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Diffraction and radiation loads on open
cylinders of thin and arbitrary shapes
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We study the effects of having an opening in a vertical cylinder of an arbitrary
cross-sectional shape when subjected to incident waves from the outside field. Both
the diffraction and radiation problems of linear potential-flow theory are addressed.
The cylinders considered are bottom-mounted with vanishing thickness and the
problem is formulated as a hypersingular boundary-integral method. A simple
higher-order procedure is presented to handle the strong singularity. Comparisons
are made between the hydrodynamic properties of open and closed cylinders, and
the effects of increasing the opening size are discussed and explained. Results for
square, circular and elliptical open cylindrical shells, presented as examples, indicate
that wave loads on the structures could be dramatically decreased to zero (effectively)
at certain frequencies and opening sizes. This leads to the surprising conclusion that
directing an open structure into the incident-wave field results in lower loads on the
structure. A model of an open harbour with a frontal breakwater in a wave field,
inspired by the idea of the Portunus Project, is also analysed.

Key words: computational methods, waves/free-surface flows, wave–structure interactions

1. Introduction
Garrett (1970) presented a solution to the diffraction problem of a bottomless

harbour that is circumferentially closed and argued that any realistic model of a real
floating harbour must include the effects of the harbour shape, thickness and opening
(harbour entrance), but the shape would not cause any qualitative differences and the
thickness had negligible effects. He construed that ‘the effect of the harbour entrance
is less obvious’. In this work, we will attempt to shed some light on exactly this last
point. We will tackle the problem numerically using a boundary-integral approach
and provide an understanding of the results obtained.

The proposal to build a floating harbour or intermediate transport station close to
the Brazilian coast (de Oliveira et al. 2013) as well as the emerging Portunus Project,
which proposes to construct floating harbours off the coasts of the USA (Wampler
2010), require an understanding of the consequences of having an open-shaped body
in the ocean, because the harbour will inevitably be an open body. Furthermore,
the desire to design more cost-effective ocean structures motivates engineers to
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examine unconventional designs for these structures. One instant suggestion is
to use open columns to support platforms and other facilities. This requires a
thorough understanding of the changes that occur when these columns are opened.
Typically, these problems are three-dimensional and computationally expensive. The
computational effort is significantly reduced by assuming that the bodies have zero
thickness.

The study of a wave field interacting with such thin structures is worth while, as
these often appear in designs. Stiffeners, plates and shells are important examples
used in marine design. The numerical treatment of these components by standard
means, such as the boundary-integral method, is expected to be troublesome. The
usual situation is that the numerical problem becomes ill-conditioned as the thickness
of the body decreases. This is because two opposite points of the body surface tend
to carry the same information in the limit of vanishing thickness. It is more natural
then to consider the potential jump across the body surface instead. This reduces the
number of problem unknowns to at least a half, which is a significant reduction for
three-dimensional problems.

It follows from the boundary-integral formulation that the potential field over
a zero-thickness shell is represented by a double-layer sheet. The application of
boundary conditions then leads to a hypersingular integral that needs to be computed
carefully (Krishnasamy et al. 1990; Parsons & Martin 1992). Such a treatment is also
a good approximation to bodies of the same shape having a finite but small thickness
(Mavrakos 1988). This method was originally used in solid mechanics for crack
problems by Martin & Rizzo (1989) and was later used for water–wave problems
to model the scattering (Parsons & Martin 1992, 1994) and radiation (Martin &
Farina 1997; Farina & Martin 1998) of water waves from flat or curved plates and
disks. These last references used a novel method to deal with the hypersingularity.
The potential jump over the body surface was represented in terms of Chebyshev
basis functions with the proper weights so that the hypersingular integral could be
evaluated analytically over flat surfaces. The same method could be used for different
geometries if the integrand is written as the sum of singular and regular terms. The
integral of the singular part is then treated analytically and the correction terms are
integrated numerically. This is the case in Renzi & Dias (2012) in which a wave
energy converter, modelled as a thin vertical plate, was considered. This procedure
also has the advantage of considering the square-root singular behaviour near the
body edges explicitly. The problem is that the series expansion of the integrand has
to be valid over all the body surface, which may require several terms in the series
expansion, especially as the body shape becomes more complicated. Integration over
the whole surface is also required to compute each influence coefficient of the linear
system. Given that calculating these coefficients requires the bulk of the computational
effort, it is more desirable to find a less expensive method. The procedure we present
here depends on a set of compact basis functions and does not require any series
expansion over the entire body surface. The method is found to be very stable and
well conditioned. Note that the hypersingular integral can be avoided altogether by
regularization (Krishnasamy et al. 1990). This involves the use of Stokes’s theorem to
reduce the order of the singularity, but usually requires some additional work for the
evaluation of tangential derivatives of the unknown potential, which presents another
numerical challenge that cannot be easily handled in practice.

In this paper, we treat the singularity directly by Taylor-expanding the integrand
about the singular point. This is the approach for the case of a truncated circular
cylinder in Yeung & Hariri Nokob (2013). In this work, the original field equation is
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transformed into a set of Helmholtz equations in two dimensions after the potential is
expanded in terms of the natural vertical modes. This procedure was used in Renzi &
Dias (2012) to model a flap-type wave energy converter. This decomposition, which
only applies for bottom-mounted cylinders, is very convenient from a computational
standpoint, as the numerical procedure is simplified and the computation time is
significantly reduced.

Our solution method is applied to model incident-wave flow over vertical cylinders
of any cross-sectional shapes. This conveniently allows us to model open shells and
to study the wave loads on these bodies subject to time-harmonic incident waves or
arising because of the motion of the bodies themselves in surge, sway, roll, pitch
and yaw directions. We assume that these motions are possible even though the
cylinders extend to the ocean floor. That means that proper supports are used at the
bottom or the results here are approximations to finite-draught bodies whose height
is comparable to the water depth. This is a good approximation in general, especially
in deeper water, where most activity is confined near the free surface. The authors’
previous works on this subject include Hariri Nokob & Yeung (2014a,b). Here, a
higher-order method based on the modified Overhauser elements is used to solve the
hypersingular problem. The results for an open shell are then analysed in some detail.

We also note that the hypersingular integral-equation formulation is used to
avoid non-uniqueness problems (irregular frequencies) associated with floating solid
bodies (Burton & Miller 1971; Lee & Sclavounos 1989). The combination of the
hypersingular integral equation with the less singular equation is well posed for all
frequencies. The open thin shells considered herein do not suffer from those problems
because no internal potential (inside the thin bodies) exists but the procedure presented
here is useful in those situations as well.

The following sections start by presenting the problem formulation and method
of solution. Then, radiation and diffraction results for open circular, elliptical and
square-shaped shells are presented and discussed. The free-surface elevations for some
particular geometries are also presented.

2. Computational theory
2.1. Problem formulation

We assume linear water wave potential theory. All potentials Φ are considered
harmonic in time with frequency ω such that Φ(x, y, z, t) = Re{φ(x, y, z)e−iωt}.
These potentials are normalized as φR = φ

R
/alU and φS = φ

S
/η0
√

ga for any of
the radiation and scattering potentials, respectively. The terms with an overbar are
always dimensional, a is a characteristic length of the body, g is the acceleration
of gravity and η0 is the incident-wave amplitude. The constant U is the amplitude
of the translation and rotation forced motions and the integer l is 1 for surge and
sway and is 2 for roll, pitch and yaw. These motions will be denoted by the integers
p = 1, 2, 4, 5, 6, respectively, and we use p = 0, 7 for the incident and diffracted
potentials. The corresponding potential for these different motions is denoted by φp.
In addition, the water depth is finite and given by h.

Let the coordinate system be fixed on the calm free surface with the y axis pointing
upwards (figure 1). We use the characteristic length a to non-dimensionalize all length
parameters and wavenumbers in this work. The problem is then the classical water
wave formulation given by

∇2φp = 0, (2.1)
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FIGURE 1. (Colour online) Schematic diagram of a square-shaped open shell.

∂φp

∂y
− νφp = 0, ν = ω

2a
g
, for y= 0, (2.2)

∂φp

∂y
= 0, for y=−h. (2.3)

Let n= [n1, 0, n2] be the normal vector pointing out of the body. Then the kinematic
condition on the body surface applies as:

∂φp

∂n
=



np, ( p= 1, 2),
(y+ h)np−3, ( p= 4, 5),
zn1 − xn2, ( p= 6),

−∂φ
0

∂n
, ( p= 7).

(2.4)

We assumed that the rolling and pitching axes pass through the origin projection on
the ocean floor. A radiation condition that dictates outgoing waves is also required.
Now we can introduce the decomposition

φp(x, y, z)=
∞∑

n=0

ϕp
n(x, z)Yn(y), (2.5)

Yn(y)= cosh(κn(y+ h))
Mn

, Mn =
√

sinh(2κnh)
4κn

+ h
2
, (2.6a,b)

where the Mn are scale factors to make the Yn an orthonormal set. The functions
ϕp

n are unknown modal potentials in the horizontal plane, and κn are real (n = 0)
and imaginary (n > 0) wavenumbers that satisfy the usual dispersion relation,
κn tanh(κnh)= ν. The functions Yn(y) satisfy the conditions (2.2) and (2.3), effectively
removing any depth dependence. The incident potential is given and can be
decomposed in the same manner as

φ0(x, y, z)= ϕ0
0(x, z)Y0(y), (2.7)

ϕ0
0 =

eiκ0(x cos β+z sin β)

i
√
νY0(0)

, (2.8)
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FIGURE 2. Schematic of one panel showing points Q and P and the cross-sectional shapes
of elliptical and square-shaped bodies. The incident-wave direction, of angle β, is also
shown.

where β is the incident-wave direction (figure 2). The problem thus reduces to:

(∇2 + κ2
n )ϕ

p
n = 0, (2.9)

∂ϕp
n

∂n
=



np
sinh(κnh)
κnMn

, ( p= 1, 2),

np−3

κ2
n Mn

(κnh sinh(κnh)− cosh(κnh)+ 1), ( p= 4, 5),

(zn1 − xn2)
sinh(κnh)
κnMn

, ( p= 6),

−∂ϕ
0
0

∂n
δ0n, ( p= 7).

(2.10)

Equations (2.10) were derived from (2.4) using the fact that Yn are orthogonal over the
water depth. Equations (2.9) and (2.10) will be solved as an integral equation using
the boundary element method. The potential ϕp

n is thus represented by a normal dipole
sheet and then (2.10) is applied (Parsons & Martin 1992):

∂ϕp
n

∂nP
=
∫

C
[ϕp

n]
∂2Gn

∂nP∂nQ
ds, (2.11)

where [ϕp
n] is the potential jump across the body, P(x, z) and Q(ξ , ζ ) are collocation

and integration points, respectively (see e.g. Yeung 1982), C is one side of the body
surface and Gn is the fundamental solution of the corresponding Helmholtz equation
and is given by (Burton & Miller 1971):

Gn =− i
4

H0(κnR), (2.12)

R= |PQ| =
√
(x− ξ)2 + (z− ζ )2. (2.13)

Here H0 is the Hankel function of the first kind and order zero. In general, an
additional term needs to be added to the left-hand side of (2.11) to account for the
fact that the kernel is hypersingular (see Guiggiani 1995). However, the additional
term is not needed in this case because we will use straight panels with zero curvature
to discretize the boundary. More care should be taken for higher-order elements.
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Using the fact that nP= [sin(α),−cos(α)] and nQ= [sin(θ),−cos(θ)], where α and
θ are the slope angles of the body curve in the horizontal plane (defined in figure 2),
we have

∂2Gn

∂nP∂nQ
= iκn

4R2

(
2H1(κnR)

R
− κnH0(κnR)

)
× [(ξ − x)2 sin(α) sin(θ)+ (ζ − z)2 cos(α) cos(θ)

− (ξ − x)(ζ − z) sin(θ + α)] − iκn

4R
H1(κnR) cos(θ − α). (2.14)

2.2. Numerical integration and solution procedure

The body contour is divided into N flat panels Cj[(ξj, ζj), (ξj+1, ζj+1)] as in figure 2.
Collocation inside the panels is easy and does not require higher-order interpolating
basis functions, but that leads to non-conforming elements, which results in a lower
accuracy of the formulation as well as a dependence on the position of the collocation
points (see Manolis & Banerjee (1986) for more information). It is thus more natural
and desirable to collocate at the edges of the panels. This ensures that the boundary
conditions are met at the exact positions of the original problem. Because the kernel
of the integral in (2.11) is hypersingular, this requires a density distribution that at
least belongs to C1,α, the space of functions with Hölder-continuous first derivatives
(Martin & Rizzo 1989). However, this requirement can be loosened as indicated in
Martin & Rizzo (1996). In fact, we will use the concepts in this last reference as
explained in appendix A. Nonetheless, to obtain a high-order method, we choose to
use the modified cubic Overhauser polynomial elements to represent the potential
jump distribution. These elements have a continuous derivative at the edges of the
panels and the interesting property of being locally independent of each other. That is,
any local errors will not propagate across the mesh as in the case of other functions.
They also do not require the evaluation of derivatives at the edges, as continuity of
the derivatives is guaranteed by the structure of the elements themselves. This makes
them simple to use. Furthermore, several authors have shown the superiority of these
elements in certain aspects such as stability. Short reviews on these elements can be
found in Sladek & Sladek (1998) and Hadavinia, Travis & Fenner (2000). The authors
in this last reference note that the Overhauser elements suffer from errors when the
mesh size is non-uniform. They develop a set of modified Overhauser elements that
take the varying mesh into account and show their applicability to boundary element
methods. We choose to adopt those last elements in this work.

We introduce a parameter t that varies between 0 and 1 over some panel Cj. Let
[ϕ]j be the value of the density at the starting edge of the panel Cj. If Cj is not an
end panel of the shell, then the density [ϕ] over that panel is interpolated as

[ϕ] =
j+2∑

q=j−1

Nq(t)[ϕ]q, (2.15)

Nq(t)=
4∑

k=1

bqktk−1. (2.16)
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Here, Nq(t) are the Overhauser elements. These coefficients vary for each panel and
are given by

bqk =



0 −(1−w1)
2

w1

2(1−w1)
2

w1
−(1−w1)

2

w1

1
1− 2w1

w1

w1(2−w2)− 2
w1

w1(w2 − 1)+ 1
w1

0 w1
2(1−w1)−w2(1− 2w1)

1−w2

w1(1−w2)− 1
1−w2

0 0 − w2
2

1−w2

w2
2

1−w2


,

w1 ≡ Sj−1

Sj + Sj−1
, w2 ≡ Sj

Sj+1 + Sj
, (2.17)

where Sj is the length of Cj. If the panel lies on either end of the shell, then quadratic
Overhauser polynomials are sufficient to ensure continuity of the derivative at the
inner edge of the panel. In that case, the coefficient matrix needs to be changed to

bqk =



1 −w− 1 w 0

0
1

1−w
− w

1−w
0

0 − w2

1−w
w2

1−w
0

0 0 0 0


, w≡ Sj

Sj + Sj+1
, (2.18)

for a panel at the start of the sheet and to

bqk =



0 0 0 0

0 − w2

1−w
w2

1−w
0

1
2w− 1
1−w

− w
1−w

0

0 1−w w 0


, w≡ Sj

Sj + Sj−1
, (2.19)

for a panel at the end of a sheet. The same concept is used at corner points, where
the potential jump is continuous but the derivatives can be unbounded. The two corner
panels will be the start and end panels of their respective sheets. The evaluation of
the integral in (2.11) then involves integrals of the form∫

Cj

tk−1 ∂2Gn

∂nP∂nQ
ds= 1

Sk−1
j

∫ Sj

0
sk−1 ∂2Gn

∂nP∂nQ
ds. (2.20)

These integrals are regular (evaluated by standard numerical quadrature) except when
the collocation point lies on one of the edges of the panel. The treatment of this last
case requires special care and is detailed in appendix A.
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Once all influence coefficients are evaluated at the collocation points, we obtain a
system of equations that is solved for the potential jumps across the panels at the
collocation points. We only collocate at points connecting two panels. We also assume
that the normal vector at the collocation point is the mean of the normal vectors
of the two panels. The end points of the sheet are assumed to have zero potential
jump, as the potential (and pressure) go back to being continuous in the body of
the fluid. In fact, the jump in potential varies as

√
t near t = 0 for a panel on the

starting edge of the sheet and as
√

1− t near t = 1 for a panel on the ending edge
(Martin 1991). Polynomials cannot adequately represent that type of end behaviour in
general. However, by using a dense collection of panels near the edges, the effect will
be very small, especially for the load computations, which are integrated quantities.
More precise end behaviour could possibly be incorporated in the method in a manner
similar to Martin & Rizzo (1989).

2.3. The wave loads and surface elevation
The wave loads on the body can be obtained by integrating the dynamic pressure over
its surface. We define the dimensionless added inertia and damping coefficients as
µkp=Mkp/ρhAac and λkp=Bkp/ρhAacω, respectively. Here, ρ is the water density, c is
an integer ranging between 0 and 2 chosen to make the expressions dimensionless and
A is the surface area of the internal region. The excitation force from the diffraction
problem is also normalized as fk = Fk/ρη0gAal−1, where the integer l was previously
defined. The wave loads are then expressed by

µkp + iλkp = 1
Ah

∫
C

∫ 0

−h
[φp]∂φ

k

∂n
dy ds, (2.21)

fk =− i
√
ν

A

∫
C

∫ 0

−h
[φ7]∂φ

k

∂n
dy ds. (2.22)

Here, A = A/a2 is the dimensionless area, which is π, πb and 4 for circular,
elliptical and square shells, respectively. The normal gradient of the potential in
these expressions was given in (2.4). Note that the incident wave does not contribute
to the loads because the body has zero thickness. The integrals in these expressions
are evaluated in appendix B. It is also useful to visualize the free-surface elevation
over the wave field near the body. The expression for the elevation is obtained from
the field potential through the integral equation and is given by

ηS

η0
= eiκ0(x cos β+z sin β) + i

√
νY0(0)

∫
C
[ϕ7

0]
∂G0

∂nQ
ds, (2.23)

ηp

U
√

a/g
= i
√
ν

∞∑
n=0

Yn(0)
∫

C
[ϕp

n]
∂Gn

∂nQ
ds, (2.24)

∂Gn

∂nQ
= iκnH1(κnR)

4R
[(ξ − x)nξ + (ζ − z)nζ ]. (2.25)

The integrals in these expressions are regular and can be evaluated by standard
methods.
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2.4. The Haskind relation
The well-known Haskind relation (Wehausen & Laitone 1960) relates the diffraction
forces to the radiation potential. It serves as an additional check on the validity of the
results. The relation gives the force in (2.22) by

fp = − i
√
ν

A

∫
C

∫ 0

−h

(
φ0 ∂[φp]

∂n
− [φp]∂φ

0

∂n

)
dy ds

= iκ0

AY0(0)

∫
C
[ϕp

0]eiκ0(x cos β+z sin β)(nx cos β + nz sin β)ds

= iκ0

AY0(0)

N∑
j=1

Sj((n1)j cos β + (n2)j sin β)eiκ0(xj cos β+zj sin β)
j+2∑

q=j−1

[ϕp
0]qQjq(β), (2.26)

Qjq(β)=−
bm1P3

j − bm2P2
j + 2bm3Pj − 6bm4

P4
j

+ (bm4 +bm3+ bm2+ bm1)P3
j− (3bm4+ 2bm3+ bm2)P2

j+ (6bm4+ 2bm3)Pj− 6bm4

P4
j

ePj,

(2.27)

Pj(β)= ik[(xj+1 − xj) cos β + (zj+1 − zj) sin β]. (2.28)

Here, it is understood that, for a panel on the left edge of the shell, q∈ [j, j+ 2], and
for one on the right edge, q∈ [j− 1, j+ 1]; and (nk)j is the normal component of the
panel Cj in direction k. We also used m= q− j+ 2 so that m∈ [1, 4]. Again, m should
be modified at the outermost panels to m= q− j+ 1 and m= q− j+ 3 for the left
and right panels, respectively. The points xj and zj are the starting points of Cj.

The Haskind relation was used to verify the results. It also provides a means for a
fast calculation of the diffraction loads once the radiation problem is solved.

3. Results and discussion
The method presented above can be used to simulate the wave field over any thin

vertical cylinder. Multiple bodies could be handled the same way as well. In this work,
we present results for elliptical and square-shaped open cylinders as an example of the
application of the method and in order to understand the effect of the opening. The
cross-sections and definitions of their dimensions are shown in figure 2.

Two elliptical shapes are considered. The first is simply a circle with a = b = 1,
and the second is such that a = 1, b = 1.5. Both have an opening 2θ0 as shown in
figure 2. The third shape has a square cross-section of side length 2a and opening d.
The openings are oriented along the positive x axis.

3.1. Validation of results
The results of this method were compared to that in the lower-order method in the
works of Hariri Nokob & Yeung (2014a,b). These last two references were verified
separately using results in the literature. The results are also compared to the case
of diffraction and radiation from an open circular cylinder, which could be obtained
using a matched eigenfunction expansion method similar to Yeung (1981) but is more
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involved and will not be shown here, although it was found to match the results
obtained.

Furthermore, as the frequency approaches zero, the dimensionless added mass
results should approach those for the corresponding two-dimensional bodies with
the same shape. We present here a comparison of our results with those for a
two-dimensional closed square cylinder of side length 2a = 2 in a potential field.
This comparison is useful because, in the two-dimensional limit, the equation retains
its hypersingular nature as well as the difficulty associated with having geometrical
corners. The potential jump around a corner is continuous but its derivative is
unbounded though integrable. As mentioned earlier, this is taken into account in
the present method. The added mass and mass of inertia in surge and yaw motion,
respectively, for the external flow were given in Newman (1977) to be µe

11=4.745 and
µe

66=0.725. The surge added mass of the internal flow is simply the entrained internal
mass, which is µi

11 = 4.0, while the yaw mass moment of inertia is more involved.
The yaw potential of the internal flow is obtained analytically as an eigenfunction
expansion:

Φi =Φ(x, y)−Φ(y, x), (3.1)

Φ(x, y)=
∞∑

n=1

an cos
nπ(1+ y)

2

(
cosh

nπ(1+ x)
2

− cosh
nπ(1− x)

2

)
, (3.2)

an =−8((−1)n − 1)
π3n3 sinh nπ

. (3.3)

The yaw added mass moment of inertia is then given by

µi
66 =

∞∑
n=1

16an

nπ

(
sinh nπ+ 3− (−1)n

nπ
(1− cosh nπ)

)
. (3.4)

This turns out to be µi
66= 0.417. The total added mass is the sum of the internal and

external contributions, so that µt
11= 8.745 and µt

66= 1.142. The error of the numerical
method is then defined as

Ej =
|µjj −µt

jj|
µt

jj
. (3.5)

Figure 3 is a plot of the natural logarithm of the error versus that of the step size δ
for the closed square case (κ0 is taken as 0.01 in the numerical method). A uniform
mesh is used with 60–140 panels. From the slopes of the curves, we can see that
E1 ∼ δ1.91 and E6 ∼ δ1.45, which is less than the second-order accuracy expected but
better than first-order accurate. These convergence rates are typical of this method for
other geometries as well. A simulation with 130 panels using a cosine distribution
leads to an error less than 0.5 % for all loads.

All results presented in this work are for a water depth h= 3. We used 75 and 100
panels for the circle and ellipse, respectively, and 112, 120 and 128 panels for the
three square-shaped shells varying with the decreasing opening size. This is sufficient
for graphical accuracy. The grid points are concentrated near the edges and the corners
according to a cosine distribution for better accuracy. The Overhauser elements are
known to perform well near corner points. For the radiation results, four modal terms
were found to be sufficient for our purpose.
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FIGURE 3. Plot of log(Ej) versus log(δ) for the closed square case at κ0= 0.01 and h= 3.
The slopes of the lines are 1.91 and 1.45, respectively.
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FIGURE 4. Modulus of complex surface amplitude of the diffraction field (2.23) over (a) a
closed and (b) an open, θ0 = π/3, circular shell at an incident-wave direction of β = 0
(indicated by arrow) with κ0 = 1.5.

3.2. Diffraction results
To understand the effect of opening the cylinder, it is useful to compare the amplitude
of the free-surface elevation around the open and closed bodies. Figure 4 shows the
amplitude of the wave field over a circular cylinder for a wave approaching along the
positive x axis (β = 0). These plots are useful because they indicate the position and
amplitude of the highest waves. This is usually at the first point of contact with the
obstacle. At low frequencies (κ0 < 0.1), the amplitude inside the body is comparable
to the highest value outside because the wave does not ‘see’ the body so well. This
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FIGURE 5. Modulus of complex surface amplitude of the diffraction field (2.23) over (a) a
closed and (b) an open, θ0 = π/3, circular shell at an incident-wave direction of β = 0
(indicated by arrow) at the Helmholtz mode where κ0 = 0.65.

–5

0

5 –5

0

5

0

1

2

z

x

–5

0

5 –5

0

5

0

1

2

z

x
0

0.5

1.0

1.5

2.0

2.5

FIGURE 6. Modulus of complex surface amplitude of the diffraction field (2.23) over (a) a
closed and (b) an open, d = 1.5, square shell at an incident-wave direction of β = π
(indicated by arrow) with κ0 = 1.5.

visibility of the body becomes stronger as the frequency increases and the opening
size decreases. The surface elevation is also representative of the pressure field over a
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certain region. Having a difference in the elevation on opposite sides of the cylinder
creates a force acting in the normal direction. Because the field is symmetric about
the x axis in this case, the net force f1 will be a result of the difference between the
regions on the back and front sides of the body. We expect a higher load on an open
body than on a closed one, provided the difference in surface elevation is comparable
in both cases, because the opening area does not contribute to any force on the body
that would balance the pressure on the back side.

Figure 5 shows the diffracted wave field amplitude over the circular shell as in the
previous case but at the Helmholtz mode. The wave amplitude inside the shell rises
to very high levels (according to the theory considered here) and more so as the shell
opening size decreases. This leads to high loads on the body. The wave amplitude
outside the shell is also greater when the body is open.

The last surface plot in this section is for an incident wave propagating in the
negative x direction and diffracting from a square shaped shell (figure 6). Because
of the opening present, the force f1 in this case will be different than the one for a
wave along β = 0. The former case also shows a higher surface amplitude inside the
body when compared to the latter case. The higher amplitude inside occurs on the
opposite side of the opening as expected.

The rest of the results in this section are plots of the amplitudes of the loads acting
on the shell because of the diffracted wave field. We note that the incident-wave
potential does not contribute to the loads because the body has zero thickness. The
loads are the result of the correction potential only.

The results in figures 7 and 8 show the force and moment in the x direction for
different incident-wave directions. The moment results are very similar to the force
ones and are of the order of the force results multiplied by a factor h/2. This is to be
expected, as the moment is a result of that force. In fact, this similarity extends to all
forces and corresponding moments (in the same direction) in this work, and we will
therefore restrict ourselves to forces for brevity. The results in the first plot of figure 7
indicate that a very large force results at lower frequency when the body is opened.
Although the force on the closed body peaks in this range as well, the open-body
force is observed to be much sharper and larger, especially as the opening gets smaller.
This is the ‘harbour paradox’ (Mei, Stiassnie & Yue 2005a, chap. 5). This force then
decreases well below the closed-body case to peak again above the Helmholtz mode of
the closed inner region. Note that, in reality, the forces would not be so large because
of the effects of friction at the entrance and nonlinearities, which we have neglected
here. An approximate theory for long waves that takes friction into account (Mei et al.
2005a, chap. 6) shows that the peak at the Helmholtz mode completely disappears
when there is sufficient friction at the opening. The theory presented here will become
a better approximation as the opening size increases. Nonlinearity can also play a
role by moving the energy from the lower to the higher harmonics. This should be
particularly important around the Helmholtz mode as the amplitude of the surface
becomes larger. As indicated in Mei, Stiassnie & Yue (2005b, chap. 12), nonlinearity
effects are expected to dominate (even over friction) as the harbour length increases
along the direction of wave propagation compared to the width.

The elevation inside the closed shell is always zero. The load, which is related
to the difference in elevation on opposite sides of the shell, results from the
high-amplitude waves on the outer side of the wall just upstream of the shell.
This is balanced, to a certain extent, by the difference downstream. In the case of
an open shell, this balancing effect disappears and larger forces are observed. At
the Helmholtz (pumping) mode, the elevation inside the shell is almost uniform
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FIGURE 7. (Colour online) Diffraction forces f1 on the circular shell in three incident-
wave directions: β = 0 (a), β =π/2 (b) and β =π (c).
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FIGURE 8. (Colour online) Diffraction moments f4 on the circular shell in three incident-
wave directions: β = 0 (a), β =π/2 (b) and β =π (c).

except near the opening (Miles & Lee 1975). The same thing is also observed for a
moonpool with a bottom gap (Yeung & Seah 2007). The body is essentially acting
as a Helmholtz resonator in this long-wave limit. As the body is opened, it becomes
possible to excite the internal region, which leads to the larger loads. In between the
two peaks, the elevation inside the shell is close to that outside. In fact, most of the
pressure difference occurs close to the edges at the opening where wave heights are
small. The resulting loads are significantly lower than those on a closed body.

When the incident wave approaches at β = π, even lower loads result in that
frequency range when compared to the closed shell. In fact, we can see near-zero
loads in that case (figure 7). This hints that, by properly choosing the opening size,
it is possible to achieve zero loads on the body. The zero-load frequencies could be
tuned to be close to the peak of the wave field spectrum in an irregular wave field.
The results are also seen to be somewhat insensitive to changes in frequency, so the
possibility of designing the opening to reduce loads on the structure may be viable.
The results in figure 7(b) are also important because these loads only arise when
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FIGURE 9. (Colour online) Diffraction loads (a) f2 and (b) f5 on the circular shell in
incident-wave direction β =π/2.
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FIGURE 10. (Colour online) Diffraction forces f1 on the elliptical shell in three incident-
wave directions: β = 0 (a), β =π/2 (b) and β =π (c).

the body is open. This is because of the asymmetry that is introduced by having an
opening. These loads can be seen to be of the same order of magnitude as the loads
when the wave is directed along the opening direction.

Figure 9 shows the force and moment on the circular shell in the z direction when
the incident wave approaches in that same direction. The interesting result here is the
possibility of having a zero force and moment on the body for a certain frequency
and for all openings as long as the body is open.

The results in figure 10 are for an elliptical shell and are analogous to those in
figure 7. The loads appear similar to those of the circular shell, and the general
behaviour can be described in a similar manner. This indicates that the shape of
the harbour has little effect on the physical behaviour. The normalized loads on the
elliptical shell are found to be slightly lower than those on the circular one when the
body is open, in contrast to the closed case. The dimensional loads will be greater,
though, because the elliptical shell is larger in size.
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FIGURE 11. (Colour online) Diffraction loads (a) f2, (b) f5 and (c) f6 on the elliptical
shell in incident-wave direction β =π/2.

Because of symmetry, the force and moment in the z direction and the yaw moment
are only non-zero when the incident wave approaches at a direction β = π/2 even
when the body is open. We present those cases in figure 11. Again, the force and
moment in the z direction are similar. We notice that the loads decrease from the
closed-body case when the opening increases. This has to do with higher wave
elevations inside the shell and therefore less differences with the outside. High
elevations inside are not observed except close to the resonance frequency. Again,
it is possible to have points of zero loads at certain frequencies when the body is
opened. The yaw moment in figure 11(c) is also of interest because it only appears
for an open body. The behaviour is a bit more complicated for this moment than
the rest of the loads, because it depends on forces in both horizontal directions. The
forces do not balance because of the asymmetry created by the opening inside the
body and in the wake, and the net effect is a moment about the y axis.

The case of the square shell is similar to the circle and ellipse. Figure 12 shows
the wave force in the x direction for three incident-wave directions, while figure 13
shows the wave loads in the z direction and the yaw moment when the incident wave
approaches from the side in a manner analogous to figure 11. For loads resulting from
beam waves, points of zero force are clearly possible for all opening sizes as long as
the shell is open.

The first resonant wavenumbers for the open circular and square bodies in figures 7
and 12 can be compared to those of the corresponding closed bodies. Those latter ones
are κ0=π/2 for a square and κ0= 1.8412 for a circle moving in surge. This last value
is the root of ∂J1(κ0r)/∂r at r = 1 for the Bessel function of the first kind and first
order. An important question here is the following: Why do we observe resonance
at low frequencies for the open shell although these are far from the first natural
frequencies of the closed shell? A simple analogy can be made with the problems
of wave propagation over a string or in a gas tube. It is well known that the resonant
behaviour of a string connected to a wall is different from that with a free end. The
same can be said about a gas tube with closed or open ends. For a closed–open tube
(analogous to the open case), the first resonant wavenumber (κa=π/4) in a gas tube
of length 2a becomes half of its value for the closed–closed tube (κa = π/2). The
second resonant wavenumber (κa= 3π/4) for the closed–open tube is three times the
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FIGURE 12. (Colour online) Diffraction forces f1 on the square shell in three incident-
wave directions: β = 0 (a), β =π/2 (b) and β =π (c).
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FIGURE 13. (Colour online) Diffraction loads (a) f2, (b) f5 and (c) f6 on the square shell
in incident-wave direction β =π/2.

first one (Kinsler et al. 2000). This is similar to what we observe for the open harbour,
where the first resonance is dramatically shifted to lower frequencies as the shell is
opened. The second resonance also occurs somewhere of the order of three times the
first resonance. An equivalent statement is to say that damped systems (radiating open
bodies) are known to have lower resonant frequencies. Naturally, our problem is more
involved than the case of a string or gas tube because of the more complex geometries,
the three-dimensional effects and the presence of an outer domain.

It was observed that, at certain opening size and frequency values, the load
along the x axis approaches zero. This behaviour is observed for an incident wave
approaching at β = π but not for the case when β = 0. This leads to the surprising
observation that directing an open structure towards the incident waves leads to
lower loads than directing it the opposite way around. We found that the values
θ0 = [0.1441π, 0.1265π], d = 0.89 at wavenumbers k = [0.916, 0.704, 0.726] are
representative of the zero-load conditions (numerically | f1| < 0.007) for the circular,
elliptical and square bodies considered in this work.
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FIGURE 14. (Colour online) Radiation surge (a) added mass µ11 and (b) damping λ11
coefficients for the circular shell.

3.3. Radiation results
Although the cylinder is bottom-mounted, it is still useful to know its radiation
properties because it could still be connected to the bottom using a suitable joint that
allows its motion or it could represent a reasonable model for truncated cylinders
with a long enough draught. This approximation is expected to work better for the
open shell because the fluid could escape through the opening easier than through
the bottom gap and the effect of this gap will be less important.

Figure 14 shows the added mass and damping coefficients of a surging circular
shell. The closed-shell added mass shows resonant behaviour as expected. Opening
the shell slightly increases the resonant frequency and drastically reduces the added
mass at resonance. This is because the fluid can now escape the inner region. Another
peak in added mass appears at lower frequencies, as was the case for diffraction
forces. The damping coefficients also peak at these points. This range of frequencies
is characterized by an increase in the free-surface elevation to very high levels, which
causes high pressure differences across the wall. Again, as for the diffraction problem,
the absence of a balancing force where the opening is located leads to a high net force
on the shell.

Figure 15 shows the coefficients for the swaying circular shell. The results indicate
a slight decrease in both coefficients and a slight shift of resonance towards higher
frequency as the opening size increases. Close to resonance, the added mass changes
to finite extrema while the radiation damping significantly increases as waves from
inside escape to the outer field. This case could be used as a wavemaker that generates
a single desired frequency. The effect of resonance is reduced as the opening size
increases.

Figures 16 and 17 present the radiation coefficients for the elliptical shell moving in
surge and sway, respectively. The results are qualitatively very similar to those of the
circular cylinder. The magnitudes are slightly higher though. It is interesting to note
that the resonance frequency is the same as that of the circular shell in the surge
motion and lower in the sway motion. This is because the resonance in the sway
direction is mostly governed by the length b rather than a.

Figure 18 shows the yaw added inertia and damping coefficients for the elliptical
shell. These coefficients are zero for the circular cylinder. The distinctive feature of
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FIGURE 15. (Colour online) Radiation sway (a) added mass µ22 and (b) damping λ22
coefficients for the circular shell.
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FIGURE 16. (Colour online) Radiation surge (a) added mass µ11 and (b) damping λ11
coefficients for the elliptical shell.

these coefficients is the dominance of higher frequencies when compared to the other
motions. Opening the shell leads to a large increase in the radiation damping close to
the resonant frequency as in the previous cases. The fact that this occurs at a higher
frequency requires further attention to this motion if open floating bodies are to be
considered for ocean applications.

Figures 19–21 show the radiation coefficients on the square-shaped shell in the
surge, sway and yaw directions. The results for surge and sway are similar to those
of the circle and ellipse. The shape of the body does not play a significant role for
these coefficients. One might expect that this would be different for the yaw motion
because the force is completely a result of the body shape, and this is indeed the case.
The yaw coefficients are seen to be quite different from those for the elliptical shell.

It is interesting to draw similarities of the radiation results with the case of a
cylinder in a channel. This latter case was presented in Yeung & Sphaier (1989a,b)
as well as Linton & Evans (1993). First note that the added mass and damping in
figures 14–21 appear to have their peak values over similar wavenumber positions.
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FIGURE 17. (Colour online) Radiation sway (a) added mass µ22 and (b) damping λ22
coefficients for the elliptical shell.
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FIGURE 18. (Colour online) Radiation yaw (a) added inertia µ66 and (b) damping λ66
coefficients for the elliptical shell.

Furthermore, the magnitude of the damping at the peak (either peak) and the extent
of the corresponding added mass jump behaviour are somewhat equal. This is not
unlike the case presented in Linton & Evans (1993) in which the authors gave a
heuristic argument of why the extent of the spikes in added mass and damping are
nearly the same. The same argument can be used in this case if a simple pole in
the complex load (λ + iµ) behaviour exists below the real axis. The similarity also
extends to the case of a cylinder that is eccentric (not centred) along the channel
width and swaying below the first cutoff frequency. In this case, propagating modes
are possible in addition to the trapped mode, and the behaviour resembles our
open-cylinder case. When there is no eccentricity, only the trapped mode is present
and the radiation damping vanishes. This resembles what happens in the internal
region of the closed-body case. One could not help but notice, then, the similarity in
the radiation loads as presented in this last reference and our results. In particular,
the peaks in the added mass and damping are shifted to higher wavenumbers as the
opening size (analogous to eccentricity) increases. Recently, Sarkar, Renzi & Dias
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FIGURE 19. (Colour online) Radiation surge (a) added mass µ11 and (b) damping λ11
coefficients for the square shell.
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FIGURE 20. (Colour online) Radiation sway (a) added mass µ22 and (b) damping λ22
coefficients for the square shell.

(2014) reported a similar observation for the case of two flap-type energy converters
facing each other, when compared to a single converter facing the coast.

3.4. Harbour with a ‘tongue’
Finally, it would be interesting to see what is the effect of having a breakwater
(tongue) at the mouth of the harbour, an idea suggested by the proposal to build
floating harbours off the US coast (the Portunus Project). We will only present the
most important case, which is when an incident wave approaches at β = π and hits
the breakwater. A simple harbour model consists of a circular shell and a straight
tongue oriented along the z axis (figure 22). This should capture most of the desired
physical effects. The computer program described in this work has been modified to
accommodate multiple bodies and the shell and tongue are considered as separate
elements. We consider the effect of the distance d of the tongue from the centre of
the shell. The length of the tongue in this example is equal to one shell radius and
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FIGURE 21. (Colour online) Radiation yaw (a) added inertia µ66 and (b) damping λ66
coefficients for the square shell.

Tongue

d

FIGURE 22. Schematic for the harbour and breakwater model.

the mouth size is taken to be θ0 =π/3 with the same definition as before. Figure 23
shows the amplitude of the free surface as a head wave hits the tongue.

Figure 24 shows the amplitude of the force in the x direction on both the shell and
the tongue, and comparison is made in the first case with the shell without a tongue.
The force is defined as in (2.22) and the area of the harbour is used for normalization.
We used 100 panels on the circular shell and 67 on the tongue concentrated near the
edges to obtain these results.

The results indicate that the force on the shell is actually higher near the first
resonant frequency when the tongue is present. Again, this is similar to the harbour
paradox described earlier, and the limitations discussed earlier apply here as well. In
particular, the high amplitude of the force is expected to be lower in reality, especially
when the effective opening size becomes smaller. The position of the tongue does not
seem to be significant in the frequency range considered though. The force on the
tongue itself peaks in this range as well, although the total force is less than that on
the shell. As the frequency of the incident wave increases, the breakwater comes into
play and causes a reduction in the loads on the shell. The position of the tongue is
significant in determining the second resonant frequency and the force amplitude at
that peak. As the breakwater is moved farther away from the centre of the shell, both
the second resonant frequency and force amplitude move to lower values. Solutions
for harbour shapes other than a circular rim can be obtained with little difficulties.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

16
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.165


Diffraction and radiation loads on open cylinders 671

–5

0

5 –5

0

51

2

z

x
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

FIGURE 23. Modulus of complex surface amplitude of the diffraction field (2.23) over the
circular shell with the tongue present at an incident-wave direction of β=π with κ0= 1.5.
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FIGURE 24. Diffraction force amplitude |f1| on (a) the shell and (b) the tongue.

4. Conclusions

We studied the effects of having open arbitrary cylindrical shells in a wave field.
Both radiation and diffraction of waves from the body were considered and analysed.
This work also presented a simple way to treat problems that can be modelled using
a hypersingular integral equation. This last method is better conditioned and faster
than a standard boundary-integral formulation used to model bodies approaching zero
thickness. The results are also more reliable. The same concepts presented here can be
extended to more complicated problems. We presented several new results for loads
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acting on open cylinders that are circular, elliptical and square in shape, with a special
emphasis on the effect of the increasing opening size. We also presented plots for
the free-surface elevation amplitude for wave radiation and diffraction from the bodies
considered. The results are also extended to multiple bodies and the case of an open
circular harbour with a frontal breakwater is considered.

The results indicate that a significant change in the load profile occurs when the
body is opened. Specifically, very large loads appear at lower frequencies along the
direction of the opening, especially when the shell is not opened widely. Smaller loads
appear as the frequency increases when compared to the case of a closed shell, except
when the frequency approaches the natural frequency of the internal region of the
shell. Then the inside resonates partially, which causes higher loads. The loads in
the direction perpendicular to the opening act differently. The increasing opening size
leads to smaller loads except at resonance. Zero loads were found possible for certain
frequencies and opening size combinations when the opening lies upstream. Zero loads
are always possible for open structures in beam seas. In general, the opening has the
possible advantage of decreasing the loads on the body.

With regards to wave radiation, it was found that the added mass decreases when
the body is opened because the fluid in the direction of motion could escape from
the shell. Open bodies were also found to radiate more waves close to resonance
as compared to the closed ones. Free-surface plots also indicate regions of large
oscillations and regions shielded from the incoming waves. These concepts should be
useful for marine operations.

The problem of an open harbour with a protective breakwater was also considered.
The results indicate that the breakwater might actually cause higher loads because of
the inflicted resonance. The breakwater is effective, though, at high frequencies.
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Appendix A
We have left the details of the treatment of the hypersingular integral to this

appendix because they require some explanation. The integrals in (2.20) span the
range of [0, 1] in the parameter t and are only singular when the collocation point
lies on one of the ends of that interval. The idea here is to approximate the kernel
by its Taylor series close to the singular edge and to integrate analytically while
performing numerical integration over the rest of the panel length. We will only
consider the range of integration [0, T] or [1 − T, 1] for a collocation point placed
on t= 0 or t= 1, respectively, and for some suitable T .

The kernels that are to be integrated here have different forms. They will include
both hypersingular terms (O(t−2)) and singular terms (O(t−1)). The singular terms
cancel out with those from the integral over the adjacent panel (principal values)
provided the normal vector is continuous. The hypersingular ones do not though.
However, as explained in Martin & Rizzo (1989), if the density belongs to C1,α, it
is possible to consider the finite part (in the sense of Hadamard) of these integrals.
It follows then that all we have to do is analytically remove the singular and
hypersingular parts.
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One point to note here is that, while the density function is chosen to have enough
continuity, our choice for straight panels to approximate the surface of the body will
lead to a discontinuous normal vector at the panel edge and therefore a discontinuous
kernel. That can be remedied by choosing a higher-order approximation for the shell.
However, as pointed out in Martin & Rizzo (1996), a discontinuous density is allowed
if the definition of the integral is changed to remove any unbounded terms. In fact,
we can justify doing that in this case because, as we remove the singular terms, we
effectively assume that we are using the same normal vector for the singular parts of
the kernel but not for the regular parts. The following integrals (definitions) will be
used: ∫ R0

0

1
s2

ds = lim
ε→0

∫ R0

ε

1
s2

ds− 1
ε
=− 1

R0
, (A 1)∫ R0

0

1
s

ds = lim
ε→0

∫ R0

ε

1
s

ds+ ln(ε)= ln(R0), (A 2)∫ S

S−R0

1
(s− S)2

ds = lim
ε→0

∫ S−ε

S−R0

1
(s− S)2

ds− 1
ε
=− 1

R0
, (A 3)∫ S

S−R0

s
(s− S)2

ds = lim
ε→0

∫ S−ε

S−R0

s
(s− S)2

ds− ln(ε)− S
ε
=− ln(R0)− S

R0
, (A 4)∫ S

S−R0

s2

(s− S)2
ds = lim

ε→0

∫ S−ε

S−R0

s2

(s− S)2
ds− 2S ln(ε)− S2

ε

= −2S ln(R0)+ R0 − S2

R0
, (A 5)∫ S

S−R0

s3

(s− S)2
ds = lim

ε→0

∫ S−ε

S−R0

s3

(s− S)2
ds− 3S2 ln(ε)− S3

ε

= −3S2 ln(R0)+ 3R0S− R2
0

2
− S3

R0
. (A 6)

The parameter R0 < S, with S a shorthand for Sj, is a number chosen small enough
to provide the required accuracy in the Taylor expansion in what follows. We note
here, as was pointed out in Martin & Rizzo (1989), that the integrals with strong
singularities are not independent of scaling the variable of integration. Here we
integrate using the original variables to avoid that problem.

Using the fact that when the singular point is at t= 0 or 1, then R= St and S(1− t),
respectively, we can Taylor-expand the kernel of (2.14) as

∂2Gn

∂nP∂nQ
= A1

(
4

κ2
n S2

j (t− ts)2
+ 1
)

−A2

[
1+ 2i

π

(
ln
(
κnSj|t− ts|

2

)
+ γ − 2

κ2
n S2

j (t− ts)2
− 1

2

)]
+O(R2 ln(R)), (A 7)

A1 = κ2
n

4πS2
j
[a2

1 sin(αj) sin(θj)+ a2
2 cos(αj) cos(θj)− a1a2 sin(θj + αj)], (A 8)

A2 =− iκ2
n cos(θ − α)

8
. (A 9)
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Here, γ is Euler’s constant, a1 = ξj+1 − ξj and a2 = ζj+1 − ζj. Clearly a hypersingular
point of order R−2 exists. This expression will be integrated analytically in the
neighbourhood of the singular point in (2.20). The required integrals when the
collocation point lies on the starting edge of the panel are then evaluated as

I0 =
∫ R0

0

∂2Gn

∂nP∂nQ
ds= A1R0

(
1− 4

κ2
n R2

0

)
−A2R0

[
1+ i

π

(
2 ln

(
κnR0

2

)
+ 2γ + 4

κ2
n R2

0
− 3
)]
, (A 10)

I1 =
∫ R0

0
s
∂2Gn

∂nP∂nQ
ds= A1R2

0

(
1
2
+ 4 ln(R0)

κ2
n R2

0

)
−A2R2

0

[
1
2
+ i

π

(
ln
(
κnR0

2

)
+ γ − 4 ln(R0)

κ2
n R2

0
− 1
)]
, (A 11)

I2 =
∫ R0

0
s2 ∂2Gn

∂nP∂nQ
ds= A1R3

0

(
1
3
+ 4
κ2

n R2
0

)
−A2R3

0

[
1
3
+ i

π

(
2
3

ln
(
κnR0

2

)
+ 2

3
γ − 4

κ2
n R2

0
− 5

3

)]
, (A 12)

I3 =
∫ R0

0
s3 ∂2Gn

∂nP∂nQ
ds= A1R4

0

(
1
4
+ 2
κ2

n R2
0

)
−A2R4

0

[
1
4
+ i

π

(
1
2

ln
(
κnR0

2

)
+ 1

2
γ − 2

κ2
n R2

0
− 3

8

)]
, (A 13)

while the integrals required when the collocation point lies on the ending edge are

J0 =
∫ S

S−R0

∂2Gn

∂nP∂nQ
ds= I0, (A 14)

J1 =
∫ S

S−R0

s
∂2Gn

∂nP∂nQ
ds= A1R2

0

(
1
T
− 1

2
− 4
κ2

n R2
0

(
ln(R0)+ 1

T

))
−A2R2

0

[
1
T
− 1

2
+ i

π

((
2
T
− 1
)(

ln
(
κnR0

2

)
+ γ

)
+ 4
κ2

n R2
0

(
ln(R0)+ 1

T

)
+ 1− 3

T

)]
, (A 15)

J2 =
∫ S

S−R0

s2 ∂2Gn

∂nP∂nQ
ds= A1R3

0

(
1
3
− 1

T
+ 1

T2
− 4
κ2

n R2
0

(
2
T

ln(R0)− 1+ 1
T2

))
−A2R3

0

[
1
3
− 1

T
+ 1

T2
+ i

π

(
2
(

1
3
− 1

T
+ 1

T2

)(
ln
(
κnR0

2

)
+ γ

)
+ 4
κ2

n R2
0

(
2
T

ln(R0)− 1+ 1
T2

)
− 5

9
+ 2

T
− 3

T2

)]
, (A 16)

J3 =
∫ S

S−R0

s3 ∂2Gn

∂nP∂nQ
ds

= A1R4
0

(
−1

4
+ 1

T
− 3

2T2
+ 1

T3
− 4
κ2

n R2
0

(
3

T2
ln(R0)+ 1

2
− 3

T
+ 1

T3

))
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−A2R4
0

[
−1

4
+ 1

T
− 3

2T2
+ 1

T3
+ i

π

(
2
(
−1

4
+ 1

T
− 3

2T2
+ 1

T3

)(
ln
(
κnR0

2

)
+ γ
)

+ 4
κ2

n R2
0

(
3

T2
ln(R0)+ 1

2
− 3

T
+ 1

T3

)
+ 3

8
− 5

3T
+ 3

T2
− 3

T3

)]
. (A 17)

Here, T =R0/S. The integral of the whole Overhauser element could then be obtained
by superposing the integrals above weighted by the values in (2.18)–(2.19).

Appendix B
We evaluate the integrals needed for the forces in (2.21) and (2.22). From (2.21)

for p= 1, 2, 4, 5, 6:

µkp + iλkp = 1
Ah

∞∑
n=0

sinh(κnh)
κnMn

N∑
j=0

(nk)jSj

×
j+2∑

q=j−1

[ϕp
n]q
(

bm1 + 1
2

bm2 + 1
3

bm3 + 1
4

bm4

)
, (k= 1, 2), (B 1)

µkp + iλkp = 1
Ah

∞∑
n=0

κnh sinh(κnh)− cosh(κnh)+ 1
κ2

n Mn

N∑
j=0

(nk−3)jSj

×
j+2∑

q=j−1

[ϕp
n]q
(

bm1 + 1
2

bm2 + 1
3

bm3 + 1
4

bm4

)
, (k= 4, 5), (B 2)

µkp + iλkp = 1
Ah

∞∑
n=0

sinh(κnh)
κnMn

N∑
j=0

Sj

×
j+2∑

q=j−1

[ϕp
n]q
[
(zjn1 − xjn2)

(
1
2

bm1 + 1
6

bm2 + 1
12

bm3 + 1
20

bm4

)
+ (zj+1n1 − xj+1n2)

(
1
2

bm1 + 1
3

bm2 + 1
4

bm3 + 1
5

bm4

)]
· (k= 6). (B 3)

Again, it is understood that for a panel on the left edge of the shell, q ∈ [j, j + 2],
and for one on the right edge, q ∈ [j− 1, j+ 1]; and (nk)j is the normal component
of the panel Cj in direction k. We also used m= q− j+ 2 so that m ∈ [1, 4]. Again,
m should be modified at the outermost panels to m= q− j+ 1 and m= q− j+ 3 for
the left and right panels, respectively. The points xj and zj are the starting points of
panel Cj.

From (2.22):

fk = i
√
ν

A
sinh(κ0h)
κ0M0

×
N∑

j=0

(nk)jSj

j+2∑
q=j−1

[ϕ7
0]q
(

bm1 + 1
2

bm2 + 1
3

bm3 + 1
4

bm4

)
, (k= 1, 2), (B 4)

fk = i
√
ν

A
κ0h sinh(κ0h)− cosh(κ0h)+ 1

κ2
0 M0
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×
N∑

j=0

(nk−3)jSj

j+2∑
q=j−1

[ϕ7
0]q
(

bm1 + 1
2

bm2 + 1
3

bm3 + 1
4

bm4

)
, (k= 4, 5), (B 5)

fk = i
√
ν

A
sinh(κ0h)
κ0M0

×
N∑

j=0

Sj

j+2∑
q=j−1

[ϕ7
0]q
[
(zjn1 − xjn2)

(
1
2

bm1 + 1
6

bm2 + 1
12

bm3 + 1
20

bm4

)
+ (zj+1n1 − xj+1n2)

(
1
2

bm1 + 1
3

bm2 + 1
4

bm3 + 1
5

bm4

)]
· (k= 6). (B 6)

The interval for q at the edges is the same as that used in treating the radiation
coefficients.
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