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Abstract
We give two concrete examples of continuous valuations on dcpo’s to separate minimal valuations, point-
continuous valuations, and continuous valuations:

(1) Let J be the Johnstone’s non-sober dcpo, and μ be the continuous valuation on J with μ(U)= 1
for nonempty Scott opens U and μ(U)= 0 for U = ∅. Then, μ is a point-continuous valuation on J
that is not minimal.

(2) Lebesgue measure extends to a measure on the Sorgenfrey line R�. Its restriction to the open sub-
sets of R� is a continuous valuation λ. Then, its image valuation λ through the embedding of
R� into its Smyth powerdomain QR� in the Scott topology is a continuous valuation that is not
point-continuous.

We believe that our construction λ might be useful in giving counterexamples displaying the failure of the
general Fubini-type equations on dcpo’s.
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1. Introduction
Continuous valuations on topological spaces are analogs of measures on measurable spaces. In
domain theory, continuous valuations on dcpo’s with the Scott topology are employed by com-
puter scientists and mathematicians to give denotational meanings to probabilistic programming
languages. This line of work dates back to Jones and Plotkin (1989) and Jones (1990). Indeed,
in her PhD thesis, Jones developed the theory of valuations and used the valuations monad V
on the category DCPO of dcpo’s and Scott-continuous maps to give denotational semantics to
probabilistic programming languages.

While the valuations monad on the category DCPO enjoys many nice properties, for exam-
ple, this monad is a strong monad and dcpo-enriched, it is unknown whether it is a commutative
monad on the same category. As a result, it would be difficult, using the valuations monad, to
establish the so-called contextual equivalence between programs that only differ in the order of
sampling random variables. To combat this problem, the authors in Jia et al. (2021) constructed
submonads of the valuations monad V that are commutative on the category of dcpo’s. Among
their construction, there is a least submonad of the valuations monad that consists of which
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we call minimal valuations. Minimal valuations are these continuous valuations that are in the
d-closure of the simple valuations; precisely, they consist of directed suprema of simple valua-
tions, directed suprema of directed suprema of simple valuations, and so forth, transfinitely. Every
minimal valuation is a point-continuous valuation in the sense of Heckmann (1996) and Jia et al.
(2021). Heckmann (1996) proved that the class of point-continuous valuations on space X form
the sobrification of the space of simple valuations on X, both in the so-called weak topology. Every
point-continuous valuation is a continuous valuation (Heckmann, 1995, Proposition 3.1).

It is relatively easy to see that on general topological spaces, minimal valuations form a strictly
smaller class than that of point-continuous valuations. However, it is unknown whether the same
is true on dcpo’s with the Scott topology. The first example in this paper clarifies the difference
between minimal valuations and point-continuous valuations on dcpo’s. Concretely, we consider
the well-known Johnstone’s non-sober dcpo J and the “constant-1 valuation” μ on J defined by
μ(U)= 1 if U is non-empty and μ(∅)= 0. We show that every bounded continuous valuation on
J can be written as a sum of some discrete valuation and a scalar multiple of μ. This enables us to
conclude that every continuous valuation on J is actually point-continuous. Moreover, we prove
that the continuous valuation μ is not in the d-closure of simple valuations; hence, it serves as
an example that separates minimal valuations from point-continuous valuations. This example is
included in Section 3.

Similar to the difference between minimal valuations and point-continuous valuations, con-
tinuous valuations that are not point-continuous can be easily found on topological spaces. For
example, Lebesgue measure, restricted to the usual opens of reals, is a continuous valuation that is
not point-continuous. However, it has been unknown whether point-continuous valuations differ
from continuous valuation on dcpo’s since 1996. The second goal of this note is to give an example
of a continuous valuation on a dcpo that is not point-continuous. In order to find such an example,
one is tempted to find the simplest possible example, and typically to find a continuous valuation
that takes only two values, 0 or 1, and hoping that it would not be point-continuous. However,
we notice that such a strategy cannot work, as we will see in Section 4.1. Hence, we will have to
work a bit more. We show how one can build certain continuous valuations on the Sorgenfrey
line R� in Section 4.2, including one based on Lebesgue measure λ. We study the compact sub-
sets of R� in Section 4.3, as a preparation to studying the dcpo QR� of compact subsets of R�

under reverse inclusion, and showing that the natural map from R� toQR� is a subspace embed-
ding in Section 4.4. We transport Lebesgue measure λ along this embedding, and we will show
that the resulting continuous valuation λ on QR� fails to be point-continuous in Section 4.5. We
believe that our construction λ might be useful in giving counterexamples displaying the failure
of the general Fubini-type equations on dcpo’s, which is a long-standing open problem in domain
theory. More detailed discussion about this part is included in the concluding remarks.

2. Preliminaries
We use standard concepts and notations from topology, measure theory, and domain theory. The
reader is referred to Abramsky and Jung (1994), Goubault-Larrecq (2015), and Gierz et al. (2003)
for topology and domain theory, and to Royden (1988) for measure theory.

2.1 Valuations
On a topological space X, a valuation ν is a map from the set OX of opens of X to the extended
reals R+, satisfying strictness (ν(∅)= 0), monotonicity (U ⊆V ⇒ ν(U)≤ ν(V)), and modularity
(ν(U)+ ν(V)= ν(U ∪V)+ ν(U ∩V)). A valuation ν on X is called continuous if it is Scott-
continuous from OX to R+, and it is called bounded if ν(X)< ∞. Continuous valuations are
ordered in the stochastic order: ν1 ≤ ν2 if and only if ν1(U)≤ ν2(U) for all opensU of X. The set of
all continuous valuations onX, which we denote asVX, is a dcpo in the stochastic order. Canonical
examples of continuous valuations on X include Dirac valuations δx for x ∈ X, where δx(U)= 1
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616 J. Goubault-Larrecq and X. Jia

if x ∈U and δx(U)= 0 if x /∈U. As a dcpo, VX is closed under suprema, it also is closed under
scalar multiplication and sum, for νi ∈ VX and ri ∈ [0,∞[, i= 1, · · · , n, the sum∑n

i=1 riνi which
is defined by (

∑n
i=1 riνi)(U)=∑n

i=1 riνi(U) also is inVX. For ri ∈ [0,∞[ and xi ∈ X, i= 1, · · · , n,
the finite sum

∑n
i=1 riδxi is called a simple valuation on X. The set of all simple valuations on X

is denoted by SX. Valuations of the form
∑∞

i riδxi = supn∈N
∑n

i=1 riδxi are called discrete val-
uations. The smallest sub-dcpo of VX that contains SX (hence all discrete valuations on X) is
denoted byMX, and every valuation inMX is calledminimal. It is easy to see that for each min-
imal valuation ν, ν is either a simple valuation, or a directed supremum of simple valuations, or a
directed supremum of directed suprema of simple valuations · · · , transfinitely. A valuation ν on
a space X is point-continuous if and only if for every open subset U, for every real number r such
that 0≤ r < ν(U), there is a finite subsetA ofU such that ν(V)> r for every open neighborhoodV
of A. Minimal valuations are point-continuous Jia et al. (2021), and point-continuous valuations
are continuous valuations (Heckmann, 1995, Proposition 3.1).

2.2 Ring of sets
We will need the notion of Boolean ring of sets (ring of sets for short). On a set X, a ring of sets on
X is a lattice of sets consisting of subsets of X that also is closed under relative complements. For
a topological space X, the setOX of all opens of X is a lattice of sets, and the ring of sets generated
byOX is the intersection of all rings of sets on X that containOX, and it is denoted byA(OX).

Lemma 1. (Gierz et al., 2003, Lemma IV-9.2) Let X be a topological space. For each set A inA(OX),
the ring of sets generated by open sets of X, A is of the form of a finite disjoint union

∐n
i=1 Ui \Vi,

where Ui and Vi are open subsets of X. One can also stipulate that Vi ⊆Ui for each i.

For open subsets U and V of X, the set difference U \V is called a crescent. Since U \V =
U \ (U ∩V), in the sequel, when we write a set A ∈A(OX) as

∐n
i=1 Ui \Vi, we always assume

that Vi ⊆Ui for each i.

Lemma 2. (Heckmann, 1996, Section 3.3) Let X be a topological space and μ be a bounded contin-
uous valuation on X. For each set A=∐n

i=1 Ui \Vi in A(OX), define μA =∑n
i=1 μ|Vi

Ui
, where for

open sets U, V, and W, μ|VU(W)= μ(W ∩U)− μ(W ∩V ∩U). Then, μA is a bounded continu-
ous valuation for each A ∈A(OX). In particular, μU\V = μ|VU. Note that μU = μ|∅U for every open
subset U.

Note that it is possible that for each A ∈A(OX), A can be written as a disjoint union∐n
i=1 Ui \Vi or

∐m
j=1 Uj \Vj. However, when

∐n
i=1 Ui \Vi =∐m

i=j Uj \Vj, we will always have

that
∑n

i=1 μ|Vi
Ui

=∑m
j=1 μ|Vj

Uj
. This validates the definition of μA in the previous lemma.

Lemma 3. For two disjoint sets A, B ∈A(OX), μA∪B = μA + μB. This implies that μA ≤ μB when
A⊆ B.

Proof. From the above remark and straightforward computation.

Lemma 4. Let X be a T0 topological space and μ be a bounded continuous valuation on X. If
{a} is in A(OX), then there exist opens U,V with V ⊆U and U \V = {a}. Moreover, in this case
μ{a} = raδa, where ra = μ{a}(X)= μ(U)− μ(V)= μ{a}(U).

Proof. The first assertion is obvious.
For the second assertion, since X is T0, we only need to prove that for each open O, μa(O) is

equal to ra if a ∈O and to 0 if a /∈O. Assume that U and V are open subsets of X with V ⊆U and
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U \V = {a}. For an open subset O, if a ∈O, then O∩U \O∩V =U \V = {a}, which implies
that μa(O)= μ|VU(O)= μ|V∩O

U∩O(O)= μ|V∩O
U∩O(U)= μa(U). If a is not in O, then O∩U =O∩V .

Hence, μa(O)= 0.

3. Point-Continuous Valuations Need Not be Minimal Valuations
In this section, we built a point-continuous valuation μ on the well-known Johnstone’s non-sober
dcpo, which is not a minimal valuation.

3.1 Valuations onNcof

Let Ncof be the topological space of natural numbers equipped with the co-finite topology. It is
easy to verity that the the map β : ONcof →R+ defined by:

β(U)=
{
1, U ⊆Ncof is open and non-empty;

0, U is empty

is a bounded continuous valuation on Ncof.

Lemma 5. For each i ∈Ncof, the set {i} is closed. Hence, it is in the ring of sets generated by the
co-finite topology on Ncof.

Proof. Straightforward.

Proposition 6. Let ν be a bounded continuous valuation on Ncof. Then, there exists a discrete
valuation α on Ncof and nonnegative real number r such that ν = α + rβ.

Proof. We let α =∑
i∈N ν{i}. By Lemma 5 and Lemma 2, each ν{i} is a continuous valuation. Since

Ncof is a T0 topological space, it follows from Lemma 4 that α is a discrete valuation. Now, we
define the map:

ν∗ : ONcof →R+ : :U �→ ν(U)− α(U).
We proceed to show that ν∗ is a multiple of β , that is, there exists some r ∈ [0,∞[ such that
ν∗ = rβ .

First, for each n ∈N, ν(U)−∑n
i=1 ν{i}(U)= νN\{1,2,...,n}(U) is nonnegative, hence ν∗(U), which

is the infimum of ν(U)−∑n
i=1 ν{i}(U), n ∈N, indeed takes values in R+.

Second, for non-empty open sets U and V with V ⊆U, we prove that ν∗(U)= ν∗(V). Because
V is co-finite, we know that U \V is a finite set, which we denote by F. Then, we know

ν∗(U)= ν(U)−
∞∑
i=1

ν{i}(U) definition of ν∗

= νU(U)−
∞∑
i=1

ν{i}(U) νU(U)= ν(U ∩U)

= νV (U)+
∑
i∈F

ν{i}(U)−
∞∑
i=1

ν{i}(U) by Lemma 3 and V ∪ F =U

= νV (V)−
∞∑
i=1

ν{i}(V) by Lemma 4

= ν∗(V). definition of ν∗
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Figure 1. Johnstone’s non-sober dcpoJ .

Now for general non-empty opens U and V , we have ν∗(U)= ν∗(U ∩V)= ν∗(V). Let r = ν∗(X),
then we know that r is nonnegative from above and that ν∗ = rβ (hence, ν∗ also is a continuous
valuation).

Finally, we conclude the proof by the fact that ν = α + ν∗ = α + rβ .

3.2 Valuations on Johnstone’s non-sober dcpoJ
In 1980, Johnstone gave the first dcpo which is not sober in the Scott topology (Johnstone, 1981).
This dcpo, which we denote by J , serves as a basic building block in several counterexamples
in domain theory (Ho et al., 2018; Isbell, 1982). In this subsection, we will use it to construct a
continuous valuation that is not minimal.

Definition 7. (The dcpo J ). Let N be the set of natural numbers and J =N× (N∪ {∞}). The
order on J is defined by (a, b)≤ (c, d) if and only if either a= c and b≤ d, or d = ∞ and b≤ c.

The structure of J is depicted in Figure 1.
We will use the following convention throughout this subsection when we reason about J .

• M denotes the set of all maximal points of J , that is,M = {(i,∞) | i ∈N};
• Mk = {(i,∞) | k< i}, andMk,l = {(i,∞) | k< i≤ l} for k, l ∈N and k< l;
• N denotes the set J \M; elements in N are of finite height;
• Li denotes the set of points of J which are at Level i, for each i ∈N, that is Li = {(j, i) | j ∈N};
• Ci denotes the set of points of J which are in Column i, that is Ci = {(i, j) | j ∈N∪ {∞}}.
• Di denotes the set

⋃
j≤i Cj, i.e., Di consists of elements in the first i-many columns.

The dcpo J in the Scott topology is a non-sober topological space, and the set M of maximal
points of J equipped with the relative Scott topology is homeomorphic to Ncof.

Let ν be an arbitrarybounded continuous valuation on J . We are going to show that ν can be
written as a sum of a discrete valuation θ and rμ, where r is a nonnegative real number and in this
section, μ is reserved for the fixed valuation on J that takes value 1 on non-empty Scott-opens,
and 0 on the empty set:

μ(U)=
{
1, U 
= ∅;
0, U = ∅.
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Note that μ on J is an analog of β on Ncof. Indeed, the pushforward image of β along the canon-
ical topological embedding n �→ (n,∞) of Ncof into J is exactly the valuation μ. Since θ and rμ
are point-continuous (direct verification), by proving that ν is a sum of some discrete θ and rμ,
we infer that all (not necessarily bounded) continuous valuations on J are point-continuous by
using a trick due to Heckmann (1996, Theorem 4.2).

Theorem 8. Every bounded continuous valuation ν onJ is point-continuous. Moreover, there exist
a discrete valuation θ and nonnegative real number r such that ν = θ + rμ.

We prove this theorem by a series of results. First, we give a lemma that will be used a few
times. It is a slight generalization of Heckmann (1996, Proposition 3.2).

Lemma 9. Let μ be a bounded continuous valuation on a space X, and ν be a monotonic map from
OX to R∪ {−∞,+∞} such that ν(∅)= 0. If μ + ν is a continuous valuation, then so is ν.

Proof. Since ν is monotonic and ν(∅)= 0, ν actually takes its values in R+. It is clear that ν =
(μ + ν)− μ is modular, using the fact that μ is bounded for the subtraction to make sense. The
only challenge is Scott-continuity. Let (Ui)i∈I be any directed family of open subsets ofX, andU be
its union.We have ν(U)≥ sup↑i∈I ν(Ui) bymonotonicity. In order to prove the reverse inequality,
we consider any a< ν(U), and we show that a≤ ν(Ui) for some i ∈ I. Sinceμ is bounded,μ(U)+
a< (μ + ν)(U), and since μ + ν is a continuous valuation, there is an i ∈ I such that μ(U)+ a<

(μ + ν)(Ui). Then a< μ(Ui)− μ(U)+ ν(Ui)≤ ν(Ui).

Lemma 10. For each element a ∈N (using the convention after Definition 7) , the singleton {a} is a
crescent. Thus, for each a ∈N, {a} is in the ring of sets generated by Scott-opens of J .

Proof. For each a ∈N, if a is at Level n, that is a= (j, n) for some j ∈N, then {a} can be written as
({a} ∪ ↑Ln+1) \ ↑Ln+1. The proof is done since both {a} ∪ ↑Ln+1 and ↑Ln+1 are Scott-open
in J .

Proposition 11. For each Scott-open subset U of J , let ν∗(U)= ν(U)−∑
a∈N ν{a}(U). Then, ν∗

is a bounded continuous valuation on J .

Proof. Since for each a ∈N, {a} is a crescent by Lemma 10, ν{a} is a continuous valuation. Hence,
ν{a}(U) makes sense for each a ∈N.

By Lemma 9, we only need to prove that ν∗ is well defined and order-preserving. Note that N
is a countable set. We index elements in N by natural numbers by letting N = {a1, a2, ..., an, ...}.
Since for each open set U,

∑n
i=1 ν{ai}(U)= ν{a1,...,an}(U)≤ νJ (U)= ν(U) and ν(U) is bounded, it

means that for each U the sequence ν{ai}(U), n= 1, ..., n, ... is commutatively summable. Hence,
ν∗ is well defined and takes values in R+.

For monotonicity of ν∗, we let U be Scott-open and compute as follows:

ν∗(U)= ν(U)−
∑
a∈N

ν{a}(U)

= ν(U)−
∞∑
i=1

ν{ai}(U)

= lim
n→∞

(
ν(U)−

n∑
i=1

ν{ai}(U)

)

= inf
n∈N

(
νJ (U)− ν{a1,...,an}(U)

)
= inf

n∈N νJ \{a1,...,an}(U).
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Since for each n ∈N, νJ \{a1,...,an} is a continuous valuation, therefore a nonnegative order-
preserving map. Hence, the pointwise infimum ν∗ of νJ \{a1,...,an}, n ∈N also is order-
preserving.

Lemma 12. For any two Scott-open subsets U,V of J with M ∩U =M ∩V, ν∗(U)= ν∗(V).

Proof. Without loss of generality, we assume that U ⊆V . Let Vn =U ∪ (V ∩Dn) (see the con-
vention after Definition 7). Since M ∩U =M ∩V , Vn is Scott-open for each n. Moreover, V =⋃∞

n=1 Vn.
Note that for every n, Vn \U = (V ∩Dn) \U is a finite subset of N, again by the fact thatM ∩

U =M ∩V . Then, we know that
ν∗(Vn)= ν∗(U)+ ν∗(Vn)− ν∗(U)

= ν∗(U)+ (ν(Vn)− ν(U))−
(∑
a∈N

ν{a}(Vn)−
∑
a∈N

ν{a}(U)

)

= ν∗(U)+ νVn\U(Vn)−
(∑
a∈N

ν{a}(Vn)−
∑
a∈N

ν{a}(U)

)

= ν∗(U)+
∑

a∈Vn\U
ν{a}(Vn)−

∑
a∈N∩(Vn\U)

ν{a}(Vn)

= ν∗(U).
Hence, by Scott-continuity of ν∗ (Proposition 11), we know that ν∗(V)= ν∗(

⋃
n∈N Vn)=

supn∈N ν∗(Vn)= ν∗(U).

We consider M as a subspace of J with the Scott topology and define a continuous valuation
ν∞ on M by stipulating for each open subset W of M that ν∞(W)= ν∗(UW), where UW is the
largest Scott-open subset of J with M ∩UW =W. We now use Lemma 12 to prove that ν∞ is
indeed a bounded continuous valuation onM. This is a consequence of (Goubault-Larrecq, 2021,
Proposition 5.2), and we provide a direct proof here nevertheless.

Lemma 13. The map ν∞ is a bounded continuous valuation on M equipped with the relative Scott
topology from J .

Proof. It is easy to see that ν∞(∅)= 0.
For modularity, letW1 andW2 be two open subsets ofM. Then we have

ν∞(W1)+ ν∞(W2)= ν∗(UW1 )+ ν∗ (UW2

)
definition of ν∞

= ν∗ (UW1 ∪UW2

)+ ν∗ (UW1 ∩UW2

)
ν∗ is a valuation

= ν∗ (UW1∪W2

)+ ν∗ (UW1∩W2

)
by Lemma 12

= ν∞ (W1 ∪W2) + ν∞ (W1 ∩W2) . definition of ν∞

Now we prove that ν∞ is Scott-continuous. LetWi, i ∈ I be a directed family of open subsets ofM
and W =⋃

i∈I Wi. We first note that UWi , i ∈ I also form a directed family of Scott-opens in J .
Hence, we have

ν∞(W)= ν∗ (U⋃
i∈I Wi

)
definition of ν∞

= ν∗
(⋃

i∈I
UWi

)
by Lemma 12
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= sup
i∈I

ν∗(UWi) ν∗ is Scott-continuous

= sup
i∈I

ν∞(Wi). definition of ν∞

Finally, boundedness of ν∞ is clear since ν∗ is.

We are now ready to prove Theorem 8.

Proof of Theorem 8. The space M in the relative Scott topology from J is homeomorphic to
Ncof. For example, one of the (infinitely many) homeomorphisms between them is the map send-
ing n ∈Ncof to (n,∞) ∈M. It then follows from Proposition 6 that ν∞ can be written as α + rβ
where α is a discrete valuation onM, r is a nonnegative real number, and β is the valuation onM
defined as β(W)= 1 ifW ⊆M is non-empty, and β(W)= 0 ifW = ∅. For each Scott-open subset
U of J , we have

ν∗(U)= ν∞(U ∩M)= α(U ∩M)+ rβ(U ∩M).

Now we define θ ′(U)= α(U ∩M). Since α is a discrete valuation on M, it is obvious that θ ′ is a
discrete valuation onJ . Hence, by combining Proposition 11 and the fact thatμ(U)= β(U ∩M),
we know that for each Scott open subset U of J ,

ν(U)=
∑
a∈N

ν{a}(U)+ ν∗(U)=
∑
a∈N

ν{a}(U)+ θ ′(U)+ rμ(U).

Finally, we let θ = θ ′ +∑
a∈N ν{a} and the proof is complete.

As a corollary to Theorem 8, we have the following:

Corollary 14. Every continuous valuation on J is point-continuous.

Proof. It is proved in Heckmann (1996, Theorem 4.2) that every continuous valuation on a
T0 topological space can be written as a directed supremum of bounded continuous valuations.
By Theorem 8, we know that on J every bounded continuous valuation is of the form θ + rμ,
which is obviously point-continuous. Hence, every continuous valuation on J , as a directed
supremum of point-continuous valuations, also is point-continuous (Heckmann, 1996, Section
3.2, Item (5)).

3.3 Non-minimality ofμ onJ
In this subsection, we show that the valuation μ on J , defined in the last subsection, is not a
minimal valuation.

As we know from Theorem 8, every bounded continuous valuation ν on J is of the form
θ + rμ. We first prove that that for any r > 0, θ + rμ can not be written as a supremum of discrete
valuations. Without loss of generality, in the sequel, we assume that the total mass of θ + rμ is 1,
that is, θ(J )+ rμ(J )= θ(J )+ r = 1.

We will need the following extension result for discrete valuations, which is a special case of
Alvarez-Manilla et al. (2000, Theorem 4.1).

Lemma 15. Let θ be a discrete valuation on a dcpo D with θ(D)< ∞. Then, θ has a unique exten-
sion to a measure, which we again denote as θ , on the Borel σ -algebra of (D, σD), where σD is
the Scott topology on D. In fact, if θ =∑

i∈N riδxi with
∑

i∈N ri < ∞, then the value of its measure
extension on a Borel subset B of D is just

∑
i/xi∈B ri. �
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Lemma 10 says that for each a ∈N ⊆J , the singleton {a} is a crescent; hence, {a} is a Borel
subset of J . Actually, every subset of J is a Borel subset. To see this, we only need to show that
{(i,∞)} is a Borel subset in J for each i ∈N, since J is countable. Indeed, {(i,∞)} = ↓(i,∞) \⋃

i∈N ↓Lj, and for i, j ∈N, ↓(i,∞) and ↓Lj are Scott-closed. Now if θ is a discrete valuation on J ,
then it makes sense to apply θ to any subset of J , viewing that θ is a measure defined on the Borel
σ -algebra generated by Scott-opens on J .

Proposition 16. Let θ be a discrete valuation on J with total mass 1− r and r > 0. Then, θ + rμ
is not a directed supremum of discrete valuations.

Proof. Suppose, for the sake of contradiction, that there exists a directed family {θa}a∈A of discrete
valuations with supremum supa∈A θa = θ + rμ.

Since (θ + rμ)(J )= 1, there exists a discrete valuation θa, a ∈A such that θa(J )> 1− r
4 .

Note that supi∈N Di =J , where Di =⋃
j≤i Cj consists of points in the first i-many columns (see

Section 3.2), and also that Di is a Borel subset of J for each i ∈N. Since θa extends to a measure
(Lemma 15), we know that there exists a k ∈N such that θa(Dk)> 1− r

4 .
Obviously, ↓Dk is Scott-closed and Uk =J \ ↓Dk is a non-empty Scott-open subset of J ,

hence (θ + rμ)(Uk)≥ r > 3r
4 . Again since θ + rμ = supa∈A θa, there exists θb > θa such that

θb(Uk)> 3r
4 .

Note that the set ↑Dk is a filtered intersection of countably many Scott-open subsets of J ,
for example, one can write ↑Dk =⋂

i∈N Oi, where for each i, Oi =J \ ↓{(k+ 1, i), (k+ 2, i), ...}.
Then, we know that

θb(↑Dk)= inf
i∈N θb(Oi)≥ inf

i∈N θa(Oi)= θa(↑Dk)≥ θa(Dk)> 1− r
4
.

SinceMk = {(i,∞) | k< i} is a Borel subset of J and it equals to ↑Dk ∩Uk, hence by inclusion-
exclusion of θb we know

θb(Mk)+ θb(J )≥ θb(Uk)+ θb(↑Dk)> 1+ r
2
,

from which it follows that θb(Mk)> r
2 . Since

⋃
l/l>k Mk,l =Mk (Mk,l = {(i,∞) | k< i≤ l}), there

exists a big enough l> k such that θb(Mk,l)> r
2 .

Now consider Ul =J \ ↓Dl. Since (θ + rμ)(Ul)≥ r > 3r
4 , we find a θc, c ∈A such that θc ≥

θb and θc(Ul)> 3r
4 . Meanwhile, note that Dk ⊆Dl, similar to the reasoning above we will have

that θc(↑Dl)≥ θb(↑Dl)≥ θb(↑Dk)> 1− r
4 and that θc(Ml)> r

2 . Then there exists a large enough
natural numberm> l such that θc(Ml,m)> r

2 .
We claim that θc(J )> r. Indeed, θc(J )≥ θc(Mk,m)= θc(Mk,l)+ θc(Ml,m)≥ θb(Mk,l)+

θc(Ml,m)> r. The second to last inequality comes from the fact that θc ≥ θb and Mk,l is a filtered
intersection of countably many Scott-open subsets of J : one may take such a filtered family as
{J \ ↓F | F ⊆fin M \Mk,l}.

Next, we consider the Scott-open set Um =J \ ↓Dm and then find θd ≥ θc with θd(J )> 3r
2 ,

and so forth. We repeat the above process N times, where N is a natural number satisfying that
N × r

2 > 1, to find a discrete valuation θz in the directed family {θa}a∈A. By the construction, we
would know that θz(J )> 1. However, this is impossible since θz ≤ θ + rμ and (θ + rμ)(J )=
1. So our assumption of the existence of the directed family {θa}a∈A of discrete valuations with
supa∈A θa = θ + rμ must have been wrong, and we finish the proof.

Theorem 17. Let θ be a discrete valuation on J with total mass 1− r and r > 0. Then, θ + rμ is
not a minimal valuation.

Proof. We know that the set of minimal valuations (bounded by 1) on J is obtained by taking
directed suprema of simple valuations (bounded by 1), directed suprema of directed suprema
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of simple valuations (bounded by 1), and so forth, transfinitely. However, from Theorem 8 and
Proposition 16, at each of these steps we only obtain discrete valuations. Hence, by transfinite
induction, θ + rμ is not a minimal valuation for r > 0.

The following result, as promised, is then obvious:

Corollary 18. The valuation μ on J is point-continuous but not minimal.

4. Continuous Valuations Need Not be Point-Continuous
In the last section, we have seen that on dcpo’s not all point-continuous valuations are minimal.
In this section, we present another separation result: on dcpo’s, not all continuous valuations are
point-continuous, a result which is known on general topological spaces, but unknown on dcpo’s
with the Scott topology.

4.1 What are non-point-continuous valuations like?
Tix showed that, on a sober space X, the bounded continuous valuations that take only finitely
many values are the simple valuations, namely the finite linear combinations

∑n
i=1 aiδxi , where

each coefficient ai is in R+ and xi ∈ X (Tix, 1995, Satz 2.2). Hence, they are all point-continuous.
We will extend that result slightly in this subsection. We first recall that a non-empty subset

A of a space X is irreducible if A⊆ B∪ C, for closed subsets B and C of X, implies that A⊆ B or
A⊆ C. X is sober if every irreducible closed subset C of X is the closure of some unique singleton
subset of X.

Lemma 19. Let X be a topological space. For every irreducible closed subset C of X, let eC : OX →
R+ map every open subset U of X to 1 if U intersects C, to 0 otherwise. Then eC is a point-continuous
valuation. If C = ↓x for some point x, then eC = δx.

Proof. It is clear that eC is strict. In order to show point-continuity, we assume 0≤ r < eC(U).
We note that C must intersect U, say at x, and that 0≤ r < 1. Let A def= {x}. For every open
neighborhood V of A, V intersects C (at x), so eC(V)= 1> r.

In order to show modularity, we observe that, since C is irreducible, for all open subsets U
and V of X, C intersects both U and V if and only if C intersects U ∩V . Hence, eC(U ∩V)=
min (eC(U), eC(V)). Since C intersects U or V if and only if C intersects U ∪V , we have eC(U ∪
V)=max (eC(U), eC(V)). Now for all real numbers a and b, max (a, b)+min (a, b)= a+ b, so
eC(U ∩V)+ eC(U ∪V)= eC(U)+ eC(V).

When C = ↓x, for every U ∈OX we have eC(U)= 1 if and only if C intersects U, if and only if
x ∈U, if and only if δx(U)= 1.

For every continuous valuation ν on a space X, let Val(ν) denote the set of nontrivial values
{ν(U) |U ∈OX, ν(U) 
= 0,+∞} taken by ν.

Lemma 20. Let ν be a continuous valuation on a space X, with the property that Val(ν) has a least
element r. Then there is an irreducible closed subset C of X such that:

(1) ν′ def= ν − reC is a continuous valuation;
(2) Val(ν′)⊆ {v− r | v ∈Val(ν), v 
= r}.

Proof. Let Ur be any open subset of X such that ν(Ur)= r 
= 0. We consider the family U of open
subsets U of X such that ν(U ∩Ur)= 0, or equivalently ν(U ∩Ur)< r. That family contains the
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empty set, and for any two elements U, V of U , we have ν((U ∪V)∩Ur)≤ ν(U ∩Ur)+ ν(V ∩
Ur)= 0, so U ∪V is in U . It follows that U is directed. Let U∗ be the union of all the elements
of U . Then, ν(U∗ ∩Ur)= sup↑U∈U ν(U ∩Ur)= 0, so U∗ is in U . It follows that U∗ is the largest
element of U . In particular, for every U ∈OX, ν(U ∩Ur)= 0 if and only if U ⊆U∗.

We define C as the complement of U∗. Since ν(Ur) 
= 0, Ur is not included in U∗, so C
intersects Ur . In particular, C is non-empty. For any two open subsets U and V of X that
intersect C, we claim that U ∩V also intersects C. This will show that C is irreducible. By
assumption, neither U nor V is included in U∗, so ν(U ∩Ur)≥ r and ν(V ∩Ur)≥ r. It follows
that ν((U ∩V)∩Ur)= ν(U ∩Ur)+ ν(V ∩Ur)− ν((U ∪V)∩Ur)≥ 2r − r = r, using modular-
ity and the inequality ν((U ∪V)∩Ur)≤ ν(Ur)= r. We conclude that U ∩V is not included in
U∗, hence intersects C.

(1) Let ν′ def= ν − reC. We first verify that ν′ is monotonic. Let U ⊆V be two open subsets
of X. If eC(U)= eC(V), then ν′(U)≤ ν′(V). Therefore, let us assume that eC(U) 
= eC(V), hence
necessarily eC(U)= 0, eC(V)= 1. As a consequence, ν(U ∩Ur)= 0 and ν(V ∩Ur)≥ r. Then:

ν′(U)= ν(U)= ν(U ∪Ur)+ ν(U ∩Ur)− ν(Ur)
by modularity, and since ν(Ur)< +∞
= ν(U ∪Ur)− r
≤ ν(V ∪Ur)− r
= ν(V)+ ν(Ur)− ν(V ∩Ur)− r
by modularity, and since ν(V ∩Ur)≤ ν(Ur)< +∞
≤ ν(V)+ ν(Ur)− r − r = ν′(V).

In particular, since ν′(∅)= 0, ν′ takes its values in R+. It then follows from Lemma 9 that ν′ is a
continuous valuation.

(2) Let V ′ def= {v− r | v ∈Val(ν), v 
= r}. For every U ∈OX, if U intersects C then ν′(U)=
ν(U)− r; hence if ν′(U) 
= 0,+∞, then ν′(U) ∈V ′. Otherwise, U ⊆U∗, so ν(U ∩Ur)= 0,
and therefore ν′(U)= ν(U)= ν(U ∪Ur)+ ν(U ∩Ur)− ν(Ur)= ν(U ∪Ur)− r, using modular-
ity and the fact that ν(Ur)= r < +∞. Hence if ν′(U) 
= 0,+∞, then ν′(U) is in V ′.

Proposition 21. Let X be a topological space. The bounded continuous valuations ν on X that take
only finitely many values are exactly the finite linear combinations

∑n
i=1 aieCi , where each Ci is

irreducible closed and ai ∈R+ � {0}.

Proof. That
∑n

i=1 aieCi only takes finitely many values is obvious. We prove the converse impli-
cation by induction on the number n of nonzero values taken by ν. If n= 0, then ν is the zero
valuation. Otherwise, let r be the least nonzero value taken by ν. We find C and ν′ as in Lemma 20.
Since Val(ν′) has one less element than Val(ν), we can apply the induction hypothesis, allowing us
to conclude.

Proposition 22. Every continuous valuation ν on a topological space X that takes only finitely many
distinct values is point-continuous.

Proof. If ν is bounded, then by Proposition 21, ν is of the form
∑

i=1 aieCi , where each Ci
is irreducible closed and ai ∈R+, and eCi is point-continuous. Any linear combination of
point-continuous valuations is point-continuous (Heckmann, 1995, Section 3.2), so ν is point-
continuous.

Hence, we concentrate on the case where ν(X) is equal to +∞. Let s be the greatest finite
value that ν takes. Consider the family S of all opens U such that ν(U)≤ s. For any U,V ∈ S ,
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ν(U ∪V)= ν(U)+ ν(V)− ν(U ∩V), which is obviously a finite value. Hence,U ∪V is in S. This
implies that the family S is directed. LetUs be the directed union of S , and C∞ be the complement
of Us. We notice that ν(Us)= supU∈S ν(U)= s, and hence that Us is a proper subset of X.

The collection F of simple valuations
∑n

i=1 aiδxi such that every xi is in C∞ is directed: it is
non-empty because C∞ is non-empty, and any two elements

∑n
i=1 aiδxi and

∑n
i=1 biδxi (which

we take over the same set of points xi, without loss of generality) have an upper bound, such as∑n
i=1 max (ai, bi)δxi . Letμ be the supremumofF . Since the family of point-continuous valuations

is closed under directed suprema (Heckmann, 1995, Section 3.2 (5)), μ is point-continuous.
We compute μ explicitly. For every open subset U of X, if U ⊆Us, namely if U and C∞ are

disjoint, then the value of any element
∑n

i=1 aiδxi of F on U is zero, so μ(U)= 0. Otherwise, let
us pick an element x from U ∩ C∞. Then aδx is in F for every a ∈R+, so μ(U)≥ aδx(U)= a for
every a ∈R+, from which it follows that μ(U)= +∞.

Let ν|Us be the restriction of ν to Us, namely the map V �→ ν(Us ∩V). This is a continu-
ous valuation (Heckmann, 1995, Section 3.3). It is bounded by construction of Us and takes
only finitely many values. Therefore, as we have already seen, Proposition 21 entails that ν|Us
is point-continuous.

We now observe that ν = ν|Us + μ. For everyU ∈OX, ifU ⊆Us, then ν|Us(U)+ μ(U)= ν(U ∩
Us)+ 0= ν(U). Otherwise, ν|Us(U)+ μ(U)= ν|Us(U)+ (+ ∞)= +∞ = ν(U). Being a sum of
two point-continuous valuations, ν is point-continuous.

4.2 The Sorgenfrey line
Let R be the set of real numbers, with its usual metric topology.

The Sorgenfrey line R� has the same set of points as R, but its topology is generated by the
half-open intervals [a, b[, a< b (Sorgenfrey, 1947). The topology of R� is finer than that of R. R�

is a zero-dimensional, first-countable space (Goubault-Larrecq, 2013, Exercices 4.1.34, 4.7.17). It
is paracompact hence T4, and Choquet-complete hence a Baire space (Goubault-Larrecq, 2013,
Exercises 6.3.32, 7.6.11). R� is not locally compact, as every compact subset of R� has empty
interior (Goubault-Larrecq, 2013, Exercise 4.8.5). In fact, R� is not even consonant (Bouziad,
1996; Costantini and Watson, 1996). Although it is first-countable, R� is not second-countable
(Goubault-Larrecq, 2013, Exercise 6.3.10).

A hereditarily Lindelöf space is a space in which every family (Ui)i∈I of open subsets has a
countable subfamily with the same union, or equivalently a space whose subspaces are all Lindelöf.
Every second-countable space is hereditarily Lindelöf, but R� is a counterexample to the reverse
implication, as the following folklore result demonstrates.

Proposition 23. R� is hereditarily Lindelöf.

Proof. Let us denote by U the interior of any set U in the topology of R (not R�).
Let (Ui)i∈I be any family of open subsets of R�, U

def= ⋃
i∈I Ui and U ′ def= ⋃

i∈I Ui. Since R is
second-countable, hence hereditarily Lindelöf, there is a countable subset J of I such that U ′ =⋃

i∈J Uj.
We claim that U �U ′ is countable. For each point x ∈U �U ′, x is in some Ui, hence in some

basic open set [a, b[⊆Ui. Then x is also included in the smaller basic open set [x, b[. Let us write
b as x+ δx, with δx > 0. We observe that ]x, x+ δx[ is included in Ui, hence in U ′.

Let x and y be two points of U �U ′, with x< y. If [x, x+ δx[ and [y, y+ δy[ intersect, then y is
in [x, x+ δx[, and since x 
= y, it follows that y is in ]x, x+ δx[. That is impossible, since ]x, x+ δx[
is included in U ′ and y is not in U ′.

Therefore, for any two distinct points x and y of U �U ′, [x, x+ δx[ and [y, y+ δy[ are disjoint.
We pick one rational number qx in each set [x, x+ δx[ with x ∈U �U ′: then x 
= y implies qx 
= qy,
and therefore U �U ′ is countable.
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Let us now pick an index ix ∈ I such that x ∈Uix , one for each x ∈U �U ′. ThenU =U ′ ∪ (U �

U ′)⊆U ′ ∪⋃x∈U�U ′ Uix ⊆U, so (Ui)i∈J∪{ix|x∈U�U ′} is a countable subfamily with the same union
as our original family (Ui)i∈I .

Lemma 24. R and R� have the same Borel σ -algebra.

Proof. Let 
 be the Borel σ -algebra of R, and 
� be that of R�. Clearly, 
 ⊆ 
�.
In the converse direction, we first claim that every open subsetU ofR� is in
. For every x ∈U,

the union of all the intervals included in U and containing x is convex, hence is an interval Ix. Let
ax be its lower end and bx be its upper end. We note that bx cannot be in Ix, otherwise bx would
be in some basic open subset [bx, bx + δx[ included in U, which would allow us to form a strictly
larger interval included in U and containing x. Hence, Ix is equal to [ax, bx[ or to ]ax, bx[. In any
case, ax < bx, so Ix contains a rational number qx. Since the intervals Ix are pairwise disjoint, there
are no more such intervals than there are rational numbers. Moreover,

⋃
x∈U Ix is equal to U. It

follows that U is a countable union of pairwise disjoint intervals and is therefore in 
.
Since 
� is the smallest σ -algebra containing the open subsets of R�, we conclude that


� ⊆ 
.

Given a topological space X, a Borel measure on X is τ -smooth if and only if its restriction
to the lattice OX of open subsets of X is a continuous valuation. Adamski showed that a space
X is hereditarily Lindelöf if and only if every Borel measure on X is τ -smooth (Adamski, 1977,
Theorem 3.1).

Proposition 25. For every Borel measure μ on R, the restriction of μ to the open subsets of R� is a
continuous valuation.

Proof. By Lemma 24, μ is also a Borel measure on R�. We then apply Adamski’s theorem, thanks
to Proposition 23.

Corollary 26. The restriction λ of the Lebesguemeasure onR toOR� is a continuous valuation.

4.3 The compact subsets ofR�

We recall that every compact subset Q of R� has empty interior. For completeness, we give the
proof here. Let us assume a compact subset Q of R� with non-empty interior. Q contains a basic
open set [a, b[ with a< b. [a, b[ is not only open, but also closed, since it is the complement of the
open set ]− ∞, a[∪ [b,+∞[. (Those two sets are open, being equal to

⋃
m∈N [a−m− 1, a−m[

and to
⋃

n∈N [b+ n, b+ n+ 1[, respectively). Being closed in a compact set, [a, b[ is compact. But
the open cover ([a, b− ε[)ε∈]0,b−a[ of [a, b[ has no finite subcover: contradiction.

We use the following folklore result. The fact that every compact subset of R� is countable is
the only thing we will need to know in later sections, together with Corollary 32 below, but we
think that giving a complete characterization of the compact subsets ofR� is interesting in its own
right and may help one understand better what they look like.

Lemma 27. Every compact subset Q of R� is countable, bounded, and is well founded in the
ordering ≥.

Proof. For every point x of Q, the family of open sets ]− ∞, x− ε[ (ε > 0) plus [x,+∞[ is an
open cover of Q (in fact, of the whole of R�), hence contains a finite subcover. It follows that Q
is contained in ]− ∞, x− εx[∪ [x,+∞[ for some εx > 0. Equivalently, Q contains no point in
[x− εx, x[.
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From this, we deduce that [x− εx, x[ and [y− εy, y[ are disjoint for any two distinct points x
and y of Q. Indeed, without loss of generality, let us assume that y< x. Since y is in Q, it is not in
[x− εx, x[, so y> x (which is impossible), or y≤ x− εx. Then, [y− εy, y[ lies entirely to the left of
[x− εx, x[ and does not intersect it.

Next, for each x ∈Q, we pick a rational number qx in [x− εx, x[. By the disjointness property
we just proved, the map x ∈Q �→ qx is injective, so Q is countable.

Since Q is compact in R� and the topology of R� is finer than that of R+, Q is also compact in
R, hence is bounded.

Let us imagine thatQ contains an infinite increasing sequence r0 < r1 < · · · < rn < · · · . Let also
r def= sup↑n∈N rn. Then the open sets ]− ∞, r0[, [r0, r1[, . . . , [rn, rn+1[, . . . , and [r,+∞[ (if r < +∞,
otherwise we ignore the last interval) form an open cover ofQwithout a finite subcover. It follows
that Q is well founded in the ordering ≥.

We now give a few seemingly lesser known results. Given a compact subsetQ ofR�,Q is a chain,
namely a totally ordered subset of (R,≥ ). Notice that we use the reverse ordering ≥: Lemma 27
tells us that Q is even a well-founded chain. A chain A in a poset (P,� ) is a subdcpo of P if and
only if for every non-empty (equivalently, directed) subset D of A, the supremum of D exists in P
and is in A.

Lemma 28. Every compact subset Q of R� is a subdcpo of (R,≥ ): for every non-empty subset D of
Q, infD is in Q. If Q is non-empty, then Q has a least element in the usual ordering ≤.

Proof. We first need to note that a net (xi)i∈I,� converges to x in R� if and only if xi tends to x
from the right, namely: for every ε > 0, x≤ xi < x+ ε for i large enough (Goubault-Larrecq, 2013,
Exercise 4.7.6).

Let D be any non-empty subset of Q, and let r def= infD. By Lemma 27, Q is bounded, so r is a
well-defined real number. Since Q is well founded, D is isomorphic to a unique ordinal β , and we
can write the elements of D as rα , α < β , in such a way that for all α, α′ < β , α ≤ α′ if and only if
rα ≥ rα′ . The net (rα)α<β ,≤ then converges to r from the right. Since R� is T2, its compact subset
Q is closed, so r is in Q.

If Q is non-empty, we can take D def= Q. Then infD ∈Q is the least element of Q.

Another way of expressing Lemma 28 together with the well-foundedness property of
Lemma 27 is to say the following. The fact that βQ is not a limit ordinal is due to the fact that
Q must be empty or have a least element, namely that βQ must be equal to 0 or have a largest
element.

Lemma 29. For every compact subset Q of R�, (Q,≥ ) is order-isomorphic to a unique ordinal βQ;
βQ is not a limit ordinal, and the order-isomorphism is a Scott-continuous map from βQ to (Q,≥ ).

Lemma 30. Let β be a non-limit ordinal, and f : β → (R,≥ ) be a Scott-continuous map. The
image Im f of f is compact in R�.

Proof. Since β is a non-limit ordinal, it is a dcpo. Its finite elements are the ordinals α < β

that are not limit ordinals, and then it is easy to see that β is an algebraic domain. It is also
a complete lattice, and every algebraic complete lattice is Lawson-compact (Gierz et al., 2003,
Corollary III.1.11).

We claim that f is continuous from β , with its Lawson topology, to R�. Let [a, b[ be any
subbasic open subset of R�. We aim to show that f−1([a, b[) is Lawson-open. If f−1(]− ∞, a[)
is empty, then f−1([a, b[)= f−1(]− ∞, b[), which is Scott-open since f is Scott-continuous; in
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particular, it is Lawson-open. So let us assume that f−1(]− ∞, a[) is non-empty. Since β is
well founded, f−1(]− ∞, a[) has a least element α. Then f−1(]− ∞, a[)= ↑α, and therefore
f−1([a, b[)= f−1(]− ∞, b[)� f−1(]− ∞, a[)= f−1(]− ∞, b[)� ↑α is Lawson-open.

Since β is compact in the Lawson topology, it follows that Im f is compact in R�.

In particular, we obtain the following converse to Lemma 28.

Lemma 31. Every well-founded subdcpo Q of (R,≥ ) is compact in R�.

Proof. Q is order-isomorphic to a unique ordinal βQ through some map f : βQ → (Q,≥ ). Since
Q has a least element, βQ has a largest element, so βQ cannot be a limit ordinal. Let D be any non-
empty family D in βQ. Since Q is a subdcpo of (R,≥ ), inf f (D) is an element f (α) of Q. Since f is
an order-isomorphism, α is the supremum ofD, and therefore f is Scott-continuous. We can now
apply Lemma 30.

Corollary 32. Let x be any real number and x0 > x1 > · · · > xn · · · be any decreasing sequence of
real numbers such that inf↓n∈N xn = x. Then {x0, x1, · · · , xn, · · · } ∪ {x} is compact in R�.

Together, Lemmas 27, 29, and 31 imply the following.

Theorem 33. The compact subsets ofR� are exactly the well-founded subdcpos of (R,≥ ). They are
all countable.

Remark 34. In general, any well-founded chain in (R,≥ ) is countable. Conversely, for every
countable ordinal β , there is a well-founded chain of (R,≥ ) that is order-isomorphic to β . This
is proved by induction on β , using the fact that every countable ordinal has countable cofinality,
namely is the supremum of countably many strictly lower countable ordinals. All this is folklore
and is left as an exercise.

Remark 35. A space X is consonant if and only if, for every Scott-open subset U ofOX, for every
U ∈ U , there is a compact saturated subset Q of X such that U ∈�Q⊆ U , where �Q is the set
of open neighborhoods of Q. We now have enough to give an elementary proof that R� is not
consonant (Bouziad, 1996; Costantini and Watson, 1996). Let us pick any real number r > 0. By
Corollary 26, U def= λ−1(]r,+∞]) is a Scott-open subset of OR�. For every compact (saturated)
subset Q of R�, Q is countable. Let us write Q as {xn | n ∈ I}, where I is some subset of N. Then
V def= ⋃

n∈I [xn, xn + r/2n+1[ is an open neighborhood of Q such that λ(V)≤∑n∈I r/2n+1 ≤ r, so
V is not in U . It follows that no set of the form�Q is included in U .

4.4 The dcpoQR�

Given any topological spaceX, we can form the setQX of all non-empty compact saturated subsets
of X. QX is a poset under the reverse inclusion ordering ⊇ called the Smyth powerdomain of
X. When X is well-filtered, this is a dcpo, where suprema of directed families (Qi)i∈I are their
intersection

⋂↓
i∈I Qi (Goubault-Larrecq, 2013, Proposition 8.3.25). This is notably the case when

X =R�, since R� is T2, hence sober, hence well-filtered. Note also that, in that case, every subset
is saturated, so we may safely omit “saturated” from the description of elements ofQR�.

There are at least two topologies of interest on QX. One is the Scott topology on the poset
(QX,⊇ ). Another one is the upper Vietoris topology, whose basic open sets are the sets �U def=
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{Q ∈QX |Q⊆U}, where U ranges over the open subsets of X. When X is well-filtered (e.g., if
X =R�),�U is Scott-open, and hence the Scott topology is finer than the upper Vietoris topology.

The set MaxQR� of maximal points of QR� consists of the one-element compact sets {x},
x ∈R. By equating them with x, we equate the set MaxQR� with R�. This allows us to write
U ∩R� for any subset U ofQR�.

Lemma 36. For every Scott-open subset U ofQR�, U ∩R� is open in R�.

Proof. Let x be an arbitrary point of U ∩R�. We claim that U ∩R� contains an interval [x, x+ ε[
for some ε > 0. We reason by contradiction, and we assume that every interval [x, x+ ε[ contains
a point outside U ∩R�.

We use this to build a sequence of points x0 > x1 > · · · > xn > · · · ≥ x as follows. Since U ∩R�

does not contain [x, x+ 1[, there is a point x0 in [x, x+ 1[ that is not in U ∈R�. This cannot be x,
since x is in U ∩R�. Hence, min (x0, x+ 1/2)> x. Since U ∩R� does not contain [x, min (x0, x+
1/2)[, there is a point x1 in [x, min (x0, x+ 1/2)[ that is not in U ∈R�. Again, x1 is different from
x. This allows us to build the interval [x, min (x1, x+ 1/4)[, and as before, this must contain a
point x2 outside U ∩R�. By induction, this allows us to define points xn outside U ∩R� such that
xn+1 ∈ [x, min (xn, x+ 1/2n+1)[. In particular, x0 > x1 > · · · > xn > · · · ≥ x. Also, inf↓n∈N xn = x.

For each n ∈N, let Qn be the set {xm |m≥ n} ∪ {x}. This is compact in R� by Corollary 32.
It is clear thatQn is non-empty, and that

⋂↓
n∈N Qn = {x}, which is in U . Since U is Scott-open,

some Qn must be in U . This implies that {xn}, which is included, hence above Qn in QR�, is also
in U . Therefore, xn is in U ∩R�; but that is impossible, since all the points xn were built so as to lie
outside U ∩R�.

A dcpo model of a T1 space X is a dcpo P such that Max P, the subset of maximal elements of P
with the subspace topology, from the Scott topology on P, is homeomorphic to X. The following
is a special case of Corollary 2.12 of He et al. (2019), which says that for every T1, first-countable
and well-filtered space,QX is a dcpo model of X.

Theorem 37. QR� is a dcpo model of R�.

Proof. By Lemma 36, every open subset in the subspace topology on MaxQR� is open in R�.
Conversely, for every open subset U of R�, �U is a Scott-open subset of QR� whose intersection
with R� is equal to U, so U is open in the subspace topology on MaxQR�.

Remark 38. Actually, one can expect more in this case. Xu and Yang (2021) proved that for a first-
countable well-filtered space X, in which each compact saturated subset has countable minimal
elements (in the specialization order), the Scott and the upper Vietoris topologies coincide onQX.
As we have seen from above that R� does satisfy these properties, hence the Scott and the upper
Vietoris topologies coincide on QR�. This is slightly stronger than Theorem 37. We speak in full
of the development of Theorem 37 in order to keep this note self-contained.

4.5 A continuous, non-point-continuous valuation onQR�

By Proposition 25, every Borel measure μ on R� defines a continuous valuation by restriction
to OR�, and we again write that continuous valuation as μ. By Theorem 37, the map x �→ {x}
is a topological embedding of R� into QR�. The image of μ by that embedding is a continuous
valuation μ onQR�. Explicitly, we have

μ(U) def= μ(U ∩R�) (1)

for every Scott-open subset U ofQR�.

https://doi.org/10.1017/S0960129521000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000384


630 J. Goubault-Larrecq and X. Jia

Theorem 39. Let μ be any Borel measure on R� with the property that there is an open subset U of
R� such that 0< μ(U)< +∞, and μ({x})= 0 for every x ∈U. Then the continuous valuation μ is
not point-continuous. In particular, λ is not point-continuous.

Proof. Since μ(U)> 0 and since μ(�U)= μ(U), we can find a real number r such that 0< r <

μ(�U).
We will show that, for every finite subset A def= {Q1, · · · ,Qm} of �U, there is an open

neighborhood V of A such that μ(V)≤ r.
We make the following preliminary claim ( ∗ ): for every x ∈U, for every a> 0, there is an

ε > 0 such that [x, x+ ε[⊆U and μ([x, x+ ε[)≤ a. Indeed, it is a general property of measures
that μ(

⋂↓
n∈N En)= inf↓n∈N μ(En) for any decreasing family of measurable subsets En such that

μ(En)< +∞ for at least one n. Hence, μ({x})= μ(
⋂↓

n∈N [x, x+ ε0/2n[)= inf↓n∈N μ([x, x+
ε0/2n[), where ε0 > 0 is chosen so that [x, x+ ε0[⊆U. Since μ({x})= 0, there is an n ∈N such
that μ([x, x+ ε0/2n[< a.

Let s> 0 be such that ms≤ r. For every i ∈ {1, · · · ,m}, Qi is countable (Lemma 27), so let us
write it as {xi0, xi1, · · · }. (We allow for infinite repetitions of elements in order not to have to
make a special case when Qi is finite.) For every i ∈ {1, · · · ,m}, for every j ∈N, we use ( ∗ ) to find
a number εij > 0 such that μ([xij, xij + εij[)≤ s/2j+1. Let Vi

def= ⋃
j∈N [xij, xij + εij[. We note that

μ(Vi)≤∑j∈N μ([xij, xij + εij[)=∑
j∈N s/2j+1 = s. We now define V as

⋃m
i=1 Vi. Then μ(V)≤∑m

i=1 μ(Vi)≤ms≤ r.
Clearly, Qi is included in Vi, hence in V , for every i ∈ {1, · · · ,m}, so A is included in �V . We

define V as�V . Then μ(V)= μ(V)≤ r.

4.6 More remarks onQR�

In Lyu and Jia (2019, Theorem 3.1), Lyu and the second author showed that a space X is locally
compact if and only if thatQX is core-compact in the upper Vietoris topology. It is easy to see that
R� is not locally compact as the interior of each compact set is empty. SoQR� is not core-compact
in the upper Vietoris topology. By Remark 38, we have

Proposition 40. QR� is not core-compact in its Scott topology.

R� exhibits a diverse mix of pleasant and unpleasant properties, and so does QR�. While
Proposition 40 would be on the unpleasant side, the following shows more regularity.

Proposition 41. QR� is sober.

Proof. Theorem 3.13 of Heckmann and Keimel (2013) states that, for any topological space X,
X is sober if and only if QX is sober in the upper Vietoris topology. Since R� is T2, it is sober.
By Remark 38, the upper Vietoris topology coincides with the Scott topology on QR�, so QR� is
sober.

In particular,QR� is well-filtered, something we can rederive in another way.

Proposition 42. For every well-filtered, coherent space, QX is a meet-continuous dcpo inf-
semilattice, which is well-filtered and coherent in its Scott topology. Hence, QR�, Q2

R�, . . . all are
meet-continuous dcpo inf-semilattices, which are well-filtered and coherent in their Scott topologies.
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Proof. Let X be a well-filtered, coherent space. In a well-filtered space, filtered intersections⋂↓
i∈I Qi of compact saturated subsets are compact saturated, and are non-empty if all the sets

Qi are non-empty. Hence,QX is a dcpo.
Given any two elements Q and Q′ of QX, their infimum is Q∪Q′. Since directed suprema are

filtered intersections, and intersections commute with binary unions, QR� is a meet-continuous
inf-semilattice.

For every dcpo P, let its lifting P⊥ be P plus a fresh element ⊥ below all elements of P. It is an
easy exercise to show that the Scott-open subsets of P⊥ are those of P, plus P⊥ itself, and that the
compact saturated subsets of P⊥ are those of P plus P⊥. It follows that P is well-filtered if and only
if P⊥ is.

A bounded-complete dcpo is one in which every (upper) bounded family has a least upper
bound, or equivalently in which every non-empty family has a greatest lower bound. QX is
not bounded-complete in general, since the empty family has no least upper bound unless X is
compact.

However, (QX)⊥ is bounded-complete: the least upper bound of the empty set is ⊥, and the
least upper bound of any non-empty set A bounded by some element Q0 of QX is

⋂
A, which is

compact because R� is T2, and non-empty because it contains Q0.
Corollary 3.2 of Xi and Lawson (2017) shows that every bounded-complete dcpo is well-filtered

in its Scott topology. Hence, (QX)⊥ is well-filtered, and thereforeQX is well-filtered as well.
Lemma 3.1 of Jia et al. (2016) states that any well-filtered dcpo X in which ↑x ∩ ↑y is compact

saturated for all x, y ∈ X is coherent. For all Q,Q′ ∈QX, ↑Q∩ ↑Q′ = ↑(Q∩Q′), and Q∩Q′ is
again in QX since X is coherent. In particular, ↑Q∩ ↑Q′ is a compact saturated subset of QX.
ThereforeQX is coherent.

Finally, R� is T2, hence (sober hence) well-filtered, and coherent, so we may apply the above to
X def= R�, then to X def= QR�, and so on.

5. Concluding Remarks
We have given two concrete examples (Corollary 18, Thorem 39) on dcpo’s to separate minimal
valuations, point-continuous valuations, and continuous valuations, showing these three classes
of valuations differ from each other.

In Jia et al. (2021), the Fubini-type equation:∫
x∈D

∫
y∈E

h(x, y)dνdξ =
∫
y∈E

∫
x∈D

h(x, y)dξdν (2)

is established when either ν or ξ is point-continuous, where D and E are dcpo’s and h : D× E→
R+ are Scott-continuous. (For a definition of the integration, see Jones (1990).) This is crucial
in proving that Heckmann’s point-continuous valuations monad is commutative over DCPO.
However, it is unknown whether the Equation (2) holds for general continuous valuations ν and
ξ , a crucial question in establishing commutativity of the valuations monad V on DCPO. The
aforementioned result in Jia et al. (2021) entails that any valuations ν and ξ that possibly fail
Equation (2) must also fail to be point-continuous. Hence, if one aims to find examples on dcpo’s
to invalidate Equation (2), the valuations in desire must be non-point-continuous valuations. For
the first time, we have given a continuous valuation λ that is not point-continuous on dcpo’s, but
more non-point-continuous valuations (of different types from those in Theorem 39) are needed
before they are sent to test Equation (2).
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