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Abstract. Standard reasoning about Kripke semantics for modal logic is almost always based
on a background framework of classical logic. Can proofs for familiar definability theorems be
carried out using a nonclassical substructural logic as the metatheory? This article presents a se-
mantics for positive substructural modal logic and studies the connection between frame conditions
and formulas, via definability theorems. The novelty is that all the proofs are carried out with a
noncontractive logic in the background. This sheds light on which modal principles are invariant
under changes of metalogic, and provides (further) evidence for the general viability of nonclassical
mathematics.

§1. Introduction: Repeating assumptions about possibility. Logics without the rule
of contraction have been of interest for some time. Informally, contraction is the principle
that if y follows from ¢ and ¢, then y follows from ¢. One reason for sustained interest
in noncontractive logics is that they evade Curry’s paradox, and so may be suitable for
unrestricted set/property abstraction [4,9,10,12,21,24]. And while substructural logics do
yield consistent (or nontrivial) naive set theories, this is only a necessary, not sufficient,
condition for being ‘interesting’. The essential question—of just how much ‘ordinary
reasoning’ can be carried out in a noncontractive metatheoretic framework!—has remained
open.

In fact, there has been serious doubt about the viability of a noncontractive metatheory.
Without contraction, after all, the following argument is invalid:

If p, then ¢

4
Therefore, p and q.

The conclusion fails because p was ‘used up’ already to get g; unless we assume contrac-
tion, it is no longer around. Similarly, the inference from p to p & p is invalid in a non-
contractive setting. Without these seemingly basic inferences available, even proponents
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of such systems have expressed pessimism: Terui writes at the conclusion of his article
[24, p. 38] that the system, light affine set theory (LAST),

...1s hardly considered as a working system of mathematics, because the
reasoning allowed by LAST is too poor to formalize proofs of mathe-
matically interesting theorems.

This would appear to support a claim by Feferman, that “nothing like sustained ordinary
reasoning can be carried out” in such logics [7].

In this article we show by ‘honest toil’ that logics without contraction are able to support
ordinary reasoning about modality, in the form of familiar proofs about Kripke frames. In
particular we establish familiar frame correspondents for normal logics up to S5, as in [26],
using noncontractive set theory as the modelling clay. Van Benthem says in [26, p. 331]:

Three pillars of wisdom support the edifice of Modal Logic. There is the
ubiquitous Completeness Theory, the present Correspondence, or, more
generally, Definability Theory, and finally, the Duality Theory between
Kripke frames and ‘modal algebras’ ....

Completeness and Duality are out of reach for the time being. But we show that a noncon-
tractive modal logician can get the first pillar up: Definability.

The main task of this article, then, amounts to revisiting some elementary results about
Kripke semantics, but newly respecting how many times assumptions are repeated in the
course of a proof, e.g., how many times we need to reiterate a premise like ‘world x is
possible relative to world y’. On a practical level, we suggest a handful of useful tricks
for working around contraction. The K axiom requires special attention, since it seems to
encode a sort of contraction. The general theme is that familiar results are recoverable, if
more attention is paid to the fine details; we observe how nonsubstructural reasoning is
very blunt, often assuming much more than is required (for instance, that a = b, when it
would do to assume that a and b have just one specific property in common). The logic we
use is very minimal indeed, and can support expansions in several different directions—for
example, adding a paraconsistent negation and reasoning about impossible worlds. But for
now, we want to make this basic tool kit available for any purposes in which it matters how
often assumptions are repeated.’

§2 presents the background logic and set theory. §3 defines the semantics. §4 is a study
of the K axiom, and which of its forms are obtainable without contraction from the frame
conditions alone. §5 produces some standard definability theorems, and §6 concludes. §4.2
includes some discussion of what can not be derived without contraction, but the emphasis
throughout is proof theoretic and positive—on what can be shown.

§2. Background logic. The logic we use is a fragment of the substructural logic BCK,
as studied in [20]; cf. [14, sec. 7.25]. For simplicity, we keep the logic stripped down—in
particular, with no negation.> Also for simplicity, similarly to [24], we only use one kind of

2 This work is orthogonal to work giving classical structures as models for modal substructural
logics, e.g., [15,19,27], or [1, 16]. It rather continues efforts to use nonclassical structures, as
floated in [11] and [28], and more broadly relates to the so-called ‘classical recapture’ problem
for nonclassical mathematics.

3 Once some set theory is introduced, we can define an absurdity constant L and a corresponding
negation ¢ = L, but no use is made of this.
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conjunction (multiplicative) and one kind of disjunction (additive).* The language is then
that of positive first-order logic, with connectives &, Vv, =, 3, V. Letters p, ¢, . .. denote
propositional atoms, ¢, ¥, ¥, . .. denote well-formed formulas built up in the usual way,’
and big I', A, ... denote collections of formulas. Since, in the absence of contraction, the
number of occurrences of a formula matters, these are multisets, collections that respect
how many times a member occurs (so e.g., the multiset [p, ¢] is not the same multiset as
[P, P, qD.

Here is the logic presented as a Hilbert system. The logic as a Gentzen system is given in
the appendix; that the two presentations correspond is a standard classical result (cf. [25]).

Axioms
Al (B) w=x)=(p=y)=(p= X))
A2(0) p=W=0)=W=@=)
A3 (K) 9= (y=09)
A4 p=>0eVy  y=SeVy
A5 p=0=>y=x)=©@Vy=))
A6 9=y =0p&y)
AT (p=Wy=)=@&y = y)
A8 Vxp = ¢f
A9 o = xp
t is any term substitutable for x in ¢.

A10 Vx(p = y) = (Fypy = )
All Vx(y = ¢) = (v = Vygy)

X is not free in y, x =y, or y is not free in 0.
Rules
MP p. 0=y vy
Generalisation ¢} = Vxg (x =y orynot free in ¢)

We say that ¢ is deducible from I', and we write I' = ¢, when there is a sequence of
formulas (¢o, . .., ¢,) such that ¢ is ¢,, and for every ¢;, either ¢; € I', p; is an instance
of an axiom, or ¢; or results from application of a rule on previous lines that haven’t been
used in other applications of rules.

4 The standard presentation of BCK has the full suite of connectives—implication, additive
conjunction and disjunction, multiplicative conjunction and disjunction (as in [20]).

Proof that induction works in this setting is in [2]. That said, there are many details we are
skimming over here, since our aim in this note is to carry out one small ‘proof of concept’ exercise
(on Kripke frames) in this system, not to develop the ‘foundations’ for all mathematics and logic
in substructural set theory; the latter is a project-sized open problem, some small steps into which
may be found in [24] and relatedly [22].

Contraction is avoided by taking due care with the implicit meaning of the clause “results from”,
to ensure that repeated assumptions are accounted for. In the course of a derivation from multiset
I' to ¢, we associate with each member ¢, of the sequence of formulas a multiset I'; made up of
exactly the previous members of the sequence that ¢ followed from (so I'y is empty if @i is an
axiom or member of I'). When all these ‘premise sets’ ['; are combined together in a (multiset)
union, a derivation is valid only if every member of the union is already a member of I". In this
way, for example, the valid y, y = w & y does not reduce to ¥ F y & w, because multiset
[w, ] is not included in the multiset [y]. Cf. the definition of a valid derivation in [2]. Any
valid derivation will respect this ‘tracking’ of occurrences, we claim, because contraction is not
valid in the language—this one—in which we are stating the definition of the Hilbert system;

5
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The table below lists some derived theorems. Some particularly useful derived theo-
rems are designated as tricks—recurring inferential moves that help navigate through the
substructural proofs. They call for special attention where classically they would pass
unnoticed; proofs in Appendix 2.

Derivable
Axiom modus ponens ¢ & (p = ) = v
BO p=2p&(x=>=> @&y = y&d)
Bl 0=
B2 (p&y)Vip&x)= o9&y V)
B3 p&yVvy)=(p&y)Vip&y)
B4 &y = )@= (y=x)
Trick 1 p=Ww==2(==@@=W=)x)
Trick 2 &) & (y = &)= p&E
Trick 3 p=2Ww=20)&y=(p =)

where a biconditional is defined:

poyi=(@=y)&y =)

As flagged in the introduction, the appeal of this system is that one can add, without in-
coherence, the highly intuitive naive set comprehension principle. Extending the language
with a binary relation €, and a term-forming operator {x : ¢}, then

Comprehension. x € {z: p} ¢

is true for all formulas. Even in the positive implicational fragment of the logic the compre-
hension principle gives rise to fixed points, e.g., in the form of Curry’s set {z : z € z = ¢}
for arbitrary ¢; nevertheless, the logic above doesn’t trivialize upon addition of this axiom,
due to the absence of contraction.

Set-theoretic definitions are as usual:

Subset XCY = VizeX=z€Y)
Union XUY = {z:zeXvzeY}
Binary intersection XNY = {z:zeX&zeY}
Leibniz identity X=Y = VziiXeze Y er)
Leibniz identity supports substitution—if X = Y then X and Y may be interchanged salva

veritate.

However, with identity, proceed with caution. Property terms are quite infensional. That
X and Y have the same extension (i.e., Vz(z € X <& z € Y)) does not imply that X = Y;
extensional coincidence of X and Y will not validate substitution of X for Y, on pain of
Grigin’s paradox.” That’s because identity does contract, in the sense that

X=Y=>X=Y&X=Y)

since (X = X) & (X = X) is always true. Then if comprehension provides a term for every
sentence of the language, contraction becomes valid on e-sentences, too, and the system

for elaboration of the idea that an ‘object language’ logic reflects the assumptions made in the
‘metalogic’, see [28]. For some problems with contraction and consequence, see [23], and for
replies, and more on multisets, see [6].
The theory should really be called property theory, then, rather than set theory, since sets are
extensions. Having now flagged this, we’ll follow the tradition from [24] and keep saying ‘set
theory’.
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collapses. (See [4, Corollary 3.21].) One can show that two sets are coextensive, but this
is not enough for identity. So while the identity relation = obeys substitution, in practice
one can almost never show that two sets are so related. For this reason, in this article we
effectively work entirely without substitution.

Extensionality notwithstanding, a useful feature of this set theory is that it validates the
law of ordered pairs,

Ly =)o h=u&y=v

as in [4, p. 356]. This in turn is sufficient to define a relation as a set of ordered pairs, a
subset of some cartesian product:

XxY={xy:xeX&yeY}

The particular relation we have in mind is Kripke’s notion of relative possibility.

§3. Modal logic: Syntax and semantics. Reasoning constrained by relative possi-
bility can be described in a positive modal language. The language L is based on a set of
propositional variables PROP, and constructed in the usual way with connectives &, vV, =
and modalities O, <. We take £ to be an ‘object language’, which we define from within
our set theory, that happens to use the same symbols with the same intended meaning as the
‘metalanguage’ of the theory, as is usual in standard model theory for first-order languages.

The modal language is interpreted over frames and models. The definitions are the
familiar Kripke definitions, but built on a naive set theory:

DEFINITION 3.1 (Kripke frames and models). A frame F = (W, R) is a structure with VW
a nonempty set (thought of as a containing possible worlds), and R C W x W a relation
on W. A model M = (F, V) is a frame together with a valuation V : PROP — (W)
taking propositional atoms to sets of worlds.

A truth definition for formulas of the language uses pointed models (cf. [3, p. 107]), written
as M, w = ¢, and read as “g is true in model M at world w.” It is regimented by semantic
principles that follow the construction of formulas:

DEFINITION 3.2 (Semantics). A semantics for the modal language is a relation |= between
pointed models M, w and formulas that satisfy the following positive constraints:

M,wkE=p s weVip)

MwiEoe&ky & MwEe)&M wEy)
MwkEovy & MwEe)VvMwEy)
MwkEep=y & MwEp) = MwkEy)
M,w = Ogp S YWwRwy = M, v E )
M,wE o < WRwWwEM, v E @)

We will simplify the notation and write w = ¢ on most occasions. On discussion of the
meaning of these conditions, see [11].

DEFINITION 3.3 (Model validity). A formula ¢ is valid in a model M, written M = ¢, if:
Ywiw e W= M,w = ¢).

DEFINITION 3.4 (Frame validity). A formula ¢ is valid in a frame F, written F = ¢, if
M = ¢ for all models M based on F. A formula ¢ is valid in a set of frames F, written
F = o, if p is valid in every frame F € F. We write |= ¢ when ¢ is valid in all frames.
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§4. What is a normal modal logic? In orthodox approaches to modal logic, frame
semantics generate some logical behavior ‘for free’. Most notably, the K axiom (showing
that modal operators distribute over connectives) is inherent in the Kripke semantics. (Not
so in more general semantics, like Chellas’ neighborhood semantics [5].) If one reads
Definition 3.2 with a classical eye, what is referred to as ‘the axiom K’ can be formulated
in various logically equivalent ways, depending perhaps only on an author’s connective in-
clination (cf. [13]). But only a handful are valid in frames when studied in a noncontractive
set theory.

The following table summarizes what we are about to show; the signs to mark validity
follow pollice verso (from ancient Roman gladiatorial contests).

O(p = w) = (Op = 0y) 1
Olp&y)= (Op&dy) £
(Op&Oy) = O(@&y) 1
BevOy)=00@Vvy) |
Clovy)= (CovOoy) 1=
(CopvOoy)=0(Vvy) 1=
Clp&y) = (Cp&Oy) 1

A ‘thumbs up’ indicates that there is a proof, for which we give examples below. ‘Thumbs
down’ indicates an essential appeal to contraction, which we will discuss in §4.2.

4.1. Three theorems.
THEOREM 4.1. = (Qp vV Oy) = O(p V y).
Proof. We give a detailed proof:

1. WEOpvOy)= wkEkEOpVvwkEOy) (Definition 3.2)
2. (wEdp) = Vx(Rwx = x E ¢) (Definition 3.2)
3. wkEOdp)= Rw=vEop) (2, Al + AB)
4 EP = (VEQVOE W) (A4)
5. k@) =vEeVY (4, Definition 3.2 + A1)
6. (wkEOp= (Rww=vEop)

>((vEe=>0VEeVY)

> wWEOp= Rw=vEe@VYy)) (Trick 1)

7. wkEOp= Rw=vEQ@VY) (4-6, MP)
8. ViiwkEOp = Rwx=>xE0epVwy)) (7, Generalisation)
9. wkEUOp=>VWRwx=>xEe@Vy) (8, All)
10, wEOp=>wEO@Vvy) (9, Definition 3.2 + A1)

Repeat steps 1-12 with y
1. wEOy=wkEDIO@Vy)
12 WEDp=wED(@Vy))
= ((wkEDy =wkED@lVy)
= ((wEDpvwEDy)=wkED@Vy) (A5

13. WEGOpvwEOy)=>wkEDO(@Vy) (10-12)
4. WEGQpvOy)=>wkEDO(@Vy) (1, 13, A1)
15. wkE g v Oy)= 0OV vw) (14, Definition 3.2)
This completes the proof. O

THEOREM 4.2. = (Cp vV Oy) = O(p V ).
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Proof.

[

wE Cp = Ix(Rwx & x = ¢) (Definition 3.2)

2. (Vx(Rwx&xE¢) = (Rw&v = 9))
= (@x(Rwx&x E ¢) = (Rwv&v E ¢)) (A10)
3. Vi(Rwx&xE¢)= Rw&vEp) (AB)
4, Ix(Rwx&xE@)= Rw&v E ) (2-3)
5. wEOp = Rw&vEp) 1,4+ A1)
6. vEp=>0EoVVEY) (Ad)
7. vEe=>vEQVY (6, Definition 3.2 + Al)
8. Rwv&vEQ) =

(VEe=>vEpVY)= Rw&viEeVy)) (Trick?2)
9. Rw&vEQ@) = Rw&vEQ@VVY) (7-8 + Trick 3)
10. wE<Cp = Rw&vEQVYy) 5,9+ A1)
1. Rwv&vEeVy)= x(Rwx&xEoV y) (A10)
2. wESs>wEOMWYV ) (9—11, Definition 3.2 + A1)

Repeat steps 1-12 with y
13. wESy=2wEO(@Vy)
4. WESer=>wEO(@@Vy)

= ((wEOy=>wE O Vy)

S (WEOpVIWEOp) S wE OV p) (AS)

I5. WESopVvwEOy)=wEO@Vy) (12-14)
16. wECoVOy =>wk @@V y) (15, Definition 3.2 + A1)
17. wECpVvOoy)= OV y) (16, Definition 3.2)

This completes the proof. O

THEOREM 4.3. = <C(p V) = (Cp v Op).
Proof.

I. wES@VYy) = Rwx&xEeVy)
Repeat lines 2—4 from the proof of Theorem 4.2 e
2. wEC@VY) = Rw&vE@ V) (1)

(Definition 3.2)

3. vEevVvy=>GEeVYEY) (Definition 3.2)
. Use tricks 2 and 3 as in the proof of Theorem 4.2 .
4. wEO@@Vy)=> Rw&VE9VYEY)) (2-3)
5. BRww&(EeVVYEWYW)
= (Rwv&vE @)V (Rw &y E 9)) (B2)
6 wEOW@VY) =S (Rw&viEe)V Rw&y Eg)) 4-5+Al)
7. (Rwv&vEe)= Ix(Rwx&x E ¢) (A9)
8. Rwx&xkEp)=>wgECp (Definition 3.2)
9. wECpr= Wk CpVvOoy) (A4)
10. Rmv&viEp=>wE<p Vv Oy (7-9 + Al)

e Repeat steps 7-9 with y
1. Rmv&viEy =wE<p Vv Oy
12. wEOS@VYy) = (OpvVvOoy)

(6,10, 11, A5 + Al)

This completes the proof. (]
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4.2. K contracts. Consider the following attempt to prove that K is valid in all frames.

. wEO@=yw)=>ViRwx=xE@ = yw) (Definition 3.2)
2. wEO@=ywy)= Rw=vEe=vy) (1, A1 + A8)
3. wEO@=>y)= Rw= (vEe@=>vEy)) (2,Definition3.2 + Al)

And now, contraction is required to distribute Rwv over v = ¢ = v = y to obtain (Rwv =
v E ¢) = (Rwv = v = ). But we only have one instance of Rwy available, so we run
out of assumptions. That contraction is essential for the derivation can be demonstrated by
an easy checking of the failure of any proof search, carried out by inspection of all available
Gentzen cut-free proofs (cf. Appendix 1). For instance, with ¢ := Rwv, v := v = ¢ and

S=vEy:

X yby CHE

Fo v,y =< ¢

pFo p=>y, ¥y =>chH¢

p=>W=0,0=>y, o<
p=>W=09=>yt@=?7
p=>W=>0F@@=>y)= (=7
Flo=>Ww=9)=>{p=y)=(@p=7))

In light of this, the ‘thumbs down’ from our table becomes a theorem—provided the
reader accepts the following classical chain of reasoning. Because the logic satisfies cut-
elimination (cf. [20, Theorem 2.3]), it satisfies the subformula property. In the absence of
contraction, the number of occurrences of each formula in identity axioms is then bounded
by the number of occurrences of the formula to be proved. In our example case, the formula
@ can occur at most three times in axioms. Two occurrences are secured in the axiom
@  ¢. The remaining occurrence hangs unsupported, with weakening as the only poten-
tial, but unsuccessful origin. Our nonprovability claims, which substantiate the thumbs-
down verdicts above, all follow similar arguments from inspection of available Gentzen
proofs:

Formula to prove Principle required
O=y)=Op=>0yp) (@p=>W=0))=>(p=>w)= (=)
O &y)= (Op&Oy) (p= (y &)= ((p = y)&(p =)
Op&Oy)=0(@&y) (9= p)&lp=<) = (0= (y&<Q))
Clo&y) = (Cop&ly)  (p&(y &) = (p&y) &(p &)

Cementing these negative results further, as a classical proof-theoretic exercise, is here
omitted. Obtaining similar unprovability results in our nonclassical framework—which
is philosophically preferable, given the project we’ve taken on—would require the de-
velopment of either general proof theory or general model theory in the substrucutual
metatheory, which is out of range for this article. As our goal is to focus on what can
be proved, and how to do it, we proceed with positive results.

4.3. Recovering K. Though not all versions of K are valid on all frames, we can re-
cover them by imposing restrictions on frames. These are “contractive properties,” loosely
speaking. Contractive properties are hardwired by brute force whereas they obtain for
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free in contractive logics. The restrictions can be computed quite straightforwardly by

considering the standard translation of modal logic into second-order logic ([3, sec. 3.2]),
for instance:®

K¢ O(p&q)= (Op&<q)
Second-order translation: VPYQVx(dy(Rxy & P(y) & O(y)) =
Gy (Rxy & P(y)) & Fy(Rxy & Q(v)))
Frame restriction: VXVYVx(Jy(Rxy&y e XNY)
= (GyRxy&y € X) &y(Rxy &y € Y)))

THEOREM 4.4. The following table displays a list of frame conditions under which various
K theses are valid:

Frame restriction
K  None O((p = w) &) = Oy
(Bp vOy) = D(p VvV y)
Clp V)= (Cp Vv Oy)
(Co Vv Ooy) = e Vv y)

K= VXVYVaxVy(Rxy = (ye X => yeY)) O(p = w) = (o = Oy)
S (Rxy=>yeX)= (Rxy=yeY))

K& VYXVYVaVy((Rxy = y e XNY) O(p & ) & (Op & Oy)
S ((Ryy=yeX)&(Rxy=yeY)))

K®  VXVYVx(Fy(Rxy&y e XNY) Sl &y) = (Cp &)

= (Iy(Rxy &y € X) & Iy(Rxy &y € Y)))

We need to introduce the notion of a truth-set to prove Theorem 4.4.

DEFINITION 4.5 (Truth-set). The truth-set of ¢ in M is the set of worlds at which it is
true:

xepl" oM, x=0¢.

We will simplify notation and write [¢]. Notice that we do not have [p]¥ = {x € W :

M, x = ¢} with the identity =. So we will need to use truth sets without appealing to
substitution.

The following extra tricks will come in handy; see Appendix 2.

Derivable
Trick4 (p=>y)= (e e &y Q)= (x =9))

Trick5 (p=y)=@=2>))=>((yed&(xeor))=>(p=30)=(@=7))
Trick 6 (pf = w) = (Vxp = Vxy)

Proof of Theorem 4.4. We exemplify with a proof for K= .

8 This is ‘second-order’ (also at the end of §5 below), but we note that a nice feature of using naive

set theory is all quantification is simply quantification over sets (of any order), so the distinction
is inessential.
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wEO=ypy)=>WRwx=>wEe = ) (Definition 3.2)
.o o wEO@e=w)=>Rw=0VEe=VvE W) (1, Definition 3.2 + Al + AS8)
3. (Ee=vEYWY)
= (vEeevelph& v EY o vely])
= @welp]=velv]) (Definition 4.5 + Trick 4)
4. wEO@=w)= Rw= (ve]p]=vely]) (2-3,Definition4.5+ Al)
5. Rww= (velfp]=velw]))
= (Rwv = v e [p]) = Rwv=ve[y]) (K=)
6. (Rwv=velp]) = Rw=vely])
= (velplevEp &vely]evEwy)
=S (Rww=vEQP) = Rww=vEy)) (Trick 5)
7. (Rwwv=vE) > Rw=vEYW)=
(Vx(Rwx = x = 9)) = (Vx(Rwx = x &= y)) (Trick 6)
8. (Vx(Rwx=xE9)) = (Vx(Rwx = x = w))

N =

= (w = Qp = Oy) (7, Definition 3.2 + Trick 4)
. wED@@=y)= (wkEkOp=0y) (4-8, AD)
10. wEO(@ = yw) = (Op = Oy) (9, Definition 3.2)
This completes the proof. O

4.4. Extensions of K. 1t is now only an exercise to show that standard frame condi-
tions validate modal formulas. Transitivity validates the 4 formulas Op = OOg and (its
contrapositive) COp = <p. Like with K above, however, some classical frame conditions
appear to be inherently contractive, in which case we build in more in the frame conditions
to relieve the logic. That’s why, for instance, the D conditions below are more complex
than the classical VxJyRxy.

Frame condition

T VxRxx Op = ¢
9= Op

4 VaVyVz(Rxy = (Ryz = Rxz) Op = O0Og
OOp = Op

B VxVy(Rxy = Ryx) p = 00p
COp = ¢

5 VaVyVz(Rxy = (Rxz = Ryz)) Cp = OCp
OOp = Qg

D VxdyRxy Op = <p ET

VYVaVy((Rxy = y e ¥) = Fz(Rxz &z € Y)) Op = Cp =

The lesson is this: Because our logic is weaker than the usual classical metalogic, we
cannot always prove the same validity of formulas under standard frame conditions. This
is because, in general, a weaker logic allows for more frames. But we can recover standard
validities by adopting stronger frame conditions, which are logically equivalent only in the
stronger (classical) logic.’

9 There is some similarity here with relevant (substructural) modal logics studied under a classical
metatheory, and how the K principle behaves. See [17].
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§5. Definability. Noncontractive metatheory can go beyond merely showing that cer-
tain formulas are valid in sets of frames with given restrictions.

DEFINITION 5.1 (Frame definability). Let F be a set of frames. We say that ¢ defines F if
for all frames F € F:

FeF e FEoy.
We illustrate how to establish definability results with a simple example.

THEOREM 5.2. The formula Op = p defines the set of reflexive frames, namely the frames
in which the relation Rxx holds for all x.

Proof. We prove each direction separately.

=) Take a frame F' = (W, R) with the property Rxx for any x € W.

I. (wkOp)= Vx(Rwx = x =p) (Definition 3.2)
2. Vx(Rwx=>xEp) = Rww=wkEkp) (A8

3. wkOp)= (Rww=wkDp) (1-2, Al)

4. VxRxx (Assumption)

5. Rww (4, A8, MP)

6. wWkOp) = WkDp (3, 5, Trick 3)

7. wEOp=p (6, Definition 3.2)

<) Assumptions:

(a) Take a frame F = (W, R) such that F' = 0Op = p.
(b) Take a valuation V such that (see Trick 7):

i. Vx(Rwx = x € V(p)).
ii. Vx(x € V(p) = Rwx).

1. wEOp=p (Assumptions (a))
2. wgkEOp=wkp (,Definition 3.2)
3. Rww=vEp (Assumption (b—i) + Definition 3.2)
4. Vx(Rwx = xEp) (3, Generalisation)
5. wgEOp (4, Definition 3.2)
6. wkp (2,5, MP)
7. weV(p) (6, Definition 3.2)
8. weV(p)= Rww (Assumption (b—ii))
9.  Rww (7-8, MP)
10.  VxRxx (9, Generalisation)
This completes the proof. (]

Trick 7. In contractive settings, one would use V(p) = {y : Rwy} and substitution of
identicals (more than once!). But this identity is too strong to be really contraction free.
Instead, we isolate the assumptions that are needed for the proof, without having to repeat
them, both of which are unpacked from the classical identity.

THEOREM 5.3. The formula p = <p also defines the set of reflexive frames, namely the
frames in which the relation R is reflexive.
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Proof. We leave the first direction to the reader.
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&) Assumptions:

(a) Take a frame F = (W, R) such that F =p = $p.
(b) Take a valuation V such that (see Trick 8):

i. Vx(x € {y : Rwy = Rww} = x € V(p)).
ii. Vx(x € V(p) = x € {y : Rwy = Rww}).
Notice that this valuation is well defined, since at least w satisfies both

conditions.
. wEp=>°<Cp (Assumption (a))
2. wkEp=2wgE<Cp (1, Definition 3.2)
3. we{y:Rwy= Rww}=we V() (Assumption (b—1))
4.  Rww = Rww (B1)
5. we{y: Rwy = Rww} (Comprehension)
6. weV() (3,5, MP)
7. wEp (6 + Definition 3.2)
8. wkEOp (2,7, MP)
9. Ix(Rwx&xkE=p) (8, Definition 3.2)
10. Rwv&vEp 9, A10)
11. Rwv&v e V(p) (10, Defintion 3.2 + Trick 2)
12. veV(p)=ve{y: Rwy= Rww} (Assumption (b—ii))
13. ve{y:Rwy= Rww} = (Rwv = Rww) (12, Comprehension)
14. Rwv & (Rwv = Rww) (11-13, A1 + Trick 2)
15. Rww (14, MP)
16. VxRxx (15, Generalisation)

This completes the proof.

Trick 8. As in the proof of Theorem 5.2, we only assume what is required to get the proof
going, instead of the sledgehammer-to-crack-a-nut assumption that V(p) = {w}.

Having now seen a few examples, it is clear that cases involving & and O are trickier
than Vv or <. We cover these cases now, moving a bit more speedily through the arguments.

THEOREM 5.4. The formula Op = OOp defines frames where YxVyVz((Rxy & Ryz) =

Rxz).

Proof. We leave the first direction to the reader.

&) Assumptions:
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. wEeOp= 0O0Op (Assumptions (a))
2. wkEOp=wgEDOOp (1, Definition 3.2)
3. wkEDOp (Assumption (b—i) + Definition 3.2)
4. wpEOOp (2-3, MP)
5. VaVy(Rwx = (Rxy = y E=p)) (4, Definition 3.2)
6. Rwv= (Rvu = u =p) (5, A8)
7. Rwv = (Rvu = u € V(p)) (6, Definition 5.1, A1)
8. Rwv = (Rvu = Rwu) (7, Assumption (b—ii))
9. VaVyWz(Rxy = (Ryz = Rxz)) (8, Generalisation)
This completes the proof. O

THEOREM 5.5. The formula OOp = Op also defines the set of transitive frames, namely
the frames in which the relation R is transitive.

Proof. We leave the first direction to the reader.
<) Assumptions:

(a) Take a frame F = (W, R) such that F = OOp = Op.
(b) Take a valuation V such that (see Trick 8):

i. ueV(p).
ii. Vx(x € V(p) = x € {y : Rwy = Rwu}).
Notice that this valuation is well defined, since at least u satisfies (ii).

I. Rwv&Rvu=wkEkoOp (Assumption (b—i))

2. wEOO P wEO (Assumption (a) + Definition 3.2)
3. Rw&Rwu=wk<Cp (1-2, A1)

4. wEOp= Ix(Rwx&x E=p) (Definition 3.2)

5. x(Rwx&xEp) = (Rwx&x Ep) (A10)

6. Rwx&xkEp= (Rwx&xe V(p)) (Definition 5.1)

7. Rwv&Rvu = (Rwx&x € V(p)) (3-6, Al)

8. xeV()=xe{y: Rwy = Rwu} (Assumption (b—ii), Al1)
9. xe{y:Rwy= Rwu} = (Rwx = Rwu) (Comprehension)

10. x € V(p) = (Rwx = Rwu) (8-9, Al)

11. Rwx&x e V(p) = Rwx& (Rwx = Rwu) (10, Trick 2)

12.  (Rwx & (Rwx = Rwu)) = Rwu (11, Axiom modus ponens)
13. Rwv& Rvu = Rwu (7,11, 12, A1)

14. VxVyVz(Rxy & Ryz = Rxz) (13, A1)

This completes the proof.

O

THEOREM 5.6. Frames where YxVy(Rxy = Ryx) are defined by the formula p = Op.

Proof. The proof technique should now become familiar. To show that frames in which
p = OOp are symmetric, use a valuation V such that w € V(p) and Vx(x € V(p) = x €
{y : Rvy = Rvw}). As above, notice that this valuation is well defined, as it is satisfied

by w.

O

THEOREM 5.7. Frames where VxVyVz(Rxy = (Rxz = Ryz)) are defined by
Op = OOp.
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Proof. To show that frames in which Op = OOp are euclidean, take three worlds such
that Rwu and Rwy, and use a valuation V such that v € V(p) and Vx(x € V(p) = x €
{y : Ruy = Ruv}). As above, notice that this valuation is well defined, as it is satisfied
by v. O

As the above proofs illustrate, showing definability of frame conditions only requires
minimal noncontractive and positive logical tools. The following table summarises the
standard conditions that can be defined by various first-order formulas.

First-order frame condition Definition
T VxRxx Op=p
p=<p
4 VxVyWz((Rxy & Ryz) = Rxz) Up = DOp
OOp = Op
B VxVy(Rxy = Ryx) p= 0Cp
SOp = p
S VaVyVz(Rxy = (Rxz = Ryz)) <Op = OOp
OOp = Op

Nevertheless, not all standard first-order definable conditions are recoverable. We have
seen above that various versions of K are not valid over all frames, but can be recovered
from restrictions on frames. As we noted there, we can use the standard translation of
modal formulas into second-order logic to compute the second-order frame correspondents
defined by standard modal formulas:

Second-order frame condition Definition

K= VXVYVxVy(Rxy = (ye X => yeY)) O@p = q9) = (Op = Og)
S (Rxy=>yeX)= (Rxy=>yeY))

K& VXVYVaVy((Rxy = ye XNY) Op&q) & (Op &Og)
S ((Rey=>yeX)&(Rxy=>ye)))

K VXVYVx(Fy(Rxy&y e XNY) Cp&qg) = (Op&q)
= (Iy(Rxy&y € X) &Ay(Rxy &y € Y)))

D VXVYVxVy((Rxy = y € Y) Op = Op

= Jz(Rxz&z € Y))

One last item. In classical metatheory, frames in which accessibility is universal (every
world accesses every other) have exactly the same validities as frames in which acces-
sibility is an equivalence relation (reflexive, symmetric, transitive). Without more model
theory, we can only conjecture (but with some confidence) that this elision will fail in a
substructural framework; cf. [29].

§6. Conclusion. We have shown by direct demonstration that definability theory—the
tight relationship between the structure of frames and validity of specific modal formulas—
is not dependent on classical logic. A metatheory without contraction can demonstrate
these same relationships, suitably phrased, for a modal logic without contraction. What
else is possible, and what else is possible, for a contraction-free approach yet awaits.

§7. Appendix 1: Sequent calculus. The logic BCK is presented as a Gentzen system.
The Hilbert system and the Gentzen system are equivalent [2, 20]; cf. [8, Corollary 2.21].
A sequent is of the form I' - ¢, and are obtained in the following ways.
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id
pto
ko , =y A,y by Lo, wky
—— weakening cut ——— exchange
Iyt LAy Iy, ebx
o =y Foky Ly b=y
I'—p vy I'Fovy ovylky

Iy Ay Lo, wkx

IAFy &y Lo&ytx
Loy I'te Ay yx
FFo=vy LA 9= yhtx
| A |
AR t any term — % y not free in I
I, Vxp =y I =Vxp
I of | A
_ t any term %Y y not free in I'.
I'=3xep I, 3xe =y

Cut is eliminable [20, Theorem 2.3]. Thus we can appeal to the subformula property.
Without contraction, the two rules for property abstraction

I'Fo() Lo =y
IF'Href{x:pX) Ite{x:px)}Fy

may be added, and cut is still eliminable [24, Theorem 2.2]. Dropping contraction to save
naive comprehension is essentially a proof-theoretic idea.

§8. Appendix 2: Derivable theorems of the logic. Axiom modus ponens: it is a
theorem that

(p&p=y) =y
This is because (p = ) = (p = y) by Bl, and then ¢ = ((¢p = w) = y) by A2
(permutation), and finally the desired modus ponens form by A7.

e BO0: Use the modus ponens axiom and Trick 2 to derive

(=)&) &((x = D& y)) = (v &)
then use permutation and B4.
e The proof for B1 is to plug axiom (A3), weakening, into axiom (A2), permutation.
This yields ¥ = (¢ = ¢). Then pick any axiom for .
e The proof for B2 is as follows. By B1 and A4, since ¢ = ¢ and w = y V y, then
p&y =&y Vy)
using BO. Analogously,
p&x = 9&(y V).
Therefore, using argument by cases (A5) completes the derivation.
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e To show B3 (distribution):

I &y = (p&y) Vv (p&y) (A4)

2 y=(p= (p&y) V(p&y)) (1, B4)

3 9&x = (p&y) Vv (p&)) (A4)

4 = (0= (p&y) Vv (p&y)) (3,B4)

S yvx=(=(&y)Vip&y)) (2,4,A5)

6 (yV &y = (p&y)V (p&y)  (5,B4)

For B4, right to left is (A7). Then for left to right, use Trick 1.
Trick 1: By (Al),if { = y then (y = &) = (v = y). By (A2), then,

y=3= (== W=y).

So now let ¢ = (w = &). Then by (A1) again the theorem follows.
e Trick 2: Putting together axiom modus ponens y & (y = ¢) = ¢ with (A6) & =
(p = p&<&), then
p&(y = <) = (p = 9p&d)
by transitivity. Then (p&y)&(y = &) = (p&¢&) from (B4) as required.

e Hints for other tricks: Trick 3 uses A2 and then A7. Trick 4 is a rearrangement of
Al using A2. The same for Trick 5. And Trick 6 is by AS.

A check of the dependencies of the Bi and Tricks show that: B1 and T1 follow only from
axioms, and everything else follows noncircularly from these and axioms.
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