 9).
Similarities between these curves for different (Ra, Pr) suggest an equivalent
underlying mechanism behind flow reversals, even if the intensity of the rebound
decreases with Pr. For (Ra = 5 × 107, Pr = 3.0), the accumulation phase lasts
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FIGURE 9. (Colour online) (a,b) Generic reversal curves in the plane (L2D/|L2D|,
Ekin/|Ekin|). Each curve corresponds to a different Ra: Ra = 3 × 107 (black line),
Ra= 5× 107 (blue line) and Ra= 108 (red line). (a) Corresponds to Pr= 3.0 and (b) to
Pr= 4.3. (c–e) Average curves during one cycle for L2D/|L2D|, Ekin/|Ekin| and Eapot/|Ekin|
for (Ra= 5× 107, Pr= 4.3). Figures are displayed as in figure 8.

longer (60 %), while the release and acceleration phases have shorter and similar
durations (respectively 18 % and 22 % of the reversal cycle). For the range of Ra
considered these proportions are similar: for instance, the accumulation, release,
and acceleration are observed to last 75, 13 and 12 % of the reversal cycle for
(Ra= 108, Pr= 3.0).

6. Dynamics of a particular reversal

From now on, we focus on a single value of (Ra, Pr) (Ra = 5 × 107, Pr = 3.0)
in order to explore the nature of the reversal dynamics. To look at the small-scale
effects, the analysis below considers particular realisations of reversal cycles rather
than conditionally averaged fields.

For each particular reversal cycle, we define similarly to the generic curve,
consecutive instants (ap)–(ep) which pinpoints the dynamical times: L2D = 0 at instant
(ap); Ekin reaches a local maximum at instant (bp), Ekin reaches a local minimum at
instant (cp); Eapot reaches its minimum at instant (dp); |L2D| reaches its maximum at
instant (ep).

6.1. Time evolution of the available mechanical energy and flow structures
The spatial distribution of mechanical energy can be linked to flow structures observed
during different phases of a reversal cycle. At the beginning of the accumulation
phase (point (e′p)), a large diagonal vortex with small counter-rotating corner flows
is observed (figure 10a). On the one hand, it corresponds to a state of maximum
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FIGURE 10. (Colour online) Instantaneous fields for a particular reversal cycle during the
accumulation phase at regular time intervals at (Ra= 5× 107,Pr= 3.0). The first snapshot
follows point (e′p) while the last precedes point (ap). Streamlines are superposed either to
vorticity ω (a), or to kinetic energy 1/2uiui (b).
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FIGURE 11. (Colour online) Instantaneous fields for a particular reversal cycle during the
accumulation phase. They are identical to those of figure 10 but streamlines are superposed
either to the field Pr(yr − y)θ (a) or to the field ∇yr · ∇θ (b). Snapshots correspond to
the same instants as in figure 10.

kinetic energy condensed inside the central vortex (figure 10b). On the other hand, the
integrand Pr

∫
(yr − y) of Eapot is mostly distributed inside the corner flows or along

thin thermal boundary layers (figure 11a). The field ∇yr · ∇θ is used to highlight the
contour of thermal plumes (figure 11b). This field is related to the spatial distribution
of Φd (see (2.12)). Small-scale thermal plumes are observed to be detached from
the thermal boundary layers. They are then swept by the central vortex. Plumes are
channelled into the corner flows, directly or after having been advected along the
side walls. The progressive growth of the corner flows is illustrated on figures 10 and
11. This is consistent with previous observations by Sugiyama et al. (2010) that tied

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.647


Reversal cycle in Rayleigh–Bénard cells 629

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400
Time

Outside BL
Inside BL

FIGURE 12. (Colour online) Evolution of Eapot contained within the thermal boundary
layers (blue line) and outside (black line) at (Ra= 5× 107, Pr= 3.0).
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0.02

FIGURE 13. (Colour online) Instantaneous fields for a particular reversal cycle during the
early release phase (point (ap)–(bp)) at regular time intervals (Ra = 5 × 107, Pr = 3.0).
Streamlines are superposed to the field 1/2uiui. First snapshot follows point (ap), last
precedes point (bp).

the time evolution of the corner-flows heights. The steady increase in Eapot coincides
with a deceleration of the central vortex and to a build-up of thermal energy inside
the corner flows. Indeed, let us compute the contributions to Eapot due to the region
of thermal boundary layers (BL) and the bulk. The hot and cold BL are taken to
have a constant thickness δ−1

θ = 2Nu. Contributions inside both BL (figure 12) amount
to 30–40 % of Eapot and are fairly constant in time: standard deviation is less than
1 %. On the contrary, contributions to Eapot from outside BL are directly influenced
by the reversal cycle: a steady increase is observed during the accumulation phase
until the release phase (figure 12). This suggests that the energy exchange observed
during the release takes place only inside the bulk, while the boundary layers seem
to be largely unaffected by the reversals.

During the first part of the rebound (points (ap) to (bp)), the opposing corner
flows have become large and strong enough to deform and finally split the central
vortex (figure 13): opposing corner flows then connect and form a single vortex (with
opposite rotation with respect to the previous LSC). This allows the thermal energy
stored inside corners to be rapidly released and transformed into kinetic energy. By the
end of this exchange, the amount of thermal energy Eapot stored outside the thermal
boundary layers will be halved (figure 12). The complete rebound period (point
(ap)–(cp)) can be better illustrated by highlighting the role of the thermal plumes
and boundary layers. To do so, one uses yr(x, y, t) which is a bijective function of
temperature, and function ∇yr · ∇θ in figure 14. Once the vortex reconnection has
taken place, the blobs of hot (respectively cold) fluid which are now inside the main
central vortex, are allowed to travel upwards (respectively downwards) directly into
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FIGURE 14. (Colour online) Instantaneous fields for a particular reversal cycle during the
release phase at (Ra = 5 × 107, Pr = 3.0). Snapshots correspond to points (ap) to (dp).
Streamlines are superposed to either the field yr(x, z, t) (a) or to field ∇yr · ∇θ (b).
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FIGURE 15. (Colour online) Instantaneous fields for a particular reversal cycle taken at
regular intervals during the acceleration phase at (Ra = 5 × 107, Pr = 3.0). The first
snapshot follows point (dp); the last corresponds to point (ep). Streamlines are superposed
either to vorticity ω (a), or to ∇yr · ∇θ (b).

the bulk. This results in the exchange of potential energy (contained inside small-scale
structures) into kinetic energy (contained inside the central vortex). The newly formed
circulation proceeds to rotate and is able to advect thermal blobs against the action
of buoyancy forces (as seen between points (bp) and (cp) figure 14). Simultaneously
as the thermals are released into the bulk, the surface separating hot and cold fluid
increases which reinforces the mixing process (figure 14b).

The acceleration phase is illustrated on figure 15. Self-organisation of the LSC takes
place, during which the kinetic energy and the angular impulse arrive to peak values.
During that phase, the bulk contains less and less plumes: temperature becomes nearly
homogeneous. By the end of this phase the flow settles to a large diagonal roll with
small corner flows.
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FIGURE 16. (Colour online) Time evolution of the energy transfer rates. From (a) to (c)
normalised Nuvol/Nu, (ε+ 1)/Nu, Φd/Nu, Φb1/Nu for (Ra= 5× 107,Pr= 3.0). Figure for
L2D/|L2D| is given as a reference curve. (a) Corresponds the generic reversal: the curve
shown by a black line corresponds to the average, while the hatched region represent
one standard deviation from this average. (b) and (c) correspond to particular reversals
displayed by an orange line alongside the standard deviation.

6.2. Mechanical energy transfer rates
Figure 16 displays the evolution of energy transfer rates (given in (2.7) to (2.13)) for
a generic reversal cycle as well as for two particular reversal cycles. More precisely,
the bulk terms Nuvol =Φy + 1, ε + 1, Φd and boundary term Φb1 = (Nutop + Nubot)/2
normalised by Nu are presented. First, note that, while the time-averaged quantities
ε + 1, Φd and Φb1 converge to Nu, each corresponding term has a specific behaviour
during the different phases of the reversal cycle. Let us describe each instantaneous
transfer rates in turn.

The vertical heat flux Nuvol which measures the conversion from Eapot to Ekin (see
(2.8) and (2.9)), is by far the term that is found the most fluctuating, notably during
the release. During the first part of the rebound i.e. the interval between points
(ap) and (bp) (respectively (a) and (b)) for the particular reversal (respectively for the
generic curve), Nuvol reaches peak values which are several times larger than Nu. This
is related to the release of thermal energy Eapot (figure 8) and plumes (figure 14).
Between points (b) and (c), the generic Nuvol abruptly decreases. In terms of a
particular realisation, this is due to the rotation of the bulk acting against buoyancy
forces (points (bp) and (cp) in figure 14) and may result in a negative heat transfer
as seen in figure 16 for the particular reversal cycle. This is consistent with results
from (Chandra & Verma 2013). During the acceleration and accumulation phases,
Nuvol fluctuates less and slightly decreases.
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0.2

FIGURE 17. (Colour online) Instantaneous fields for a particular reversal cycle taken
at regular intervals during the early release phase at (Ra = 5 × 107, Pr = 3.0). The
first (respectively last) snapshot follows point (a′p) (respectively precedes point (b′p)).
Streamlines are superposed to field 2eijeij the value of which is given by the colour.
Corresponding values of ε and Φd below each snapshot.

In addition to Nuvol, the viscous dissipation rate ε governs the evolution of Ekin (see
(2.8)). Viscous dissipation increases briefly during the reorganisation periods: once
during the release phase around point (b), and again during the rotation of the central
vortex between points (c) and (d). A gradual increase in ε is observed during the
acceleration phase, between points (d) and (e), followed by a progressive decay during
the accumulation phase. For a particular reversal cycle, contributions to the viscous
dissipation rate ε are located (see figure 17) primarily along the vertical side walls and
along the horizontal plates where ascending (respectively descending) plumes collide.

In addition to Nuvol, Eapot is governed by the mixing term Φd (see (2.13)). As seen
in fields ∇yr · ∇θ on figures 14 and 15, contributions to Φd are distributed along thin
filaments which trace the contour of thermal plumes. Φd is thus affected by small
scales and fluctuates during all the process.

However, fluctuations are slightly larger during the second part of the release phase
(points (bp) to (dp)). An increase on such mixing fronts during the rotation of the bulk
leads to the corresponding increase of Φd. Note that during the accumulation phase,
the generic curve for Φd slightly decreases. Finally, the forcing boundary term Φb1
does not fluctuate much on the whole cycle.

To summarise, the dominant mechanisms during the release phase are first the
energy conversion Nuvol followed by the mixing Φd during the rebound. The
acceleration phase is characterised by the increase of the viscous dissipation ε.
A constant decay of both dissipation ε and mixing Φd processes is conversely
observed during the accumulation phase.

6.3. Angular momentum transfer rates
Since the evolution of L2D is characteristic of flow reversals, it is of interest to
examine the angular impulse transfer rates M, (M− Ib) and Ia of (2.4) (figure 18). In
addition to points (a) to (e), we introduce points (f) and (g). These points are located
inside the accumulation phase and coincide for point (f) with a change of sign for
M and for point (g) with a change of sign for Ia.

Time evolution of the input torque M has a maximum value during the rebound,
followed by a local minimum near point (d), a slight increase during the acceleration
phase and a monotonic decrease during the accumulation phase. The bulk term M(t)
and the boundary term Ib(t) are well correlated and have similar orders of magnitude.
This is why only the M(t)− Ib(t) evolution is plotted.
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FIGURE 18. (Colour online) Time evolution of the angular impulse transfer rates for
(Ra= 5× 107, Pr= 3.0). From (a) to (c): evolution of M/|M|, (M − Ib)/|M|, and Ia/|M|.
Figure for L2D/|L2D| is given as a reference curve. (a) Corresponds to the generic reversal:
the average curve is displayed by a black line and the hatched region represents one
standard deviation from this average. (b) and (c) depict two particular reversal cycles.

+6
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−6

FIGURE 19. (Colour online) Instantaneous fields for a particular reversal cycle taken
at regular intervals during the accumulation phase at (Ra = 5 × 107, Pr = 3.0). The
first (respectively last) snapshot follows point (ep) (respectively precedes point (a′p)).
Streamlines are superposed to field 0.5(x ·x)∂xθ (the value is provided by the colour code).
Corresponding values of M and Ia are given below each snapshot.

Before point (e), the difference M(t)− Ib(t) is larger than Ia(t), from (e) to (f) it is
the opposite (dL2D/dt changes sign). One may discriminate three time periods: from
(a) to (f), Ia opposes L2D (i.e. the central vortex), contrary to the torque M or (M− Ib);
from (f) to (g), Ia opposes L2D similarly to M or (M− Ib); and finally, from (g) to (a),
Ia contributes to L2D which is opposed by M or (M − Ib). During the accumulation
phase, the integrand 0.5Pr[x · x]∂xθ of the input torque M(t) is spatially distributed as
follows (figure 19): it is negligible inside the bulk, and concentrated in two regions, i.e.
along vertical side walls associated with the central vortex and inside corners flows.
In these two regions they are overall of opposite sign. At point (f), M(t) changes sign:
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the corner flows become dominant in the integrand of M(t) and the overall torque is
then opposing the central vortex (figure 18). Similarly, during the accumulation phase,
the integrand of Ia that is vorticity, is distributed in two sectors along the boundaries:
one along the boundaries of the central vortex, and another of opposite sign along
the top and bottom corners (figure 10). From point (g), Ia has changed sign: this is
related to the dominant contribution of the corner rolls.

As a consequence, it is noteworthy that the input torque M(t) changes sign at point
(f) long before the reversal time (point (a)). The interval from point (f) to point (g)
can be seen as a transition period from a central vortex-dominated to a corner-rolls-
dominated flow.

7. Mechanism of transitions
7.1. Linear stability approach

The significance of instant (g) where Ia changes sign, is tentatively explained by
two complementary approaches. In a first approach, one considers the following
hypothesis: the change occurring in the accumulation phase near point (g), is due to
a modification of the dynamics governing fluctuations around large-scale structures.
The large-scale structures identified by fields θ o(x, y, t) and uo(x, y, t) are here
obtained by an ensemble average over many realisations (see § 5.1). A linear stability
analysis is thus defined. The base state at time to is given by fields θ o(x, y, to) and
uo(x, y, to) frozen at this particular time. The evolution of infinitesimal fluctuations
θ ′(x, y, t) and u′(x, y, t) is studied around this frozen base state. The linear stability
analysis is performed by direct numerical simulations of the linearised Boussinesq
equations,

∇ · u′ = 0
∂tu′ +∇ · [u′ ⊗ uo + uo ⊗ u′] = −∇p′ + Pr Ra−0.5∇2u′ + Prθ ′ey

∂tθ
′ +∇ · [u′θ o + uoθ ′] = Ra−0.5∇2θ ′.

 (7.1)

Each linearised simulation starts with random disturbances of velocity and
temperature fields and is computed for several hundred time units. The perturbation
kinetic energy 〈u′iu′i〉vol or the square of the fluctuation temperature 〈θ ′θ ′〉vol are
monitored in time. In figure 20, each curve is related to a different base state to.
Positive values of growth rate σ are obtained in all cases.

For to before transition point (g), the values of σ are quite small (∼10−3−10−2) and
the most amplified mode corresponds to a trace of the base state itself (see figure 20c).
This is possibly related to a slow variation in time of the large-scale flow. In contrast,
once point (g) is reached, the growth rate σ increases by a factor of 20, while a
different most amplified mode appears. This amplified mode is reminiscent of the flow
features observed in the bottom right corner of figure 10.

7.2. Nonlinear approach with adiabatic boundary conditions
We have identified through a linear stability analysis a critical generic state around
point (g). Let us now seek to relate this state to the ‘avalanche’ mechanism: a
mechanism due to a localised accumulation of energy inside the fluid which is
followed by a sudden transition. One could argue that, when localised accumulation
is sufficient, a reversal event takes place even if the external thermal forcing is
thereafter suppressed. A second approach, which is nonlinear, is based on this idea
and confirms point (g) as a transition point associated with a threshold state.
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FIGURE 20. (Colour online) Linear stability analysis of the generic fields for (Ra= 5×
107, Pr= 3.0). (a) Placement of the different values of to with respect to the generic L2D
and Eapot curves. (b) Evolution of the energy of the normalised velocity and temperature
perturbations for different base states (or equivalently to). Growth rate σ measured for
different values of to: A (green) σ = 0.009, q (green) σ = 0.005, @ (cyan) σ = 0.005,
p (magenta) σ = 0.006, E (orange) σ = 0.011, u (orange) σ = 0.250; (c) streamlines
corresponding to field uo(x, y, to) superposed to base state θ o(x, y, to) shown for two values
of to: E (orange) located between points (f) and (g) and u (orange) located on point
(g). (d) Disturbance field θ ′θ ′(x, y, t) measured at the end of the curves corresponding
toE (orange) andu (orange).

First, let us consider the conditionally averaged fields (θ o(x, y, to) and uo(x, y, to))
obtained at time to for the standard RB problem, see figure 7. Starting from such
fields labelled by time to, we perform a direct numerical simulation of the nonlinear
Boussinesq equations changing boundary conditions from isothermal to adiabatic on
the top and bottom plates. This effectively suppresses the external thermal forcing
since Φb1 = Φb2 = 0 and limits the amount of thermal energy contained inside the
cavity. Note that different initial conditions i.e. different to lead to different trajectories
for the adiabatic problem.

Evolution of the normalised kinetic energy Ekin/|Ekin| and the normalised angular
impulse L2D/|L2D| can be seen in figure 21, where each curve corresponds to different
to (shown as ◦ marks) inside the accumulation phase. Dashed (respectively solid)
lines indicate negative (positive) values of L2D/|L2D|. For simulations preceding the
transition point (g) a decay in both the angular impulse and the kinetic energy are
observed. On the contrary, from point (g) on, a change from negative to positive
values of L2D/|L2D| simultaneously as peak values in Ekin/|Ekin| are observed, before
the ensuing decay. To illustrate this transition we follow the evolution of Fourier
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FIGURE 21. (Colour online) (a,c) Normalised angular impulse |L2D|/|L2D| (a,b) and
normalised kinetic energy Ekin/|Ekin| (c,d) for (Ra = 5 × 107, Pr = 3.0) as a function of
to characterising the base state and time (t − to). Each curve represents different initial
conditions i.e. different to, where solid lines indicate when a flow reversal takes place
(see text). (b,d) Evolution of modal coefficients v̂mn from two initial conditions: before
and at point (g).

modes v̂mn of the vertical velocity for two initial conditions before and after point
(g) as seen on figure 21. For initial conditions preceding Ia= 0, an already weakened
central vortex is unable to contain the corner flows in place but does not break (the
mode v̂11 which is related to the monopole decreases but remains negative). On the
contrary, for initial conditions following the transition point (g), Fourier coefficient
v̂11 changes sign and thus indicates a LSC reversal, before the subsequent decay.

8. Comparison with previous works
The present DNS results and their interpretation in terms of dynamical processes

may be discussed by comparison with previous experimental data and models.
Experimental data (Brown & Ahlers 2006; Xi & Xia 2008a,b), and models like
Brown & Ahlers (2007, 2008) are devoted to the study of cylindrical 3-D convection
cells, where the LSC plane oscillates. They are mostly focused on the dynamics of the
angle of the LSC plane which is a different phenomenon from the dynamics studied
in this work. Similarly models like Sreenivasan et al. (2002), Benzi (2005) which are
based on nonlinear 1-D stochastic models, have been compared against experimental
data in cylindrical cells. Mainly they attempt to recover the exponential distribution
for the PDF of the inter-switch intervals. In 2-D systems, such distribution is not
observed and again this is probably due to the difference between cessations-driven
and rotation-led reversals. Sreenivasan et al. (2002) states that reversals can be
understood in terms of an imbalance between buoyancy effects and friction, where
inertia is playing only a secondary role. In the present study, reversals do require the
accumulation of potential energy and point (g) is associated with a threshold state
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pinpointed by the change of sign of Ia a quantity related to wall friction. However,
the model proposed in Sreenivasan et al. (2002) is a local one, which follows a single
parcel of fluid, while our understanding of the dynamics depends on the existence of
global flow structures. It is also mentioned in Sreenivasan et al. (2002) the possible
role of side wall thermal conductivity on reversals, which is excluded here. The model
by Araujo et al. (2005) is based on the inertia of a plume to initiate the reversal. In
our case, inertial effects appear during the rebound: as mentioned in § 6.1, the newly
formed circulation is able to advect thermal blobs against the action of buoyancy
forces. However, this is a direct consequence of the reversal and not the triggering
factor. Low-order models could be based also on proper orthogonal decomposition
(POD) modes (Podvin & Sergent 2015, 2016). This approach allows to rebuild the
full dynamics of the velocity and temperature fields. The model proposed in Podvin &
Sergent (2015) that uses three leading modes, is able to reproduce large-scale features
of our DNS results when noise is introduced: reversal and cessation dynamics, and
growth of corner flows during the accumulation phase. It is also able to reproduce
the characteristic time scales as given in § 4. However, the phases predominantly
associated in the present work with small scales, such as the acceleration and second
part of the release, are by construction not recovered by the model described in Podvin
& Sergent (2015). Going back to the threshold state on point (g), the existence of
such a point has also been identified through a large-scale description of reversals
by a POD approach (Podvin & Sergent 2016). The scenario of the growth of corner
flows leading to the release in the case of a square RB cell has been previously
proposed by Sugiyama et al. (2010), Chandra & Verma (2013). Both papers pointed
out the feeding of the corner flows by plumes detached from horizontal boundary
layers. Our results agree with these findings. But we present this process in a more
quantitative way through the use of field Pr(yr−y)θ (see figure 11): in this way, we
are able to show that Eapot is stored mainly in the corner flows. Neither of the two
previous papers quantified the energy exchange between kinetic and potential energy
during the release. In the present paper, the energy exchange is clearly demonstrated
on figures 8 and 9. Furthermore, the figure 12 shows that the energy exchange takes
place between the corner flows and the bulk.

9. Concluding remarks

In this paper we used long-term data from two-dimensional DNS in square RB
cells inside the CR regime to perform a statistical characterisation of reversals. Once
having removed the samples not contained in the CR regime, a simple time rescaling
allowed us to identify a generic reversal cycle in terms of the evolution of three global
quantities: the global angular impulse, the global kinetic energy, and available potential
energy. Consistent dynamical features were found for different values of (Ra,Pr), and
suggested the existence of a generic reversal mechanism, composed of three successive
phases: accumulation, release and acceleration.

The accumulation phase is characterised by a progressive build-up of thermal
energy almost exclusively inside the corners thereby inducing them to grow. During
the release phase, an energy exchange takes place from available potential energy
to global kinetic energy: the opposing corner flows connect to form a new central
vortex and the thermal energy contained from small-scales is suddenly released
into the bulk. A newly formed vortex may complete several turnovers before the
temperature differences inside the bulk are reduced. Strong fluctuations in both the
angular impulse and the kinetic energy are observed during this process, referred
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to as a rebound. During the acceleration phase, the global angular impulse and the
kinetic energy increase as a result of spontaneous self-organisation of the flow into
a large diagonal vortex and two small counter-rotating corner flows. During this
phase, increased mixing inside the central vortex results in a very homogeneous bulk
temperature and almost constant potential energy. We complement this view in terms
of the evolution of energy transfer rates.

Finally, in order to identify the presence of a transition between accumulation and
release, we propose two approaches. First a linear stability analysis is performed
around generic fields uo(x, y, to) and θ o(x, y, to) (obtained as the ensemble average
over long-term DNS results). A sharp increase in the exponential growth rate σ is
shown before the beginning of the release phase. In a second approach, the same
transition zone is put into evidence by suppressing the external thermal forcing and
letting the system evolve from different initial conditions inside the accumulation
phase. The presence of a reversal-type event is an indication that a sufficient amount
of thermal energy already being stored in the system triggers the reversal.

This work can be easily extended for 2-D cells with different geometries or
different boundary conditions. This could provide a complementary view to improve
the understanding of reversals in 2-D convection, in particular to the role of corner
flows. In a future work, we intend to compare more precisely the present findings
with results from POD-based models proposed in Podvin & Sergent (2015, 2016). In
RB 3-D cells, the energy budget has already been used but it was considered only
in a time-averaged sense. The instantaneous energy budget used here and the way
it is related to flow structures can be extended to 3-D cells. Indeed, this approach
is currently being implemented by the authors in the particular case of a 3-D cell
which is very much confined in the transversal direction. Our statistical approach
however might be difficult to use in cylindrical convection cells for two reasons: first,
one needs a long time signal containing a sufficient number of events. This is a
difficult thing to achieve in a fully resolved 3-D DNS. Second, the situation is more
complex in three dimensions than two dimensions since in cessation-led (respectively
rotation-led) reversals, the LSC plane changes in time abruptly (respectively through
azimuthal or torsional motions). This implies to identify or develop a new criteria to
follow the evolution of the LSC. This is a limiting factor for expanding the method
to 3-D convection case in a cylindrical domain.
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