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The imprimitivity Fell bundle
Anna Duwenig
Abstract. Given a full right-Hilbert C∗-module X over a C∗-algebra A, the set KA(X) of A-compact
operators on X is the (up to isomorphism) unique C∗-algebra that is strongly Morita equivalent to
the coefficient algebra A via X. As a bimodule, KA(X) can also be thought of as the balanced tensor
product X⊗A Xop , and so the latter naturally becomes a C∗-algebra. We generalize both of these
facts to the world of Fell bundles over groupoids: Suppose B is a Fell bundle over a groupoid H

and M is an upper semi-continuous Banach bundle over a principal H-space X. If M carries a
right-action of B and a sufficiently nice B-valued inner product, then its imprimitivity Fell bundle
KB(M ) =M ⊗B M op is a Fell bundle over the imprimitivity groupoid of X, and it is the unique
Fell bundle that is equivalent to B via M . We show that KB(M ) generalizes the “higher order”
compact operators of Abadie–Ferraro in the case of saturated bundles over groups, and that the
theorem recovers results such as Kumjian’s Stabilization trick.

1 Introduction

Suppose a groupoidH acts on the right of a topological space X, meaning that we have
a continuous surjection σ ∶X →H(0) (the anchor map of the action) and a continuous
map

X ∗σ r H ∶= {(x , h) ∈ X ×H ∶ σ(x) = rH(h)} → X , (x , h) ↦ x ◃ h.(1.1)

Let us further assume that X and H are locally compact Hausdorff, that the action is
free and proper (i.e., X is a principal (right) H-space; [21, p. 6]), and that the anchor
map σ is an open map. Out of X, we can build a left H-space Xop as follows: as a
topological space, it is just X, but we write its elements with a superscript-op to avoid
confusion. Its left action uses the anchor map σop∶ xop ↦ σ(x), and the action is given
by h ▹ xop = (x ◃ h−1)op for any h with sH(h) = σop(xop). Whenever σop appears in
a subscript, we will drop its superscript and simply write σ . Now consider

X ∗σ σ Xop = {(x , yop) ∈ X × Xop ∶ σ(x) = σop(yop)}.
With the subspace topology of the product topology, X ∗σ σ Xop is locally compact
Hausdorff. For any given (x , yop) ∈ X ∗σ σ Xop, consider the orbit

[x , yop] ∶= {(x ◃ h, h−1 ▹ yop) ∶ h ∈ σ(x)H}
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2 A. Duwenig

of (x , yop) under the “diagonal” H-action on X ∗σ σ Xop. Since H is assumed to have
open source map and to act properly on X, it follows that the quotient X ×H Xop by
this equivalence relation is also a locally compact Hausdorff space [28, Proposition
2.18], and likewise is the quotient X/H.

We equip X ×H Xop with the structure of a groupoid with unit space X/H: its
source and range maps are given by

s[x , yop] = [y, yop] = r[y, zop],

and we can identify [y, yop] with y ◃H ∈ X/H. Given ξ, η ∈ X ×H Xop with s(ξ) =
r(η), we can find representatives (x , yop) and (y, zop) of ξ respectively η with
matching component “in the middle”, and then define their product by ξη = [x , zop].

The groupoid X ×H Xop acts on the left of X: we define the anchor map

ρ∶X → (X ×H Xop)(0) ≅ X/H by ρ(x) = [x , xop] ≜ x ◃H.(1.2)

Note that ρ is open [28, Proposition 2.12] and continuous. If (ξ, y) ∈ (X×H Xop) ∗s ρ X,
then s(ξ) = ρ(y) implies that there exists x ∈ X such that ξ = [x , yop]; this x is unique
by freeness of the H-action on X. We can therefore define ξ ▹ y = x, i.e.,

X ×H Xop ↷ X∶ [x , yop] ▹ y = x .(1.3)

Remark 1.1 Suppose X is a (G,H)-groupoid equivalence (see [21]) with anchor
maps σ ∶X →H(0) and ρ∶X → G(0); these maps are open by definition. If σ(x) = σ(y),
then there exists a unique element {x ∣ yop}X

G
in G such that x = {x ∣ yop}X

G
▹ y.

Indeed, since σ is assumed to induce a homeomorphism σ̃ ∶G/X →H(0), the equality
σ(x) = σ(y)means exactly that G ▹ x = G ▹ y, and so freeness of the G-action implies
the existence of the unique {x ∣ yop}X

G
which transforms y into x. Since the action is

proper and ρ is open, the surjective map { ∣ }X

G
∶X ∗σ σ Xop → G is continuous and

open, and it factors through the quotient X ×H X of X ∗σ σ Xop by the diagonal H-
action, yielding a homeomorphism X ×H Xop ≅ G. In fact, equipping X ×H Xop with
the groupoid structure described above, this map is an isomorphism of topological
groupoids.

Likewise, if ρ(x) = ρ(y), we write {xop ∣ y}X

H
for the unique element of H

such that x ◃ {xop ∣ y}X

H
= y, and { ∣ }X

H
∶Xop ∗ρ ρ X →H induces an isomorphism

Xop ×G X ≅H of topological groupoids. A quick computation shows that the follow-
ing equalities hold (wherever one side of the equation makes sense):

{x ∣ yop}X

G
▹ z = x ◃ {yop ∣ z}X

H
(1.4)

{x ∣ (y ◃ h−1)op}X

G
= {x ◃ h ∣ yop}X

G

{(g−1 ▹ y)op ∣ z}X

H
= {yop ∣ g ▹ z}X

H
.

(1.5)

Example 1.2 Any groupoid H acts freely and properly on X =H; say, on the right.
The anchor map is then given by σ = sH∶X →H(0), and the associated imprimi-
tivity groupoid G =H ×H Hop is isomorphic to H via f ∶ [h1 , hop

2 ] ↦ h1h−1
2 . In par-

ticular, the map { ∣ }X

G
becomes the map X ∗s s Xop →H, (h1 , h2) ↦ h1h−1

2 . This
isomorphism further turns the anchor map ρ∶X → G(0) , h ↦ [h, hop], into the range
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The imprimitivity Fell bundle 3

map rH∶X →H(0), and { ∣ }X

H
∶Xop ∗r r X →H is therefore given by {hop

1 ∣ h2}
X

H
=

h−1
1 h2.

We arrive at a well-known result.

Lemma 1.3 (motivation; [28, Lemma 2.45, Proposition 2.47]) Suppose X is a principal
H-space. Then X ×H Xop is a locally compact Hausdorff groupoid with open source map
that acts freely and properly on the left of X with anchor map ρ∶ x ↦ [x , xop]. With
this structure, X is a (X ×H Xop ,H)-equivalence of groupoids. Moreover, if X is also
a (G,H)-equivalence, then there exists an isomorphism X ×H Xop → G of topological
groupoids that is uniquely determined by [x , yop] ↦ {x ∣ yop}X

G
.

Note that the above in particular states that, in the setting whereG = X ×H Xop, the
element {x ∣ yop}X

G
ofG for x , y ∈ Xu is [x , yop]. A reason why one might be interested

in groupoid equivalences is the following result due to works by Muhly, Renault, and
Williams.

Lemma 1.4 ([30], [21]) Suppose G,H are locally compact Hausdorff groupoids, that
{λu}u∈H(0) is a Haar system on H, and that there exists an equivalence X between G

and H. Then G also allows a Haar system, and if say {μv}v∈G(0) is any such Haar system,
then the groupoid C∗-algebras C∗r (G, μ) and C∗r (H, λ) are strongly Morita equivalent
via an imprimitivity bimodule built as a completion of Cc(X).

An analogous theorem holds for the C∗-algebra of equivalent Fell bundles [22].
Such results are powerful, for example because two strongly Morita equivalent C∗-
algebras have the same representation theory, K-theory, and lattices of ideals (via the
so-called “Rieffel Correspondence”). But not only do the above mentioned results state
the existence of a strong Morita equivalence, they also construct it explicitly, which
allows one to, for example, construct representatives of certain famous classes in KK-
theory [3].

There is a statement analogous to Lemma 1.3 for a right Hilbert C∗-module X over a
C∗-algebra A. In the following, we use the symbol ∣x⟩X

A ⟨y∣ for x, y ∈ X to denote the “A-
rank-one” operator X → X that maps z to x ⋅ ⟨y ∣ z⟩XA ∈ X, and we let K(XA) = KA(X)
denote the C∗-algebra generated by these operators; it is an ideal of the A-adjointable
operators (see [24, Lemma 2.25]). We get that X has a left KA(X)-inner product
given by1

⟨x ∣ y⟩X
KA(X) ∶= ∣x⟩X

A ⟨y∣.(1.6)

With inner products such as these, we will drop the sub- and/or superscripts whenever
there is no ambiguity. Furthermore, we let Xop be the dual, left-Hilbert C∗-module as
defined in [24, p. 49], meaning there exists an additive bijection F∶X → Xop such that
F(λx) = λ̄F(x) for all x ∈ X and λ ∈ C. The analog of Lemma 1.4 can now be stated as:

Lemma 1.5 (motivation; [24, Propositions 2.21 and 3.8, Lemma 2.25]) Suppose
X is a full right-Hilbert C∗-module over a C∗-algebra A. Then the set KA(X) of

1Hopefully, it is not too confusing that the symbol on the right-hand side of Equation (1.6) carries A
in the subscript rather than the cumbersome KA(X); the ket–bra notation in place of the bra–ket should
be a clear indicator as to where the inner product takes values.
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4 A. Duwenig

A-compact operators on X is a C∗-algebra with respect to the operator norm, and
X is a (KA(X), A)-imprimitivity bimodule. Moreover, if X is also a (B, A)-imprimitivity
bimodule, then there exists a *-isomorphism KA(X) → B that is uniquely determined by
∣x⟩X

A ⟨y∣ ↦ ⟨x ∣ y⟩X
B .

Let us elaborate on the analogy to Lemma 1.3: If Y is another full right-Hilbert
C∗-module over A, then the map X⊗A Yop → KA(Y, X) determined by x⊗ yop ↦
∣x⟩X

A ⟨y∣ is an isomorphism of bi-HilbertKA(X) −KA(Y)-bimodules (see Lemma A.2).
In particular, X⊗A Xop ≅ KA(X) is, in fact, the (up to isomorphism) unique C∗-
algebra that is equivalent to A via X. (Note that we similarly have Xop ⊗K X ≅ A as
bi-Hilbert A− A-modules via xop

1 ⊗ x2 ↦ ⟨x1 ∣ x2⟩XA.)
The main result of this paper, Theorem 1.6, is an analog of Lemma 1.3 and Lemma 1.5

in the setting of Fell bundles over groupoids. To this end, we will first show that the
correct analog of a principal H-space and a full right-Hilbert C∗-module over A is a
B-demi-equivalence, which can be thought of as “half ” of a Fell bundle equivalence
in the sense of [22, Definition 6.1]. We will then prove:

Theorem 1.6 Suppose H is a locally compact Hausdorff groupoid with open source
map and X is a principal right H-space with open anchor map. If B is a saturated Fell
bundle over H and M is a B-demi-equivalence over X, then there is a saturated Fell
bundle K(MB) over the imprimitivity groupoid of X that is equivalent to B via M .
Moreover, if M is also an (A , B)-Fell bundle equivalence, then there exists a Fell bundle
isomorphism K(MB) → A that is uniquely determined by ∣m⟩M

B
⟨n∣ ↦ ⟨m ∣ n⟩M

A .

Many theorems about symmetric imprimitivity [5, 7, 13, 14, 16] and generalized
fixed point algebras [8, 10, 25] have appeared over the years and are extending (in
various directions) a 1977-result of Green’s [11]. In Section 6, we will see in what way
our theorem captures some of those result.

The structure of the paper is as follows. After establishing notation and assumptions
in Section 1.1, we give the definition of a B-demi-equivalence M over a principal H-
space X (Definition 2.1) and prove some of its basic properties in Section 2. Section 3 is
devoted to proving that M gives rise to a Fell bundle K(MB) over the imprimitivity
groupoid of X, which we will also denote by M ⊗B M op for reasons that will become
apparent. We prove that this imprimitivity Fell bundle is equivalent to B via M in
Section 4. In Section 5, we prove that K(MB) is unique (up to isomorphism), and we
see some applications in Section 6. There are two short appendices to establish some
background results about Hilbert C∗-modules and about upper semi-continuous
Banach bundles.

1.1 Assumptions, conventions, and notation

We will denote groupoids using G,H,K . . ., bundles using A , B, C , . . ., and stand-
alone Hilbert C∗-modules and their elements using x ∈ X, y ∈ Y, z ∈ Z . . .. Fibred
products are denoted by ∗f g , as defined in (1.1). The algebraic tensor product is
⊙ and its completion is ⊗; we add a subscript for the internal (i.e., balanced) tensor
product. Right and left actions on spaces are usually denoted by ◃ and ▹ ,
respectively, while actions on bundles are denoted by and . (The triangle
is always pointing at the object that is being acted on.)
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The imprimitivity Fell bundle 5

We try to use the letter p for the projection map of Fell bundles, while those of
general Banach bundles are denoted by q. The fibre over a point h of the base space of a
bundle B = (B →H)with total space B is denoted B(h); we adopt analogous notation
for other bundles. We write sB∶B →H(0) for the source map of H composed with the
projection map of B, and we adopt analogous notation for anchor maps σ ∶X →H(0).

We use the notion of upper semi-continuous Banach bundles, Fell bundles, actions
of Fell bundles on upper semi-continuous Banach bundles, and equivalences of Fell
bundles as in [4], Definitions 2.3, 2.9, 2.10, and 2.11, respectively. As done in [22],
our Fell bundles are assumed saturated in the sense that their fibres are full (and
hence imprimitivity) bimodules; we will rarely mention this assumption again. We
frequently use the fact that our upper semi-continuous Banach bundles have enough
continuous cross sections (see [18, Corollary 2.10], [22, Appendix A]).

▸ For the remainder of the paper, we assume that
• H is a locally compact Hausdorff groupoid with open source map2 sH∶H →H(0),
• X is a locally compact Hausdorff space and σ ∶X →H(0) is a continuous open

surjection,
• X is a principal right H-space with anchor map σ , and
• the groupoid X ×H Xop will be denoted by G, and we will refer to it as the

imprimitivity groupoid of X as in [28, Lemma 2.45].
In analogy to the notationHu = s−1

H(u) and uH = r−1
H(u) for u ∈H(0), we will write

Xu ∶= σ−1(u). We chose the letter σ since it serves the purpose of a “source” map; for
left-actions, we will therefore generally use ρ (as in “range”) for the anchor map.

2 Demi-Equivalences

For the upcoming definition, we remind the reader that the anchor map ρ∶X → G(0)

of the left action of G = X ×H Xop on the principal H-space X is exactly the quotient
map if we identify G(0) with X/H; see (1.2).

Definition 2.1 (cf. [1, Definition 2.1]) Suppose B = (pB∶B →H) is a Fell bundle
over the groupoid H, and M = (qM ∶M → X) is an upper semi-continuous Banach
bundle over the principalH-space X. We call M a (right) B-demi-equivalence3 if there
exist maps

∶ M ∗σ r B M , (m, b) m b,

and

⟨ ∣ ⟩B∶ M ∗ρ ρ M B, (m1 , m2) ⟨m1 ∣ m2⟩B ,

such that the following4 hold for all appropriately chosen m i ∈ M and b ∈ B.

2Any locally compact Hausdorff groupoid with a Haar system (and thus any étale groupoid) is an
example of a groupoid with open source map [28, Proposition 1.23].

3While it would have been nice to call M a “principal B-bundle” to show the analogy to the
groupoid-world concept of a principal H-space, the clash with the existing notions of principal group
bundles in differential geometry made that a non-viable option.

4In the ensuing list of properties, the DE in “(DEn)” stands for “demi-equivalence”.
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6 A. Duwenig

(DE1) covers the map ◃ in the sense that qM (m b) = qM (m) ◃
pB(b);

(DE2) ⟨ ∣ ⟩B covers the map { ∣ }X

H
in the sense that qM (m1) ◃

pB(⟨m1 ∣ m2⟩B) = qM (m2);
(DE3) ⟨ ∣ ⟩B is continuous, and fibrewise sesquilinear (meaning linear in the

second and anti-linear in the first coordinate);
(DE4) ⟨m1 ∣ m2 b⟩B = ⟨m1 ∣ m2⟩Bb;
(DE5) ⟨m1 ∣ m2⟩∗B = ⟨m2 ∣ m1⟩B;
(DE6) ⟨m ∣ m⟩B ≥ 0 in the C∗-algebra B(σM (m)), and ⟨m ∣ m⟩B = 0 only if m = 0;
(DE7) the norm m ↦ ∥⟨m ∣ m⟩B∥

1/2 agrees with the norm that the upper semi-
continuous Banach bundle M carries; and

(DE8) for each x ∈ X, the linear span of {⟨m1 ∣ m2⟩B ∶ m i ∈ M(x)} is dense in
B(σ(x)).

An analogous definition of a left B-demi-equivalence can be made; there, each
instance of a range map becomes a source map (and vice versa) and sesquilinearity
means that the first coordinate is linear. When there is no ambiguity, we will drop
the subscript-B on the inner product; conversely, when there is ample room for
ambiguity, we might add a superscript-M .

The reader might have noticed that there are a few natural properties, both
algebraic and analytic, that a demi-equivalence should satisfy if it is to be “half ” of an
equivalence in the sense of Muhly and Williams. Let us show that all those properties
actually follow automatically.

Lemma 2.1 (cf. [1, Lemma 2.7]) Suppose B = (pB∶B →H) is a Fell bundle over the
groupoid H and M = (qM ∶M → X) is a right B-demi-equivalence over the principal
right H-space X. Then we have the following, where (m1 , m2) ∈ M ∗ρ ρ M.
(DE9) Each M(x) is a full right-Hilbert C∗-module over the C∗-algebra B(σ(x));
(DE10) ⟨m1 b∗ ∣ m2⟩B = b⟨m1 ∣ m2⟩B for all appropriate b ∈ B;
(DE11) σM (m1) = rB(⟨m1 ∣ m2⟩B) and σM (m2) = sB(⟨m1 ∣ m2⟩B);
(DE12) ⟨m1 ∣ m2⟩B⟨m1 ∣ m2⟩∗B ≤ ∥m2∥2 ⟨m1 ∣ m1⟩B as elements of the C∗-algebra

B(σM (m1)) (Cauchy–Schwarz).
Moreover, B acts on the right of M in the sense of [4, Definition 2.11], i.e.,
(DE13) is fibrewise bilinear;
(DE14) (m b) b′ = m (bb′) for all appropriate b, b′ ∈ B;
(DE15) ∥m b∥ ≤ ∥m∥ ∥b∥; and
(DE16) is continuous.

Again, the analogous result for a left demi-equivalence must be rephrased in a way
that every range becomes a source etc. With the properties listed in Lemma 2.1, we see
that a B-demi-equivalence really satisfies all “one-sided” properties of a Fell bundle
equivalence as defined in [22, Definition 6.1]. In Proposition 2.3, we will see which
properties are needed for a “two-sided” demi-equivalence to be an equivalence.

Proof of Lemma 2.1 Condition (DE9) is just a restatement of other properties.
To be precise, M(x) is a right inner product B(σ(x))-module in the sense of [24,
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Definition 2.1] because of Conditions (DE3)–(DE6), and it is a Hilbert B(σ(x))-
module because we assumed that the norm with respect to which M(x) is complete
coincides with the norm induced by the inner product (Assumption (DE7)). Fullness
is exactly Assumption (DE8).

Condition (DE10) follows from (DE5) and (DE4) combined, and (DE11) follows
directly from (DE2).

(DE13) Fix x ∈ X and m, m i ∈ M(x). If b ∈ B(h) for some h ∈ σ(x)H, then

⟨m ∣ (m1 + λm2) b⟩ (DE4)= ⟨m ∣ m1 + λm2⟩b
= (⟨m ∣ m1⟩ + λ⟨m ∣ m2⟩)b by (DE3) (sesquilinearity).

Since multiplication in B is bilinear, we conclude that

⟨m ∣ (m1 + λm2) b⟩ = ⟨m ∣ m1 b + λ(m2 b)⟩

for all m ∈ M(x). Choosing m = (m1 + λm2) b −m1 b + λ(m2 b), it follows
from (DE6) that m = 0, meaning that is linear in the first component. A similar
computation, using (DE10), proves linearity in the second component and also (DE14),
using associativity of the multiplication of B.

(DE15) We have

∥m b∥2 (DE7)= ∥⟨m b ∣ m b⟩B∥
(†)= ∥b∗⟨m ∣ m⟩Bb∥

≤ ∥b∗∥ ∥⟨m ∣ m⟩B∥ ∥b∥
(DE7)= ∥m∥2 ∥b∥2 ,

where (†) follows from (DE4) and (DE10).
(DE16) Suppose (m i , b i) is a net in M ∗σ r B that converges to (m, b); in par-

ticular, x i ∶= qM (m i) converges to x ∶= qM (m) in X and h i ∶= pB(b i) converges
to h ∶= pB(b) in H. Now choose a continuous section μ ∈ Γ0(X; M ) of M with
μ(x ◃ h) = m b. Since μ and the rightH-action ◃ on X are continuous, we have
μ(x i ◃ h i) → m b. Using (DE4), (DE10), and sesquilinearity of the inner product,
we have

⟨m i b i − μ(x i ◃ h i) ∣ m i b i − μ(x i ◃ h i)⟩
= b∗i ⟨m i ∣ m i⟩b i − b∗i ⟨m i ∣ μ(x i ◃ h i)⟩
− ⟨μ(x i ◃ h i) ∣ m i⟩b i + ⟨μ(x i ◃ h i) ∣ μ(x i ◃ h i)⟩ .

By continuity of the involution and multiplication of B and by continuity of the inner
product on M , the above converges to

b∗⟨m ∣ m⟩b − b∗⟨m ∣ m b⟩ − ⟨m b ∣ m⟩b + ⟨m b ∣ m b⟩ ,

which, again by (DE4) and (DE10), is 0. Since

∥m i b i − μ(x i ◃ h i)∥2 = ∥⟨m i b i − μ(x i ◃ h i) ∣ m i b i − μ(x i ◃ h i)⟩∥

by (DE7), it thus follows from [4, Lemma A.5] that m i b i − μ(x i ◃ h i) converges
in the total space of M to the zero-element of the Banach space M(x ◃ h). Since
μ(x i ◃ h i) converges to m b and since limits are unique, this implies m i b i →
μ(x ◃ h) = m b, as claimed.

https://doi.org/10.4153/S0008414X24000907 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000907


8 A. Duwenig

The proof of (DE12) is verbatim that for [4, Lemma 4.7] (after translating from the
left to the right). ∎

Remark 2.2 In [22, Definition 6.1], neither continuity of the inner product on a Fell
bundle equivalence nor Condition (DE7) were explicitly assumed but often invoked.
I am unsure whether there is a way to deduce continuity from a combination of the
algebraic properties of M and the topological properties of B, like it was the case for
continuity of the action, (DE16). Consequently, I chose to include these conditions as
assumptions in the definition.

Next, we show that a two-sided version of a demi-equivalence is an equivalence
in the sense of [22, Definition 6.1], provided there is some algebraic compatibility
between the two structures.

Proposition 2.3 Suppose that X is a groupoid equivalence between G and H with
anchor maps ρ respectively σ, that A = (A→ G) and B = (B →H) are Fell bundles,
and that M = (M → X) is a left A - and a right B-demi-equivalence. Assume further
that
(1) the actions of A and B on M commute, i.e., for all (a, m, b) ∈ A ∗s ρ M ∗σ r B, we

have (a m) b = a (m b);
(2) for each x ∈ X, A(ρ(x)) acts by B(σ(x))-adjointable operators on M(x), meaning

that

⟨a m1 ∣ m2⟩B = ⟨m1 ∣ a∗ m2⟩B
for all mi ∈ M(x) and all a ∈ A(ρ(x));

(3) for all (m1 , m2 , m3) ∈ M ∗σ σ M ∗ρ ρ M, the inner products on M satisfy

⟨m1 ∣ m2⟩A m3 = m1 ⟨m2 ∣ m3⟩B .

Then M is an equivalence between A and B.

Note that Assumption (2) is distinctly asymmetric; it could have been replaced by
its counterpart:
(2)’ For each x ∈ X, B(σ(x)) acts by A(ρ(x))-adjointable operators on M(x).

Proof First, we will do some sanity checks: Condition (1) makes sense because
the actions on X commute, meaning that (a m) b and a (m b) live over
the same fibre of M by (DE1). Next, let us check that Condition (3) makes sense.
Since ⟨ ∣ ⟩A is defined on M ∗σ σ M and ⟨ ∣ ⟩B on M ∗ρ ρ M, we can evaluate the
shown inner products. By (DE11), we have σM (m2) = rB(⟨m2 ∣ m3⟩B), and since
(m1 , m2) ∈ M ∗σ σ M, we therefore have that m1 can be acted on by ⟨m2 ∣ m3⟩B on the
right; a similar argument shows that m3 can be acted on by ⟨m1 ∣ m2⟩A on the left.
Lastly, note that Conditions (DE1) and (DE2) combined with Equation (1.4) show that
the elements in question are indeed living in the same fibre of M .

To see that M is an equivalence, we have to check Properties (FE1), (FE2), and
(FE3) in [4, Definition 2.11]. By assumption, M is an upper semi-continuous Banach
bundle over a groupoid equivalence, and as explained in Lemma 2.1, and
are actions in the sense of [4, Definition 2.10]. Since they are assumed to commute, we
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therefore get Condition (FE1). For (FE2), note that the inner products are assumed to
be sesquilinear in the correct sense. Furthermore,
(FE2.a) is satisfied by (DE2);
(FE2.b) is satisfied by (DE5);
(FE2.c) is satisfied by (DE4); and
(FE2.d) is exactly Assumption (3).
Lastly, for (FE3), we must check that each M(x) is an imprimitivity bimodule between
A(ρ(x)) and B(σ(x)). We know by (DE9) that it is a full left- and right-Hilbert
C∗-module. By Assumption (3), the left- and right-inner products are compatible
and the left-action is by B(σ(x))-adjointable operators; it remains to show that the
right-action is by A(ρ(x))-adjointable operators. For n i ∈ M(x), we have

⟨n1 ∣ n2 b⟩A n3
(3)= n1 ⟨n2 b ∣ n3⟩B

(DE10)= n1 (b∗⟨n2 ∣ n3⟩B)
(DE14)= (n1 b∗) ⟨n2 ∣ n3⟩B

(3)= ⟨n1 b∗ ∣ n2⟩A n3 .

This proves that the element a ∶= ⟨n1 ∣ n2 b⟩A − ⟨n1 b∗ ∣ n2⟩A of A(ρ(x)) “kills”
all of M(x). By Assumption (2), a is an adjointable operator with respect to the
B(σ(x))-valued right-inner product. It therefore follows from [24, Remark 2.29]
that a∗a and hence a is 0, i.e., ⟨n1 ∣ n2 b⟩A = ⟨n1 b∗ ∣ n2⟩A , so b is an A(ρ(x))-
adjointable operator. ∎

Remark 2.4 In the setting of Proposition 2.3, it follows from [4, Corollary
4.6] that Condition (3) actually also holds more generally: if (a, m1 , m2) ∈
A ∗s ρ M ∗σ σ M, then ⟨a m1 ∣ m2⟩B = ⟨m1 ∣ a∗ m2⟩B as elements of B(h) where
h = {qM (m1)op ∣ pA (a)−1 ▹ qM (m2)}X

H
. In other words, A is acting on M by “B-

adjointable” operators. This observation foreshadows a connection to [1], where results
similar to the main theorem of the paper at hand have appeared. We will do a more
in-depth comparison later in Corollary 6.7, but let us already point out some points
of distinction: On the one hand, their result is more general in that they consider Fell
bundles that are not necessarily separable or saturated; instead of (DE8), they only
assume that M = (M → X) satisfies

span{⟨M(x) ∣ M(x)⟩B ∶ x ∈ Xu} = B(u).(7R)

On the other hand, their result is more restrictive in that our topological groupoid
H is replaced by a topological group. Moreover, they only consider X =H, which is
restrictive even in the case of groups (see Example 6.9).

We have introduced all ingredients for the main theorem which says that any B-
demi-equivalence can be rigged (in a unique way) to give a Fell bundle equivalence in
the sense of [22, Definition 6.1].

3 The imprimitivity Fell bundle: Existence

▸ For the remainder of the paper, we fix a Fell bundle B = (pB∶B →H) over the
groupoid H and a right B-demi-equivalence M = (qM ∶M → X) over the principal
right H-space X.
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10 A. Duwenig

Suppose that A and C are, like B, Fell bundles over locally compact Hausdorff
groupoids. In [4, Sections 5 and 6], it was shown that a so-called hypo-equivalence N1
from A to B and a hypo-equivalence N2 from B to C can be “multiplied” to yield
a hypo-equivalence N1 ⊗B N2 from A to C . A careful examination of the proofs
shows that not all the structure of hypo-equivalences is needed to construct the upper
semi-continuous Banach bundle N1 ⊗B N2. We will start this section by making this
claim more precise.

Given x , y ∈ X with u ∶= σ(x) = σ(y), the demi-equivalence M gives us two full
Hilbert C∗-modules over the C∗-algebra B(u), namely the right-module M(x) and
the left-module M(y)op. In particular, combining the well-known results mentioned
earlier, we get an imprimitivity bimodule betweenKB(u)(M(x)) andKB(u)(M(y)op)
by taking the balanced tensor product:

K(x , yop) ∶= M(x) ⊗u M(y)op ≅ KB(u) (M(y), M(x)) ,(3.1)

where we write ⊗u as short-hand for ⊗B(u) . The norm of this Banach space
is, on sums of elementary tensors, given by

∥∑
i

m i ⊗ nop
i ∥

=
�����������
∑
i , j
∣n i ⟨m i ∣ m j⟩M(x)

B(u) ⟩⟨n j ∣
�����������

1/2

operator norm on KB(u)(M(y))(3.2)

=
�����������
∑
i , j
∣m i⟩⟨m j ⟨n j ∣ n i⟩M(y)

B(u) ∣
�����������

1/2

operator norm on KB(u)(M(x)).

We construct an upper semi-continuous Banach bundle over X ∗σ σ Xop as follows.

Lemma 3.1 (cf. [4, Lemma 5.2]) On the set

K = ⊔
(x , yop)∈X ∗σ σXop

K(x , yop),

consider all cross-sections of the form

μ ⊗ νop∶ X ∗σ σ Xop → K , (x , yop) ↦ μ(x) ⊗ ν(y)op ,

for μ, ν ∈ Γ0(X; M ). Then there is a unique topology on K making it an upper semi-
continuous Banach bundle over X ∗σ σ Xop such that all cross-sections μ ⊗ νop are
continuous.

In the literature [4, 20], the above bundle is denoted M ⊗B(0) M op. But since we
fixed M , we will ease notation and instead denote the bundle by K = (qK ∶K →
X ∗σ σ Xop).

Proof Consider

Γ ∶= span
C
{μ ⊗ νop ∶ μ, ν ∈ Γ0(X; M )}.

Recall that M has enough continuous sections, so that for each m ∈ M(x), there exists
μ ∈ Γ0(X; M ) such that μ(x) = m. In particular, it follows that {γ(x , yop) ∶ γ ∈ Γ} is
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dense in K(x , yop). If we can show for an arbitrary element γ = ∑k
i=1 μ i ⊗ νop

i of Γ
that (x , yop) ↦ ∥γ(x , yop)∥ is upper semi-continuous, then the claim follows from
[12, Corollary 3.7] (see also [9, p. 13.18], [29, Theorem C.25], [4, Remark 2.7]). We
have by Equation (3.2)

∥γ(x , yop)∥2 =
�����������
∑
i , j
∣ν i(y) ⟨μ i(x) ∣ μ j(x)⟩⟩⟨ν j(y)∣

�����������
.

It was shown in [24, Lemma 2.65] that the k × k-matrix with i , j-entry ⟨μ i(x) ∣ μ j(x)⟩
is positive for each x ∈ X, so there exists a matrix (b i , j(x))i , j over B(σ(x)) such
that ⟨μ i(x) ∣ μ j(x)⟩ = ∑k

l=1 b i l(x)b j l(x)∗. Note that we may choose each b i , j ∶ x ↦
b i , j(x) to be a continuous section of the pullback bundle σ∗(B). For 1 ≤ l ≤ k, we
let ν l(x , yop) ∶= ∑k

i=1 ν i(y) b i l(x). By continuity of , of each ν i and b i l , and of
summation in M , each ν l is continuous. Moreover,

∥γ(x , yop)∥2 = ∥∑k
l=1 ∣ν l(x , yop)⟩⟨ν l(x , yop)∣∥

= ∥∑k
l=1⟨ν l(x , yop) ∣ ν l(x , yop)⟩∥ by Lemma A.1.

Since the B-valued inner product on M , summation in B, and each ν l are contin-
uous, and the norm on B is upper semi-continuous, we conclude that (x , yop) ↦
∥γ(x , yop)∥ is upper semi-continuous. ∎
Remark 3.2 The proof of [4, Lemma 5.4] shows that, if we have two convergent nets
mλ → m and nλ → n in M with σM (mλ) = σM (nλ), then mλ ⊗ nop

λ → m ⊗ nop in K.

Implicitly, Lemma 3.1 is making use of the “dual” bundle to the B-demi-
equivalence M : given a fibre M(x) of M , its conjugate vector space M(x)op is, by
definition, the fibre of M op = (Mop → Xop) over xop. Clearly, M op is also an upper
semi-continuous Banach bundle if Mop and Xop are given the same topologies as M
and X, respectively. Moreover, the right B-action on M induces a left B-action on
M op if we define b mop ∶= (m b∗)op. The reader should compare all of this with
[22, Example 6.7] in the setting where M is an equivalence.

Note that K is the bundle-analog of the space X ∗σ σ Xop in the world of groupoids
and of the unbalanced tensor product X⊗Xop of Hilbert C∗-modules in the world of
C∗-algebras. What we are actually after, though, is a bundle-analog of their quotients,
that is, X ×H Xop respectively X⊗A Xop: To get X⊗A Xop from X⊗Xop, we quotient
out by elements of the form

(x ⋅ a) ⊗ y − x⊗ (a ⋅ y)
where x ∈ X, y ∈ Xop, and a ∈ A. For bundles, such a difference does not make sense,
since the two elementary tensors may live in different fibres: if m ∈ M(x), n ∈ M(y),
and b ∈ B(h) are such that σ(x) = rH(h) and sH(h) = σ(y), then

(m b) ⊗ nop ∈ M(x ◃ h) ⊗s(h) M(y)op , while
m ⊗ (b nop) ∈ M(x) ⊗r(h) M(y ◃ h−1)op .

In order to identify (m b) ⊗ nop with m ⊗ (b nop) = m ⊗ (n b∗)op, we there-
fore need a way to identify the above two fibres of K .
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12 A. Duwenig

Lemma 3.3 (cf. [4, Theorem 5.20]) For any u, v ∈H(0) and h ∈ uHv, there
exists a map

Ψh ∶ ⊔
x∈Xu
y∈Xv

M(x ◃ h) ⊗v M(y)op → ⊔
x∈Xu
y∈Xv

M(x) ⊗u M(y ◃ h−1)op

determined on elementary tensors by

Ψh((m b) ⊗ nop) = m ⊗ (n b∗)op ,(3.3)

where σM (m) = u, σM (n) = v, and b ∈ B(h). These maps have the following proper-
ties:

(Ψ1)When restricted to a single fibre K(x ◃ h, yop) → K(x , (y ◃ h−1)op), each Ψh is
linear.
(Ψ2) Each Ψh is isometric, i.e., ∥Ψh(ξ)∥ = ∥ξ∥.
(Ψ3) Ψh′ ○Ψh = Ψh′h for (h′ , h) ∈H(2).
(Ψ4) Ψh−1 is inverse to Ψh .
(Ψ5) Ψu for u ∈H(0) is the identity map.

Proof We construct Ψh on each of the fibres M(x ◃ h) ⊗v M(y)op. Consider the
map

M(x) × B(h) ×M(y)op → M(x) ⊗u M(y ◃ h−1)op ,
(m, b, nop) ↦ m ⊗ (n b∗)op .

Since it is multilinear, it descends to a linear map with domain [M(x) ⊙ B(h)] ⊙
M(y)op, where⊙denotes the algebraic tensor product. Because of the B(u)-balancing
in the codomain, the map descends to a map with domain [M(x) ⊙B(u) B(h)] ⊙
M(y)op. Since [n b∗v ] b∗ = n [bbv]∗ for any bv ∈ B(v), it further descends to
a map with domain [M(x) ⊙B(u) B(h)] ⊙B(v) M(y)op. It is easy to check that that
map is isometric (when M(x) ⊙B(u) B(h) is given the norm of the balanced tensor
product of Hilbert modules), and therefore extends to [M(x) ⊗u B(h)] ⊗v M(y)op.
Now, Assumption (DE8) implies that every element of M(x ◃ h) is the limit of sums
of elements of the form m b; in other words, the linear map M(x) ⊙B(u) B(h) →
M(x ◃ h) determined by m ⊙ b ↦ m b has dense range. We conclude the existence
of Ψh . The remaining properties are easy to check. ∎

The collection of maps Ψh stitch together to give an isomorphism of upper semi-
continuous Banach bundles as follows. Let t∶X ∗σ σ Xop →H(0) be given by t(x , yop) ∶=
σ(x) = σop(yop), and consider the continuous projection map

f ∶ H ∗s t (X ∗σ σ Xop) → X ∗σ σ Xop , (h, x , yop) ↦ (x , yop).

The pull-back bundle of the upper semi-continuous Banach bundle K via f is the
bundle over the domain of f defined by

{(h, x , yop , ξ) ∈ [H ∗s t (X ∗σ σ Xop)] × K ∶ f (h, x , yop) = qK (ξ)}
≅ {(h, ξ) ∈H × K ∶ sH(h) = t(qK (ξ))}.
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While this bundle is often denoted by f ∗(K ), we will denote it by H ∗s t K instead,
so that the letter f does not have to be introduced. We make an analogous definition
for K ∗t r H.

It was shown in [4, Lemma 2.8] that basic open sets of this upper semi-continuous
Banach bundle are of the form U ∗s t V for U ⊆H, V ⊆ K open, and the sections

H ∗s t (X ∗σ σ Xop) →H ∗s t K , (h, x , yop) ↦ (h, τ(x , yop)),

for τ a continuous section of K , are the continuous sections that uniquely determine
the topology on H ∗s t K .

Lemma 3.4 (cf. [4, Theorem 5.20]) The map

Ψ∶ H ∗s t K →K ∗t r H, (h, ξ) ↦ (Ψh(ξ), h),

is an isomorphism of upper semi-continuous Banach bundles covering the homeomor-
phism

ψ∶ H ∗s t (X ∗σ σ Xop) → (X ∗σ σ Xop) ∗t r H, (h, x ◃ h, yop) ↦ (x , (y ◃ h−1)op , h),

In particular, Ψ is jointly continuous.

We remind the reader that ‘Ψ covers ψ’ means that the following diagram com-
mutes:

H ∗s t K K ∗t r H

H ∗s t (X ∗σ σ Xop) (X ∗σ σ Xop) ∗t r H.

Ψ

q q

ψ

So given ξ ∈ K and h ∈H with sH(h) = t(qK (ξ)), this means that

qK (ξ) = (x ◃ h, yop) ⇐⇒ qK (Ψh(ξ)) = (x , (y ◃ h−1)op).(3.4)

Proof To see that Ψ is an isomorphism, we will invoke Lemma B.2 and [4, Proposi-
tion A.8]. Because of Lemma 3.1 and our comment preceding Lemma 3.4, the set

Γ = {(h, x , yop) ↦ (h, μ(x) ⊗ ν(y)op) ∶ μ, ν ∈ Γ0(X; M )}

is a collection of continuous sections of H ∗s t K . As the fibre of H ∗s t K over a
given (h, x , yop) is just K(x , yop) and since the linear span of {μ(x) ⊗ ν(y)op ∶
μ, ν ∈ Γ0(X; M )} is dense in K(x , yop), we conclude that the linear span of
{γ(h, x , yop) ∶ γ ∈ Γ} is likewise dense in the fibre ofH ∗s t K . We claim that, given any
element γ∶ (h, x , yop) ↦ (h, μ(x) ⊗ ν(y)op) of Γ, the section Ψ ○ γ ○ ψ−1 of K ∗t r H is
continuous. Indeed, it suffices to check that, if

(xλ , (yλ ◃ h−1
λ )op , hλ) → (x , (y ◃ h)op , h) in (X ∗σ σ Xop) ∗t r H,

then

Ψhλ(μ(xλ ◃ hλ) ⊗ ν(yλ)op) → Ψh(μ(x ◃ h) ⊗ ν(y)op) in K ∗t r H.

Fix ε > 0. As mentioned earlier, Assumption (DE8) implies that M(x ◃ h) =
M(x) B(h), so we may take finitely many elements m i ∈ M(x) and b i ∈ B(h)
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such that

∥μ(x ◃ h) −
k
∑
i=1

m i b i∥ < ε.(3.5)

For each 1 ≤ i ≤ k, fix a section μ i of M and τ i of B with μ i(x) = m i respectively
τ i(h) = b i . Since addition in M and the right B-action are continuous, the net
ζλ ∶= ∑i μ i(xλ) τ i(hλ) converges to ζ ∶= ∑i μ i(x) τ i(h) in M. By [4, Lemma A.3,
(i) '⇒ (iii)], we therefore have

lim sup
λ
∥μ(xλ ◃ hλ) − ζλ∥ ≤ ∥μ(x ◃ h) − ζ∥ < ε.(3.6)

Note that

Ψhλ(ζλ ⊗ ν(yλ)op) =
k
∑
i=1

μ i(xλ) ⊗ (ν(yλ) τ i(hλ)∗)
op ,

and likewise without subscript-λ’s. Thus, by continuity of μ i , ν, τ i , of the involution
in B, of the right B-action, and of addition in K , combined with Remark 3.2, this
implies that

Ψhλ(ζλ ⊗ ν(yλ)op) → Ψh(ζ ⊗ ν(y)op).(3.7)

Since Ψh is isometric (Ψ2), we then have for large enough λ

∥Ψhλ(ζλ ⊗ ν(yλ)op) −Ψhλ(μ(xλ ◃ hλ) ⊗ ν(yλ)op)∥
= ∥(ζλ − μ(xλ ◃ hλ)) ⊗ ν(yλ)op∥

≤ ∥ζλ − μ(xλ ◃ hλ)∥ ∥ν(yλ)∥
(∗)
≤ ε(ε + ∥ν(y)∥),

where (∗) follows from (3.6) and continuity of ν. The same computation without
subscripts yields

∥Ψh(ζ ⊗ ν(y)op) −Ψh(μ(x ◃ h) ⊗ ν(y)op)∥ ≤ ε(ε + ∥ν(y)∥).

As ε was arbitrary, Lemma B.1 states that this combined with (3.7) implies

Ψhλ(μ(xλ ◃ hλ) ⊗ ν(yλ)op) → Ψh(μ(x ◃ h) ⊗ ν(y)op).

Because each Ψh is linear, isometric, and surjective, the claim now follows from
Lemma B.2 and [4, Proposition A.8]. ∎

We are now able to proceed with the balancing by defining a relation R on the set
K as follows; the results are adapted from [4, Section 6].

Lemma 3.5 If ξ1 , ξ2 ∈ K with qK (ξ i) = (x i , yop
i ), let

ξ1 R ξ2 ∶ ⇐⇒ ∃h ∈ σ(x1)Hσ(x2) such that x2 = x1 ◃ h, y2 = y1 ◃ h, Ψh(ξ2) = ξ1 .

This defines a closed equivalence relation on the total space K of K whose quotient map
Q∶K → K/R is open.

We often write [ξ] for Q(ξ).
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Proof The proof that R is closed is verbatim that given for [4, Lemma 6.2], where it
is also explained why R is an equivalence relation.

To show that the quotient map Q is open, the proof of [4, Proposition 6.8] goes
through for N ∶=M op, even though M was assumed to be an equivalence and H

was assumed to be étale in [4]. In fact, étaleness was only needed to be allowed to
invoke [4, Lemma 6.10], but that lemma’s proof holds as long as the range map of H
is open (which we assumed here). ∎
Lemma 3.6 On the quotient of K by R, the map p∶K/R→ G, [ξ] ↦ [qK (ξ)], is well
defined, surjective, continuous, and open.

Proof The proof of [4, Lemma 6.5] for N ∶=M op goes through, even though M
was assumed to be an equivalence in that lemma. ∎
▸ For the moment, we will write A = (pA = p∶A→ G) for the quotient bundle of

K by R. Once we have shown that A is a Fell bundle that is equivalent to B via M ,
we will change notation.

Lemma 3.7 (cf. [4, Proposition 6.6. and Lemma 6.7]) Fix g = {x ∣ yop}X

G
∈ G. With

respect to the subspace topology of A = K/R on the fibre A(g) of A , the restriction of the
quotient map Q∶K → A to the fibre over (x , yop) is a homeomorphism:

Q(x , yop)∶ K(x , yop) = M(x) ⊗σ(x) M(y)op ≈,→ A(g).(3.8)

The above lemma means that we can give A(g) the Banach space structure that
makes all maps Q(x , yop) isomorphisms: for [ξ1], [ξ2] ∈ A(g), there exists a unique h ∈
H such that qK (ξ1) = qK (Ψh(ξ2)), and we may let

λ1[ξ1] + λ2[ξ2] ∶= [λ1 ξ1 + λ2Ψh(ξ2)] and ∥[ξ]∥ ∶= ∥ξ∥K(q(ξ)) .

Note that, in light of the Hilbert module isomorphism in Equation (3.1), we can also
think of the fibres of A as generalized compact operators:

KB(σ(x))(M(y), M(x)) ≈,→ A([x , yop]).(3.9)

Proof If ξ, η ∈ K(x , yop), then since the H-action on X is free, h = σ(x) ∈H(0) is
the only possible element that allows ξ R η, in which case Ψh(η) = η (since h is a unit)
and hence ξ = η. Thus, Q(x , yop) is injective. For surjectivity, note that Q is surjective,
so any element a of A(g) can be written as a = Q(ξ) for ξ ∈ K with [qK (ξ)] = g =
{x ∣ yop}X

G
. In particular, there exists h ∈H with qK (ξ) = (x ◃ h, (y ◃ h)op), so that

Ψh(ξ) ∈ K(x , yop) and a = Q(ξ) = Q(x , yop)(Ψh(ξ)).
Since p = pA is continuous, A(g) = p−1

A ({g}) is closed in A, and so continuity of
Q implies continuity of Q(x , yop). To see that Q(x , yop) is closed (and hence a homeo-
morphism), we follow the idea in the proof of [4, Lemma 6.7]: Let F ⊆ K(x , yop) be
a closed set. To show that Q(F) ⊆ A(g) is closed, it suffices to show that it is closed
in A, i.e., that Q−1(Q(F)) is closed in K. So assume ξλ → ξ in K with Q(ξλ) ∈ Q(F);
we must prove that Q(ξ) ∈ Q(F). Since Q(ξλ) ∈ F, there exist ηλ ∈ F with ηλ R ξλ .
Since F ⊆ K(x , yop), this means there exist hλ ∈ σ(x)H with qK (ξλ) = (x ◃ hλ ,
(y ◃ hλ)op) and Ψhλ(ξλ) = ηλ . Since ξλ → ξ, we have

(x ◃ hλ , (y ◃ hλ)op) = qK (ξλ) → qK (ξ) =∶ (x0 , yop
0 ).
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16 A. Duwenig

Since the H-action on X is proper, it follows from [28, Proposition 2.17] that (a
subnet of) {hλ}λ converges to, say, h; since X is Hausdorff, it follows that (x0 , yop

0 ) =
(x ◃ h, (y ◃ h)op). Since Ψ is jointly continuous, we conclude that (a subnet of)
ηλ = Ψhλ(ξλ) converges to Ψh(ξ) in K. Since ηλ ∈ F and F is closed in K(x , yop) and
hence also in K, we have Ψh(ξ) ∈ F. Since ξ R Ψh(ξ), this means that ξ ∈ Q−1(Q(F)),
as needed. ∎

Lemma 3.8 The bundle A —equipped with the quotient topology on A = K/R and with
the fibrewise linear structure inherited from K via the maps given in (3.8)—is an upper
semi-continuous Banach bundle. With respect to this topology, all sections of the form

[x , yop] ↦ [μ(x) ⊗ ν(y)op]

are continuous, where μ, ν are continuous sections of M .

Proof That A is an upper semi-continuous Banach bundle follows from an appli-
cation of [4, Proposition 6.13]; here, we need that both { ∣ }X

G
∶X ∗σ σ Xop → G

and Q∶K → A are open quotient maps (Lemma 3.5) and that Q(x , yop) is surjective
(Lemma 3.7) and a linear isometry (by definition of the linear structure on each fibre
of A ).

That the given section is continuous follows since { ∣ }X

G
is open, μ ⊗ νop is a

continuous section of K (Lemma 3.1), and Q is continuous. ∎

At this point, we will diverge from what was done in [4] and prove that A =
(pA ∶A→ G) is not just an upper semi-continuous Banach bundle but actually a
Fell bundle; see Theorem 3.17. In particular, we need to construct two maps, namely
a multiplication ⋅ ∶A (2) → A and an involution ∗∶A→ A. Conceptually, the
involution is easier, so this is where we will start.

Lemma 3.9 There exists a unique bijective, fibrewise isometric and conjugate-linear
map Flip∶K →K that covers the homeomorphism

flip∶X ∗σ σ Xop → X ∗σ σ Xop , (x , yop) ↦ (y, xop),

and that is fibrewise given on dense spanning elements by

K(x , yop) → K(y, xop)
m ⊗ nop ↦ n ⊗mop .

(3.10)

Note that the following diagram commutes:

(3.11)

K(x ◃ h, yop) K(y, (x ◃ h)op)

K(x , (y ◃ h−1)op) K(y ◃ h−1 , xop).

Flip

Ψh Ψh

Flip

Proof To see that the map Flip exists on each fibre, fix (x , yop) ∈ X ∗σ σ Xop and
let u = σ(x) = σ(y). Recall that K(x , yop) is isomorphic to KB(u)(M(y), M(x))
as bi-Hilbert KB(u)(M(x)) −KB(u)(M(y))-bimodules. With this identification, the
restriction of Flip to this fibre is given by ∣m⟩⟨n∣ ↦ ∣n⟩⟨m∣, or in other words, Flip
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The imprimitivity Fell bundle 17

is the adjoint map T ↦ T∗. In particular, Flip is fibrewise antilinear and isometric.
Its continuity is built into the topology on K : If μ, ν are continuous sections of M ,
then μ ⊗ νop and ν ⊗ μop are continuous sections of K . Since Flip transforms the
former into the latter, it is continuous and open by an application of [4, Propositions
A.7 and A.8].5 ∎

Continuity of Flip and continuity and openness of the quotient map Q now
immediately imply the following.
Corollary 3.10 On the quotient bundle A , there exists a unique continuous, fibrewise
conjugate-linear map ∗∶A→ A given by [ξ]∗ = [Flip(ξ)].

Now that we have (a candidate for) the involution on A , we proceed to construct
the multiplication. Recall that our end goal is not only to show that A is a Fell bundle
but also that there is a left action of A on M . We want this action to behave nicely
with respect to the multiplication in the sense that a1 (a2 m) = (a1 ⋅ a2) m; it
is therefore easier to first construct a candidate for the left-action and then use it to
construct the multiplication. Like with the involution, we first do everything on the
level of K before we move to its quotient A . For clarity, we remind the reader that
the fibre of K over (x , yop) ∈ X ∗σ σ Xop is given by K(x , yop) = M(x) ⊗σ(x) M(y)op.
Lemma 3.11 For (x , yop) ∈ X ∗σ σ Xop, there exists a continuous bilinear map

Φx , y ∶ K(x , yop) ×M(y) → M(x)
determined on elementary tensors by

Φx , y(m ⊗ nop , k) = m ⟨n ∣ k⟩B .(3.12)

For all ξ ∈ K(x , yop) and k ∈ M(y), it satisfies

∥Φx , y(ξ, k)∥ ≤ ∥ξ∥ ∥k∥ .(3.13)

Proof The existence of Φx , y follows from the following, well-studied isomorphisms
of bi-Hilbert A− A-modules for any full right-Hilbert A-module Y: Firstly, the map
Yop ⊗K Y→ A determined by yop

1 ⊗ y2 ↦ ⟨y1 ∣ y1⟩YA, and secondly, Y⊗A A→ Y deter-
mined by y ⊗ a ↦ y ⋅ a. In our situation, A = B(u) where u = σ(x) = σ(y), and we
use first M(y) and then M(x) to take the rôle of Y. To be precise, if we write K for
KB(u)(M(y)), then

K(x , yop) ×M(y) ↠ (M(x) ⊗u M(y)op) ⊗K M(y) ≅ M(x) ⊗u B(u) ≅ M(x).
The claim about the norm is also well known, but we add it here for completion.

Since Φx , y is continuous, it suffices to prove the claim for ξ = ∑�
i=1 m i ⊗ nop

i , a sum of
elementary tensors. We have

∥Φx , y(ξ, k)∥2 = ∥∑
i

m i ⟨n i ∣ k⟩B∥
2

=
�����������
∑
i , j
∣m i ⟨n i ∣ k⟩B⟩⟨m j ⟨n j ∣ k⟩B∣

�����������
,

5To be pedantic, [4] only deals with fibrewise linear rather than antilinear maps, so the cited results
give an isomorphism K →K op of Banach bundles determined by m ⊗ nop ↦ (n ⊗mop)op covering
the map (x , yop) ↦ (y, xop)op. But we can then compose that map with the homeomorphism K op →
K , ξop ↦ ξ.
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18 A. Duwenig

where the norm on the right-hand side is the operator norm on KB(u)(M(x)). Note
that ⟨n i ∣ k⟩B ∈ B(u) acts by KB(u)(M(x))-adjointable operators, so that

∥Φx , y(ξ, k)∥2 =
�����������
∑
i , j
∣m i⟩⟨(m j ⟨n j ∣ k⟩B) ⟨k ∣ n i⟩B∣

�����������
.

Now, ⟨n j ∣ k⟩B⟨k ∣ n i⟩B = ⟨n j ∣ k ⟨k ∣ n i⟩B⟩B by (DE4). Since k, n i ∈ M(y), we
further know that k ⟨k ∣ n i⟩B = ∣k⟩⟨k∣(n i). Recall that ∣k⟩⟨k∣ is a positive element
of KB(u)(M(y)), so we can write it as T∗T . In particular,

∥Φx , y(ξ, k)∥2 =
�����������
∑
i , j
∣m i⟩⟨m j ⟨Tn j ∣ Tn i⟩B∣

�����������

(3.2)= ∥∑
i

m i ⊗ (Tn i)op∥
2

.

Since ∥∑i m i ⊗ (Tn i)op∥ ≤ ∥1⊗ T∥ ∥∑i m i ⊗ nop
i ∥ and ∥1⊗ T∥ = ∥T∥ = ∥k∥, we con-

clude that

∥Φx , y(ξ, k)∥ ≤ ∥ξ∥ ∥k∥ ,

as claimed. ∎

Bilinearity of Φx , y helps us prove the following result.

Lemma 3.12 For any u ∈H(0) and any y ∈ Xu, there exists a map

Uy ∶ ⊔
x ,z∈Xu

K(x , yop) × K(y, zop) → ⊔
x ,z∈Xu

K(x , zop)

determined by

Uy(m ⊗ nop
1 , n2 ⊗ kop) = (m ⟨n1 ∣ n2⟩B) ⊗ kop .(3.14)

These maps have the following properties:
(U1) When restricted to a fibre K(x , yop) × K(y, zop) → K(x , zop), Uy is bilinear.
(U2) Each Uy satisfies ∥Uy(ξ, η)∥ ≤ ∥ξ∥ ∥η∥ and ∥Uy(ξ,Flip(ξ))∥ = ∥ξ∥2.
(U3) If h ∈ uH, then Ψh ○Uy◃h = Uy ○ (Ψh ×Ψh).
(U4) We have Flip(Uy(ξ, η)) = Uy(Flip(η),Flip(ξ)).

Note that “equivariance” of U (Condition (U3)) is equivalent to commutativity of
the following diagram for all x , z:

(3.15)

K(x ◃ h, h−1 ▹ yop) × K(y ◃ h, h−1 ▹ zop) K(x ◃ h, h−1 ▹ zop)

K(x , yop) × K(y, zop) K(x , zop).

Uy◃h

Ψh × Ψh Ψh

Uy

Proof of Lemma 3.12 The existence of Uy follows from observations of general
Hilbert C∗-modules similar to those following Lemma 1.5: If X, Y, Z are full right-
Hilbert C∗-modules over a C∗-algebra A, then the maps

(X⊗A Yop) ⊗KA(Y) (Y⊗A Zop) ,→ X⊗A Zop ,→ KA(Z, X)(3.16)
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determined by

(x⊗ yop
1 ) ⊗ (y2 ⊗ zop) 1→ (x ⋅ ⟨y1 ∣ y2⟩YA) ⊗ zop 1→ ∣x ⋅ ⟨y1 ∣ y2⟩YA⟩⟨z∣

are isomorphisms of bi-Hilbert KA(X) −KA(Z)-modules. The above isomorphism
can be precomposed with the universal bilinear map X⊗A Yop ×Y⊗A Zop →
(X⊗A Yop) ⊗KA(Y) (Y⊗A Zop). We apply this to the case where Y = M(y) and A =
B(u). Condition (U1) is therefore by construction.

(U2) Since the maps in (3.16) are isomorphisms of modules (in particular, they are
isometric), we have ∥Uy(ξ, η)∥ = ∥ξ ⊗ η∥ for ξ ∈ K(x , yop) and η ∈ K(y, zop), which
is known (or easily shown) to be bounded by ∥ξ∥ ∥η∥. In particular, Uy is not just linear
but also continuous on each fibre. For the second claim, it therefore suffices to consider
one of the dense elements ξ = ∑i m i ⊗ nop

i in which caseFlip(ξ) = ∑ j n j ⊗mop
j and

U(ξ,Flip(ξ)) = ∑
i , j
(m i ⟨n i ∣ n j⟩B) ⊗mop

j .(3.17)

Again, since the maps in (3.16) are isometric, we see that

∥U(ξ,Flip(ξ))∥ =
�����������
∑
i , j
∣m i ⟨n i ∣ n j⟩B⟩⟨m j ∣

�����������
,

which equals ∥ξ∥2 by Equation (3.2).
(U3) The properties of and of ⟨ ∣ ⟩B imply that

(m b) ⟨n1 ∣ n2⟩B = m (b⟨n1 ∣ n2⟩B) = m ⟨n1 b∗ ∣ n2⟩B
whenever m, n1 , n2 ∈ M and b ∈ B are chosen such that the left (and
hence each) side of the above equations makes sense. Likewise, we have
⟨n1 ∣ n2 b⟩B = ⟨n1 ∣ n2⟩Bb. For h ∈ uH, suppose we are given elements
b i ∈ B(h), m ∈ M(x), n1 ∈ M(y ◃ h), n2 ∈ M(y), k ∈ M(z ◃ h). Then

(Ψh ○Uy◃h)((m b1) ⊗ nop
1 , (n2 b2) ⊗ kop)

= Ψh((m b1) ⟨n1 ∣ n2 b2⟩B ⊗ kop) = Ψh([m (b1⟨n1 ∣ n2⟩B)] b2 ⊗ kop)
= (m ⟨n1 b∗1 ∣ n2⟩B) ⊗ (b2 kop)
= Uy(m ⊗ (b1 nop

1 ), n2 ⊗ (b2 kop))
= (Uy ○Ψh ×Ψh)((m b1) ⊗ nop

1 , (n2 b2) ⊗ kop).
Because of continuity and (bi)linearity of Ψh and of Uy , Uy◃h , we conclude that
Ψh ○Uy◃h = Uy ○Ψh ×Ψh , as claimed. One likewise checks that (U4) holds for for
elementary tensors, and again uses (bi)linearity and continuity of Uy and of Flip to
deduce the claim. ∎

Similarly to how we constructed Ψ in Lemma 3.4 out of the maps Ψh from
Lemma 3.3, we now want to “stich together” the maps Φx , y on the one hand and the
maps Uy on the other hand, to bundle maps. To do so, we first need a definition.

Definition 3.1 For two upper semi-continuous Banach bundles M = (M → X) and
N = (N → Y), consider the product bundle M ×N = (M × N → X × Y); the norm
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20 A. Duwenig

on its fibre over (x , y) can be chosen as the maximum of the norms of M(x) and N(y),
and it is given the component-wise vector space structure. The global topology of the
total space M × N of M ×N is induced by the C-linear span of sections of the form
(x , y) ↦ (μ(x), ν(y)), where μ and ν are continuous sections of M respectively N .

If f ∶X → Z and g∶Y → Z are continuous functions into some other topological
space, then we write M ∗f g N for the restriction of M ×N to the closed subset
X ∗f g Y of the base X × Y .

We now let fir,sec∶X ∗σ σ Xop → X be given by fir(x , yop) = x respectively
sec(x , yop) = y (“fir” for “first”, “sec” for “second”).

Lemma 3.13 Writing Φ(x , yop) for the map Φx , y of Lemma 3.11, the map

Φ∶ K ∗sec q M →M , (ξ, m) ↦ Φq(ξ)(ξ, m),

is bilinear, jointly continuous, and covers the continuous surjection

(X ∗σ σ Xop) ∗sec id X → X , (x , yop , y) ↦ x .

Note that Φ is not a homomorphism of Banach bundles, since Φ is not fibrewise
linear.

Proof Since Φx , y lands in M(x) by construction, Φ covers (x , yop , y) ↦ x. To see
that Φ is jointly continuous, assume that we are given a convergent net (ξλ , kλ) →
(ξ, k) in K ∗sec q M, and let q(ξλ , kλ) = (xλ , yop

λ , yλ) and q(ξ, k) = (x , yop , y); note
that xλ → x and yλ → y in X. To prove that Φ(ξλ , kλ) → Φ(ξ, k), fix δ > 0; we must
find κ ∈ Γ0(X; M ) with ∥Φ(ξ, k) − κ(x)∥ < δ and ∥Φ(ξλ , kλ) − κ(xλ)∥ < δ for large
λ [4, Lemma A.3].

Because of how the topology on K is defined and because ξλ → ξ in K , we can
find finitely many nets m j,λ → m j and n j,λ → n j in M such that

�����������
ξ −

�

∑
j=1

m j ⊗ nop
j

�����������
< δ

2(∥k∥ + 1) ,
�����������

ξλ −
�

∑
j=1

m j,λ ⊗ nop
j,λ

�����������
< δ

2(∥k∥ + 1) .(3.18)

Since ⟨ ∣ ⟩B is jointly continuous, this implies that for each j, ⟨n j,λ ∣ kλ⟩B →
⟨n j ∣ k⟩B in B. Since is jointly continuous, this in turn implies that

�

∑
j=1

m j,λ ⟨n j,λ ∣ kλ⟩B →
�

∑
j=1

m j ⟨n j ∣ k⟩B in M .

That means that we can find a section κ of M with
�����������

�

∑
j=1

m j ⟨n j ∣ k⟩B − κ(x)
�����������
< δ

2
,
�����������

�

∑
j=1

m j,λ ⟨n j,λ ∣ kλ⟩B − κ(xλ)
�����������
< δ

2
(3.19)

for all λ ≥ λ0. Let λ be large enough such that we also have ∣ ∥kλ∥ − ∥k∥ ∣ < 1. Linearity
of Φ in the first component yields:
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∥Φ(ξ, k) − κ(x)∥ ≤
�����������

Φ(ξ, k) −
�

∑
j=1

m j ⟨n j ∣ k⟩B
�����������
+
�����������

�

∑
j=1

m j ⟨n j ∣ k⟩B − κ(x)
�����������

(3.19)
≤
�����������

Φ(ξ −
�

∑
j=1

m j ⊗ nop
j , k)

�����������
+ δ

2

(3.13)
≤
�����������

ξ −
�

∑
j=1

m j ⊗ nop
j

�����������
∥k∥ + δ

2
(3.18)
< δ,

and the exact same computation with subscript-λ’s yields ∥Φ(ξλ , kλ) − κ(xλ)∥ < δ for
large λ, which proves the claim. ∎

We proceed with stitching together the Uy ’s.

Lemma 3.14 The map

U ∶ K ∗sec firK →K , (ξ, η) ↦ Usec(ξ)(ξ, η),

is bilinear, jointly continuous, and covers the continuous surjection

(X × Xop) ∗sec fir (X × Xop) → X × Xop , (x , yop , y, zop) ↦ (x , zop).

Moreover, given μ, ξ, η ∈ K and m ∈ M with (μ, ξ), (ξ, η) ∈K ∗sec firK and
(ξ, m) ∈K ∗sec q M , we have

Φ(U(μ, ξ), m) = Φ(μ, Φ(ξ, m)) and thus U(U(μ, ξ), η) = U(μ, U(ξ, η)).(3.20)

Proof To see that U is jointly continuous, assume that {(ξλ , ηλ)}λ is a net in
K ∗sec firK that converges to (ξ, η). Let (xλ , yop

λ ) ∶= qK (ξλ), which converges
to (x , yop) ∶= qK (ξ), and let (yλ , zop

λ ) ∶= qK (ηλ), which converges to (y, zop) ∶=
qK (η). Fix an arbitrary δ ∈ (0, 1); by [4, Lemma A.3], we should find a section
κ ∈ Γ0(X ∗σ σ Xop; K ) with

∥U(ξ, η) − κ(x , zop)∥ < 4δ and ∥U(ξλ , ηλ) − κ(xλ , zop
λ )∥ < 4δ

for large λ. Because of how the topology on K is defined and because ξλ → ξ, ηλ → η
in K , there exist elements

ζλ ∈ M(xλ) ⊙M(yλ)op converging to ζ ∈ M(x) ⊙M(y)op in K

and elements

χλ ∈ M(yλ) ⊙M(zλ)op converging to χ ∈ M(y) ⊙M(z)op in K

such that

∥ξ − ζ∥ , ∥ξλ − ζλ∥ <
δ

∥η∥ + 1
, and ∥η − χ∥ , ∥ηλ − χλ∥ <

δ
∥ξ∥ + 1

(3.21)

for large λ. Here, it is important to point out that ⊙ refers to the algebraic tensor
product, so each of the elements considered above is a finite sum of elementary tensors.
Note that

U(m ⊗ nop , k ⊗ �op) = Φ(m ⊗ nop , k) ⊗ �op ,(3.22)
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22 A. Duwenig

so using bilinearity of U and continuity of Φ, the fact that ζλ → ζ and χλ → χ in K and
that addition and scalar multiplication is continuous on K , imply that

U(ζλ , χλ) → U(ζ , χ)

for these particular sums of elementary tensors ζλ , χλ . This convergence means that
we can find a section κ of K with

∥U(ζλ , χλ) − κ(xλ , zop
λ )∥ < δ and ∥U(ζ , χ) − κ(x , zop)∥ < δ.(3.23)

Combining this with Condition (U2), we conclude for large λ:

∥U(ξ, η) − κ(x , zop)∥ ≤ ∥U(ξ, [η − χ])∥ + ∥U([ξ − ζ], χ)∥ + ∥U(ζ , χ) − κ(x , zop)∥
< ∥ξ∥ ∥η − χ∥ + ∥ξ − ζ∥ ∥χ∥ + δ by (3.23), (U2)
< 3δ by (3.21).

We likewise get for λ large enough such that ∣ ∥ξ∥ − ∥ξλ∥ ∣ and ∣ ∥η∥ − ∥ηλ∥ ∣ are
bounded by 1,

∥U(ξλ , ηλ) − κ(xλ , zop
λ )∥ < ∥ξλ∥ ∥ηλ − χλ∥ + ∥ξλ − ζλ∥ ∥χλ∥ + δ

(3.21)
< (∥ξ∥ + 1) δ

∥ξ∥ + 1
+ δ
∥η∥ + 1

∥χλ∥ + δ.

Note that

∥χλ∥ ≤ ∥χλ − ηλ∥ + ∥ηλ∥ ≤ ∥χλ − ηλ∥ + ∥η∥ + 1 ≤ δ
∥ξ∥ + 1

+ ∥η∥ + 1,

so that
δ

∥η∥ + 1
∥χλ∥ ≤

δ
∥η∥ + 1

[ δ
∥ξ∥ + 1

+ ∥η∥ + 1] ≤ 2δ.

We conclude that

∥U(ξλ , ηλ) − κ(xλ , zop
λ )∥ < (∥ξ∥ + 1) δ

∥ξ∥ + 1
+ 2δ + δ < 4δ,

as needed.
For (3.20), it likewise suffices to prove the claims for elementary tensors

μ = �⊗mop
1 , ξ = m2 ⊗ nop

1 , and η = n2 ⊗ kop. The computations make use of
B-linearity of ⟨ ∣ ⟩B and are left to the reader. ∎

For the next result, we remind the reader that we denote the groupoid X ×H Xop =
(X ∗σ σ Xop)/H by G and that we write rA ∶= rG ○ pA and sA ∶= sG ○ pA .

Lemma 3.15 On the quotient bundle A = (pA ∶A→ G), the following map is well
defined, continuous, and fibrewise bilinear:

⋅ ∶ A (2) ∶= {([ξ], [η]) ∈ A× A ∶ sA ([ξ]) = rA ([η])} → A,

given by

[ξ] ⋅ [η] ∶= [U(ξ, Ψh(η))],
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where U is as defined in Lemma 3.14 and h ∈H is the unique element such that
secK (ξ) = firK (Ψh(η)).

Remark 3.16 If (g1 , g2) ∈ G(2), we may choose representatives (x , yop) and (yop , z)
of g1 respectively g2. If we then identify the fibres A(g1), A(g2) with K(x , yop) =
M(x) ⊗σ(x) M(y)op and K(y, zop) via (3.8), then the map ⋅ is fibrewise on dense
spanning sets given by

⋅ ∶ A(g1) × A(g2) → K(x , zop) ≅ A(g1 g2)
(m1 ⊗ nop

1 , m2 ⊗ nop
2 ) ↦ (m1 ⟨n1 ∣ m2⟩MB ) ⊗ nop

2 .
(3.24)

Proof of Lemma 3.15 Since Uh ○ (Ψh ×Ψh) = Ψh ○Uy◃h , the map m ∶= ⋅ is well
defined. Since Uy and Ψh are linear, linearity of m follows directly from the definition
of the fibrewise Banach space structure on A .

To see that it is continuous, we will invoke openness of the quotient map Q: Suppose
{χλ}λ is a net in A (2) which converges to χ. Since it suffices to show that a subnet of
{m(χλ)}λ converges to m(χ), we can without loss of generality assume that the entire
net {χλ}λ lifts to a net {(ξλ , ηλ)}λ in K × K that converges to a lift (ξ, η) of χ (here, we
have made use of [28, Proposition 1.1 (Fell’s criterion)] for the open map Q). Denote
qK (ξλ) = (xλ , yop

λ ). Since χλ ∈ A (2), we may let hλ , h ∈H be the unique elements
such that qK (Ψhλ(ηλ)) = (yλ , zop

λ ) and qK (Ψh(η)) = (y, zop) for some zλ , z ∈ X.
Since ξλ → ξ, it follows that yλ → y. Since ηλ → η and qK (Ψhλ(ηλ)) = (yλ , zop

λ ),
we further have that (yλ ◃ hλ , h−1

λ ▹ zop
λ ) → qK (η) = (y ◃ h, h−1 ▹ zop). Since both yλ

and yλ ◃ hλ converge, it follows from properness and freeness of the H-action on X
that a subnet of {hλ}λ converges to h; again, without loss of generality we can assume
that the entire net converges. By continuity of Ψ, we conclude that Ψhλ(ηλ) → Ψh(η).
Since U is jointly continuous by Lemma 3.14, we therefore have

U(ξλ , Ψhλ(ηλ)) ,→ U(ξ, Ψh(η))

in K, which suffices since Q is continuous. ∎

We arrive at our first main result.

Theorem 3.17 With respect to the multiplication in Lemma 3.15 and the involution in
Corollary 3.10, the upper semi-continuous Banach bundle A described in Lemma 3.8 is
a saturated Fell bundle over the groupoid G = X ×H Xop, called the imprimitivity Fell
bundle of M .

Proof We will check the conditions as stated in [4, Definition 2.9]. It is clear that
multiplication ⋅ is bilinear and that ∗ is conjugate linear and self-inverse; this
takes care of Conditions (F2), (F6), and (F8). For the following, fix ([ξ], [η]) ∈ A (2),
and let h ∈H be the unique element such that qK (ξ) = (x , yop) and qK (Ψh(η)) =
(y, zop), meaning that qK (η) = (y ◃ h, h−1 ▹ zop).

(F1) Since Uy(ξ, Ψh(η)) ∈ K(x , zop) and since pA ([ξ]) = [qK (ξ)], we get the
first and last equality in the following computation:

pA ([ξ] ⋅ [η]) = [x , zop] = [x , yop] ⋅ [y, zop] = pA ([ξ]) ⋅ pA ([η]).
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(F3) Associativity of the multiplication can be shown using uniqueness of h,
the second identity in (3.20), commutativity of Diagram (3.15), and the fact that
Ψhh′ = Ψh ○Ψh′ ; the details are left as an exercise.

(F4) The definition of the norm on the fibres of A implies that

∥[ξ] ⋅ [η]∥ = ∥Uy(ξ, Ψh(η))∥
(U2)
≤ ∥ξ∥ ∥Ψh(η)∥

(Ψ2)= ∥ξ∥ ∥η∥ = ∥[ξ]∥ ∥[η]∥ ,

proving that multiplication is norm-decreasing.
(F5) Since pA ([ξ]∗) = [qK (Flip(ξ))] and since [x , yop]−1 = [y, xop] in G, we

have that ∗ maps A(g) to A(g−1).
(F7) We must show that ([ξ] ⋅ [η])∗ = [η]∗ ⋅ [ξ]∗. We have

([ξ] ⋅ [η])∗ = [Flip (Uy(ξ, Ψh(η)))]

= [Uy(Flip(Ψh(η)),Flip(ξ))] by (U4)

= [Uy(Ψh(Flip(η)),Flip(ξ))] by commutativity of Diag. (3.11)

= [Uy(Flip(η), Ψh−1(Flip(ξ)))] by (U3) and definition of R,

which is exactly [η]∗ ⋅ [ξ]∗.
(F9) It is clear that ∥[ξ]∥ = ∥[ξ]∗∥. To show ∥[ξ] ⋅ [ξ]∗∥ = ∥[ξ]∥2, note that η ∶=

Flip(ξ) has qK (η) = (y, xop); in particular, u ∶= σ(x) is the unique element of H
with secK (ξ) = firK (Ψu(η)). Since Ψu is the identity, we conclude that

[ξ] ⋅ [ξ]∗ = [Uy(ξ,Flip(ξ))],

which has norm equal to ∥ξ∥2 = ∥[ξ]∥2 by (U2), as needed.
(F10) To see that [ξ] ⋅ [ξ]∗ ≥ 0, we again invoke [24, Lemma 2.65]: The matrix

with i , j-entry ⟨n i ∣ n j⟩B is positive, so there exists a matrix (b i , j)i , j over B(u) such
that ⟨n i ∣ n j⟩B = ∑l=1 b i l b∗j l . In particular, the B(u)-balancing in M(x) ⊗u M(y)op

allows us to write

∑
i , j
(m i ⟨n i ∣ n j⟩B) ⊗mop

j = ∑
i , j, l
(m i (b i l b∗j l)) ⊗mop

j

= ∑
l
(∑

i
m i b i l) ⊗ (∑

j
m j b j l)op .

If we let xl ∶= ∑i m i b i l , then this combined with (3.17) shows that

[ξ] ⋅ [ξ]∗ = [Uy(ξ,Flip(ξ))] = ∑
l
[xl ⊗ xop

l ] .

Since the element xl ⊗ xop
l of K(x , xop) is positive (it corresponds to the positive

operator ∣xl ⟩⟨xl ∣ in KB(u)(M(x))), and since the algebra A([x , xop]) is *-isomorphic
to K(x , xop) (see Remark 3.16), the claim follows.

Lastly, to see that A is saturated, we must show that the linear span of elements of
the form [ξ] ⋅ [η] for [ξ] ∈ A([x , yop]) and [η] ∈ A([y, zop]) is dense in A([x , zop]).
When we consider that A([x , yop]) ≅ M(x) ⊗u M(y)op and that these isomorphisms
respect the multiplicative and linear structure we defined on A , then the claim follows
directly from the first isomorphism in Equation (3.16). ∎

https://doi.org/10.4153/S0008414X24000907 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000907


The imprimitivity Fell bundle 25

4 Equivalence from the imprimitivity Fell bundle to the
“coefficient bundle”

We now proceed to equip the right B-demi-equivalence M with the structure
of a left A -demi-equivalence, where A = (pA ∶A→ G) is the quotient of K =
(K → X ∗σ σ Xop) by the equivalence relation R defined in Lemma 3.5; we have shown
in Theorem 3.17 that A is a Fell bundle.

Proposition 4.1 There is a map ∶A ∗s ρ M → M given by

[ξ] m ∶= Φx , y(Ψh(ξ), m)(4.1)

where y = qM (m) and where (x , h) ∈ X ∗σ r H is the unique element such that
qK (Ψh(ξ)) = (x , yop). This map furthermore has the following properties.6

(LA1) It covers the map ▹ ∶G ∗s ρ X → X; and
(LA2) [ξ] (m b) = ([ξ] m) b for all appropriate b ∈ B.

Of course, will turn out to be an action in the sense of [4, Definition 2.10];
in particular, it is continuous, which one can indeed show by hand. But thanks to
Proposition 2.3, we can make do with proving fewer properties.

Proof of Proposition 4.1 Write pA ([ξ]) = [x1 , xop
2 ]. Since ([ξ], m) ∈ A ∗s ρ M, we

have sG([x1 , xop
2 ]) = ρM (m) = [y, yop], which means that there exists a unique h ∈H

such that [x1 , xop
2 ] = [x1 ◃ h, yop]. Now that the second component is fixed as yop, the

first component x ∶= x1 ◃ h is also uniquely determined, and satisfies σ(x) = sH(h).
In other words, we have argued that the equality sA ([ξ]) = ρM (m) implies that there
exists a unique representative Ψh(ξ) ∈ K of the R-equivalence class [ξ] for which
qK (Ψh(ξ)) has qM (m)op as its second component: Ψh(ξ) ∈ M(x) ⊗σ(x) M(yop).
We can now invoke Lemma 3.11 to conclude that [ξ] m is a well-defined element
of M(x).

(LA1) Follows from pA ([ξ]) ▹ qM (m) = [x1 , xop
2 ] ▹ y = [x , yop] ▹ y = x =

qM ([ξ] m).
(LA2) We compute

Φx , y(m ⊗ nop , k) b = (m ⟨n ∣ k⟩B) b = m (⟨n ∣ k⟩Bb)
= m ⟨n ∣ k b⟩B = Φx , y(m ⊗ nop , k b),

so that bilinearity and continuity of Φ implies

Φx , y(η, k) b = Φx , y(η, k b)
for any appropriate η ∈ K. The claim follows. ∎
Proposition 4.2 The map ⟨ ∣ ⟩A ∶M ∗σ σ M → A given by

⟨m ∣ n⟩A
∶= [m ⊗ nop]

has the following properties.7

6The LA in “(LAn)” stands for “left action.”
7The LIP in “(LIPn)” stands for “left inner product.”
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(LIP1) It covers the map { ∣ }X

G
∶X ∗σ σ X → G, meaning that pA ( ⟨m ∣ n⟩A ) ▹

qM (n) = qM (m);
(LIP2) it is continuous and fibrewise linear in the first and antilinear in the second

component;
(LIP3) ⟨m ∣ n⟩A

∗ = ⟨n ∣ m⟩A ;
(LIP4) [ξ] ⋅ ⟨m ∣ n⟩A = ⟨[ξ] m ∣ n⟩A for all [ξ] ∈ A with sA ([ξ]) = ρM (m); and
(LIP5) ⟨m1 ∣ m2⟩A m3 = m1 ⟨m2 ∣ m3⟩B.

Proof The map is clearly well defined. Property (LIP1) follows immediately from
Equation (1.3).

(LIP2) Sesquilinearity is obvious. For continuity, it suffices to check that the map
M ∗σ σ M → K, (m, n) ↦ m ⊗ nop, is continuous since the quotient map K → A
is continuous. But said continuity is built into the definition of K ’s topology; see
Lemma 3.1.

(LIP3) Follows from the definition of the involution ∗ on A .
(LIP4) Recall from Proposition 4.1 that

[ξ] m1 = Φx , y(Ψh(ξ), m1)

where y = qM (m1) and where (x , h) ∈ X ∗σ r H is the unique element such that
qK (Ψh(ξ)) = (x , yop), so that

⟨[ξ] m1 ∣ m2⟩A = [Φx , y(Ψh(ξ), m1) ⊗mop
2 ]

= [U(Ψh(ξ), m1 ⊗mop
2 )] by Equation (3.22)

= [ξ] ⋅ [m1 ⊗mop
2 ] = [ξ] ⋅ ⟨m1 ∣ m2⟩A ,

so (LIP4) holds.
(LIP5) Let y = qM (m3) and let h ∈H and x ∈ X be the unique elements such that

qK (Ψh(m1 ⊗mop
2 )) = (x , yop). Because of (3.4), we know that qM (m1) = x ◃ h and

qM (m2) = y ◃ h. In particular, we can approximate m1 by∑i n i b i for finitely many
n i ∈ M(x) and b i ∈ B(h). In the following final computation, the first instance of ≈
is valid because Φx , y and Ψh are continuous and linear (see (Ψ2)), and the second
because the right B-action on M is continuous by (DE16).

⟨m1 ∣ m2⟩A m3 = [m1 ⊗mop
2 ] m3

(4.1)= Φx , y(Ψh(m1 ⊗mop
2 ), m3)

≈ ∑i Φx , y(Ψh([n i b i] ⊗mop
2 ), m3)

(3.3)= ∑i Φx , y(n i ⊗ (m2 b∗i )op , m3)
(3.12)= ∑i n i ⟨m2 b∗i ∣ m3⟩B
= ∑i n i (b i ⟨m2 ∣ m3⟩B) ≈ m1 ⟨m2 ∣ m3⟩B .

∎

Corollary 4.3 The saturated Fell bundle A is equivalent to B via M with the
A -action and A -inner product specified in Propositions 4.1 and 4.2, respectively. In
particular, the left action is continuous.
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▸ For the remainder of the paper, we will frequently denote the imprimitivity Fell
bundle A of M by A =M ⊗B M op in analogy with X ×H Xop and with X⊗A Xop.
However, the notation A = K(MB) also lends itself well and has the advantage that
it makes explicit reference to the underlying bundle B (and the fact that it is acting
on the right-hand side).

Proof of Corollary 4.3 We first check that M is a left A -demi-equivalence. In the
following lists, all references are either to Proposition 4.1 or to Proposition 4.2.

(DE1) was shown in (LA1);
(DE2) was shown in (LIP1);
(DE3) was shown in (LIP2);
(DE4) was shown in (LIP4); and
(DE5) was shown in (LIP3).

For the remaining conditions necessary for a demi-equivalence that we have not
checked previously, note that each M(x) is a full right-Hilbert C∗-module by (DE9),
and so it is an imprimitivity bimodule between M(x) ⊗u M(x)op and B(u) for
u ∶= σ(x). All structure with which we equipped the bundle A is compatible with the
homeomorphism A(ρ(x)) ≅ M(x) ⊗u M(x)op in Lemma 3.7; in other words, with
the restriction to M(x) of the given A -action and A -inner product on M , we recover
exactly the structure that M(x) naturally carries. In particular:

(DE6): We have ⟨m ∣ m⟩A ≥ 0 in the C∗-algebra A(ρM (m)), and ⟨m ∣ m⟩A = 0 only
if m = 0.

(DE7): By [24, Lemma 2.30], the norm of ⟨m ∣ m⟩B in B(σ(x)) coincides with the
norm of m ⊗mop in M(x) ⊗u M(x)op which, by definition, is exactly the
norm of [m ⊗mop] = ⟨m ∣ m⟩A in A(ρ(x)). Since M is a right B-demi-
equivalence, the norm m ↦ ∥⟨m ∣ m⟩B∥

1/2 agrees with the norm that the
upper semi-continuous Banach bundle M already carries, which is therefore
in turn identical to the norm m ↦ ∥ ⟨m ∣ m⟩A ∥1/2.

(DE8): For each x ∈ X, the linear span of { ⟨m1 ∣ m2⟩A ∶ m i ∈ M(x)} is dense in
A(ρ(x)), since M(x) is an imprimitivity bimodule.

That A(ρ(x)) ≅ M(x) ⊗u M(x)op further implies that Assumption (2) of Proposi-
tion 2.3 is satisfied. Since Assumptions (1) and (3) were shown in (LA2) and (LIP5),
respectively, we can conclude that M is an equivalence by Proposition 2.3. ∎

5 The imprimitivity Fell bundle: Uniqueness

For the next result, we remind the reader of Remark 1.1: given a (G,H)-groupoid
equivalence X and two elements x , y ∈ X with the sameH-anchor, we write {x ∣ yop}X

G

for the unique element of G that satisfies {x ∣ yop}X

G
▹ y = x.

Proposition 5.1 (cf. [1, Corollary 3.11]) Suppose A = (A→ G), A ′ = (A′ → G′), and
B = (B →H) are Fell bundles over groupoids G,G′ ,H respectively, and that M =
(qM ∶M → X) is both an (A , B)- and an (A ′ , B)-Fell bundle equivalence. Then

https://doi.org/10.4153/S0008414X24000907 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000907


28 A. Duwenig

there exists a unique Fell bundle isomorphism Ω∶A → A ′ determined by the following
commutative diagram.

A A ′

⟨m ∣ n⟩M
A ⟨m ∣ n⟩M

A ′

{qM (m) ∣ qM (n)op}X

G
{qM (m) ∣ qM (n)op}X

G′

G G′

pA

Ω

pA ′

ω

Proof of Proposition 5.1 By Corollary 4.3, we may without loss of generality assume
that A =M ⊗B M op and G = X ×H Xop. In that setting, {qM (m) ∣ qM (n)op}X

G

is exactly [qM (m), qM (n)] ∈ G; see Lemma 1.3. We also remind the reader that
ω∶X ×H X → G′ , [x , yop] ↦ {x ∣ yop}X

G′
, is known to be an isomorphism of topolog-

ical groupoids. It is therefore clear that A ′ ≅ ω∗(A ′), and so we may without loss of
generality assume that G′ = G (and hence ω = id and A ′ = ω∗(A ′)). As before, we
will denote the anchor maps of X by σ ∶X →H(0) and ρ∶X → G(0) , x ↦ [x , xop]. Recall
that G(0) ≅ X/H via [x , xop] ↦ x ◃H.

To construct Ω, we will first construct a surjective bundle map Ω̃∶K → A ′

covering the quotient map X ∗σ σ Xop → G, (x , yop) ↦ [x , yop]. We will then show that
Ω̃ is constant onR-equivalence classes (whereR is as in Lemma 3.5), so that Ω̃ induces
a bundle map Ω from the quotient M ⊗B M op = Q(K ) to A ′ covering the identity
map G→ G. After we have shown that Ω is injective, we will then prove the conditions
in [4, Propositions A.7 and A.8] to deduce that Ω is open and continuous and hence
the claimed isomorphism of Fell bundles.

We define Ω̃ fibrewise. Fix u ∈H(0) and x , y ∈ Xu, let g ∶= [x , yop], and consider

M(x) ×M(y)op → A′(g), (m, nop) ↦ ⟨m ∣ n⟩M

A ′ .(5.1)

By the assumption on the left A ′-valued inner product on M , this map is bilinear.
Moreover, by [4, Corollary 4.6]8, we have ⟨m b ∣ n⟩M

A ′
= ⟨m ∣ n b∗⟩M

A ′
for all b ∈

B(u), meaning that the map in (5.1) descends to a linear map

Ω̃(x , yop)∶M(x) ⊙B(u) M(y)op → A′(g),
determined by

Ω̃(x , yop)(m ⊙ nop) = ⟨m ∣ n⟩M

A ′ ,

where M(x) ⊙B(u) M(y)op denotes the balanced algebraic tensor product.
We claim that Ω̃(x , yop) has dense range. Since A ′ is a Fell bundle, A′(g) is an

A′(x ◃H)– A′(y ◃H)-imprimitivity bimodule, so by [24, Proposition 2.33 (Hewitt-
Cohen)], any element of A′(g) can be written as ag ay◃H for some ag ∈ A′(g) and
some ay◃H ∈ A′(y ◃H), where the product is the multiplication in the Fell bundle

8Note that we cannot simply invoke the assumption that each M(x) is an imprimitivity bimodule
([22, Definition 6.1(c)]), because we are in the setting where x might not equal y.
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A ′. By assumption, M(y) is a A′(y ◃H)– B(u)-imprimitivity bimodule. In partic-
ular, ⟨M(y) ∣ M(y)⟩M

A ′
is dense in A′(y ◃H), meaning we can approximate ay◃H

by linear combinations of elements of the form ⟨n′ ∣ n⟩M

A ′
for n′ , n ∈ M(y). Since

ag ⟨n′ ∣ n⟩M

A ′
= ⟨ag n′ ∣ n⟩M

A ′
and ag n′ ∈ M(g ▹ y) = M(x), we conclude that the

arbitrary element ag ay◃H of A′(g) can be approximated by linear combinations of
elements of the form ⟨m ∣ n⟩M

A ′
for m ∈ M(x), n ∈ M(y), as claimed.

Since M is an equivalence, M(x) is an imprimitivity bimodule between
A′(ρ(x)) = A′(x ◃H) and B(σ(x)) = B(u), so that there exists a canonical isomor-
phism A′(x ◃H) ≅ KB(u)(M(x)) of C∗-algebras. In particular, the norm with which
we equip M(x) ⊙B(u) M(y)op, is unambiguously given by Equation (3.2) and, using
the ∗-isomorphism, can be rewritten to

∥
k
∑
i=1

m i ⊗ nop
i ∥ =

�����������

k
∑

i , j=1
⟨n i ⟨m i ∣ m j⟩MB ∣ n j⟩M

A ′

�����������

1/2

.

Using the properties [4, Definition 2.9, (F9)] and [4, Definition 2.11, (FE2.b), (FE2.c),
(FE2.d)], we therefore see that each Ω̃(x , yop) is isometric and hence extends to a map
on the completion K(x , yop) of M(x) ⊙B(u) M(y)op. All in all, we get a fibrewise
linear map

Ω̃∶ K = ⊔
(x , yop)∈X ∗σ σXop

K(x , yop) → ⊔
g∈G

A′(g),

determined by

Ω̃(m ⊗ nop) = ⟨m ∣ n⟩M

A ′ ,

covering the quotient map X ∗σ σ Xop ↦ G.
Next, fix u, v ∈H(0), h ∈ uHv, and x ∈ Xu, y ∈ Xv. For an arbitrary but fixed

element ξ = ∑i(m i b i) ⊙ nop
i of M(x ◃ h) ⊙B(v) M(y)op, we have

Ω̃(x , yop) (Ψh(ξ)) = ∑
i
⟨m i ∣ n i b∗i ⟩M

A ′ by definition of Ψ, see (3.3)

= ∑
i
⟨m i b i ∣ n i⟩M

A ′ = Ω̃(x , yop)(ξ) by [4, Corollary 4.6].

Since Ω̃(x , yop)(Ψh(ξ)) = Ω̃(x , yop)(ξ) for all ξ in the algebraic tensor product, we
conclude that Ω̃ descends to a bundle map

Ω∶ M ⊗B M op → A ′ , determined by Ω([m ⊗ nop]) = ⟨m ∣ n⟩M

A ′ ,

covering the identity map G→ G. We must now show that this map is a continuous
open bijection.

Since Ω covers the identity map, surjectivity of Ω follows from the fact that
each Ω̃(x , yop) has dense range, and injectivity of Ω follows since each Ω̃(x , yop) is
isometric. To see that Ω is continuous, suppose that we have a convergent net in
A =M ⊗B M op, say [ξλ] → [ξ]; by (2) '⇒ (1) in [23, Theorem 18.1], it suffices
to show that a subnet of {Ω([ξλ])}λ converges to Ω([ξ]). Since the quotient map
Q∶K → A is open (Lemma 3.5), we can without loss of generality assume that
ξλ → ξ in K . Let qK (ξλ) = (xλ , yop

λ ) with limit qK (ξ) = (x , y) in X ∗σ σ Xop. We
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now invoke the definition of the topology on K (Lemma 3.1; see also [4, Lemma A.3]):
for any given ε > 0, we can find finitely many continuous sections μ i , ν i of M and a
λ0 such that for all λ ≥ λ0, we have

∥ξλ −
k
∑
i=1

μ i(xλ) ⊗ ν i(yλ)op∥ < ε and ∥ξ −
k
∑
i=1

μ i(x) ⊗ ν i(y)op∥ < ε.(5.2)

The norm on each fibre A([x , yop]) of A is defined as the norm on one of its lifts under
Q, meaning that Q restricted to M(x) ⊗u M(y)op is isometric. Since Ω is likewise
isometric, (5.2) implies

∥Ω([ξλ]) −Ω ([∑i μ i(xλ) ⊗ ν i(yλ)op])∥ < ε and
∥Ω([ξ]) −Ω ([∑i μ i(x) ⊗ ν i(y)op])∥ < ε.

(5.3)

By definition of Ω,

Ω ([∑i μ i(x) ⊗ ν i(y)op]) = ∑i ⟨μ i(x) ∣ ν i(y)⟩M

A ′ .

By assumption on M , ⟨ ∣ ⟩M

A ′
is continuous, so that continuity of μ i , ν i and of

addition in A implies

∑i ⟨μ i(xλ) ∣ ν i(yλ)⟩M

A ′ →∑i ⟨μ i(x) ∣ ν i(y)⟩M

A ′ .

Combining (5.3) with Lemma B.1, we conclude that Ω([ξλ]) → Ω([ξ]), so Ω is
continuous. Lastly, since Ω is isometric, it follows from [4, Proposition A.8] that Ω
is open as well. ∎

This also finishes the proof of the main theorem, Theorem 1.6, since it is a
combination of Corollary 4.3 and Proposition 5.1.

Remark 5.2 A brief comment on another property related to equivalences that has
a version not only in the realm of groupoids and C∗-algebras but also of Fell bundles:
linking objects.

By [24, Theorem 3.19], two C∗-algebras are strongly Morita equivalent if and only
if they are complementary full corners of another algebra, called the linking algebra.
In [27, Theorem 4.1], this result was moved into groupoid-land: an equivalence of
groupoids gives rise to a linking groupoid whose C∗-algebra is the linking algebra that
witnesses the strong Morita equivalence. Likewise, a Fell bundle equivalence has a
linking (Fell) bundle (see [26, Section 3], [1, Theorem 3.2]) whose C∗-algebra is the
linking algebra of the Fell bundle C∗-algebras [26, Theorem 14].

It would be interesting to study whether “one-sided” versions of these linking
objects exist. In the paper at hand, we considered principal groupoid-spaces X, full
right-Hilbert C∗-modules X, and Fell bundle-demi-equivalences M , and turned
them into equivalences between the coefficient object and the “generalized compacts”,
that is, the imprimitivity groupoid X ×H Xop, the C∗-algebra of compact operators
K(XA), and the imprimitivity Fell bundle M ⊗B M op = K(MB), respectively. Do
these results have analogs in the language of linking objects?
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6 Applications

The original impetus for the paper at hand was Proposition A.2.3 in the appendix of
[19]; it can easily seen to be a corollary of our main theorem in the special case that H
is a group that acts freely and properly on a space X. Before we study other interesting
applications, let us first do some sanity checks. In analogy to the isomorphism of
imprimitivity groupoids in Example 1.2, we have:

Corollary 6.1 Let B be a Fell bundle, considered as a self-Fell bundle equivalence [22,
Example 6.6]. Then there is an isomorphism of Fell bundles K(BB) =B ⊗B Bop ≅B
determined by [b1 ⊗ bop

2 ] ↦ b1 ⋅ b∗2 .

In analogy to the isomorphism of Hilbert C∗-bimodules in (3.16), we have:

Corollary 6.2 Suppose that M , N , K are right B-demi-equivalences, and let A =
K(NB) be the imprimitivity Fell bundle of N . Then (M ⊗B N op) ⊗A (N ⊗B

K op) ≅M ⊗B K op as upper semi-continuous Banach bundles.

Proof sketch First, let us make sure that the objects we have written down are not
nonsense: By Theorem 1.6, all three demi-equivalences are equivalences between their
respective imprimitivity Fell bundles and B. As explained in [22, Example 6.7], their
opposites are then likewise equivalences, just in the other direction. It was shown
in [4] that equivalences can be concatenated: M ⊗B N op is an equivalence from
the imprimitivity Fell bundle of M to A , and so forth. In particular, both the left-
and the right-hand side of the alleged isomorphism is an equivalence between the
imprimitivity Fell bundle of M and that of K .

Since the balanced tensor product of imprimitivity bimodule is associative, it is
easy to see that the same is true for ⊗B of Fell bundle equivalences. In particular,

(M ⊗B N op) ⊗A (N ⊗B K op) ≅ (M ⊗B (N op ⊗A N )) ⊗B K op .

By Proposition 5.1 (applied to N op), the Fell bundle K(N op
A ) =N op ⊗A N is

isomorphic to B. Since the balanced tensor product of imprimitivity bimodule
absorbs the coefficient algebra (meaning that X⊗A A ≅ X), it is easy to see that ⊗B

absorbs the coefficient Fell bundle. Thus,

(M ⊗B N op) ⊗A (N ⊗B K op) ≅ (M ⊗B B) ⊗B K op ≅M ⊗B K op ,

as claimed. ∎
We can also conclude some other, well-known results.

Corollary 6.3 Suppose H is a locally compact Hausdorff groupoid with Haar system
{λu}u∈H(0) and B is a Fell bundle over H. Then C∗(B) is strongly Morita equivalent
to Mn(C∗(B)).

Note that the right choice of B allows C∗(B) to model the full C∗-algebras of
groupoids (with or without a twist á la Kumjian) and full crossed product C∗-algebras.

Proof Take X =H, with σ ∶X →H(0) the source map of H. The existence of a Haar
system implies that the source map of H (and hence the anchor map of X) is open
[28, Proposition 1.23], so we are in good shape to use our main theorem, provided we
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can find the right B-demi-equivalence. Let M to be the bundle over X with fibres
C

n ×B(h) for each h ∈H. We define

∶ M ∗σ r B →M , (x⃗ , b) b′ ∶= (x⃗ , b ⋅ b′),

and

⟨ ∣ ⟩MB ∶ M ∗σ σ M →B, ⟨(x⃗ , b) ∣ ( y⃗, c)⟩MB ∶= ⟨x⃗ ∣ y⃗⟩Cn

C
b∗ ⋅ c,

where we choose the inner product on C
n to be conjugate linear in the first coordinate

to match up with our definitions of Hilbert C∗-modules. Then, using Corollary 6.1, it
is easy to see that

M ⊗B M op ≅Mn(C) ×B via [(e⃗ i , b1) ⊗ (e⃗ j , b2)op] ↦ (E i , j , b1 ⋅ b∗2 ),

where e⃗ i is the standard basis vector of Cn and E i , j is the matrix unit with a 1 in the
ith row and jth column and 0s everywhere else. By Theorem 1.6, the bundles B and
Mn(C) ×B are equivalent. By [22, Theorem 6.4], it follows that C∗(B) is strongly
Morita equivalent to C∗(Mn(C) ×B) ≅Mn(C∗(B)). ∎

6.1 Kumjian’s Stabilization trick

In this subsection, we will see that our main theorem implies [17, Corollary 4.5], which
in its original form was only shown for principal r-discrete groupoids. The approach
here is inspired by that preceding [20, Theorem 15]. We will go through it in great
detail to help the reader understand our technical results.

We start with a (saturated) Fell bundle B = (B →H) over a locally compact
Hausdorff groupoid H with Haar system {λv}v∈H(0) . Fix h ∈H, and let v ∶= r(h) and
u ∶= s(h). We define M0(h) ∶= Γc(Hu; B), sections of the restriction of B to Hu =
s−1(s(h)). If g ∈H is another element with r(g) = v, then we define a sesquilinear
form

⟨ ∣ ⟩B(g−1 h)∶M0(g) ×M0(h) → B(g−1 h)

by

⟨μ ∣ ξ⟩B(g−1 h) = ∫
Hs(g)

μ(�)∗ξ(�g−1 h)dλs(g)(�).(6.1)

Note that this indeed makes sense: if � ∈Hs(g), then � is in the domain of μ
and �g−1 is defined. Moreover, s(�g−1 h) = s(h), so �g−1 h is in the domain of ξ.
Since μ(�)∗ ∈ B(�−1) and ξ(�g−1 h) ∈ B(�g−1 h), their product is indeed an element of
B(�−1�g−1 h) = B(g−1 h). And since μ and ξ are compactly supported, the integral exists.

For h = g, the form is valued in the C∗-algebra B(u), so we may take the completion
M(h) of M0(h) with respect to the induced norm

∥ξ∥M(h) ∶= ∥⟨ξ ∣ ξ⟩B(u)∥
1/2 .

If k ∈ uHw, so that (h, k) ∈H(2), then the fibre B(k) can act on an element ξ of M0(h)
and deliver an element ξ b of M0(hk): if � is in Hw (the domain of any element of
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M0(hk)), then �k−1 ∈Hu is in the domain of ξ and so

(ξ b)(�) ∶= ξ(�k−1) ⋅ b is defined and an element of B(�k−1) ⋅ B(k) ⊆ B(�).
This extends to a map M(h) × B(k) → M(hk). In fact, it induces an isomorphism
M(h) ⊗u B(k) ≅ M(hk) of right-Hilbert C∗-B(w)-modules.

We let M = (qM ∶M →H) be the bundle with fibres M(h), which we will now
topologize. If τ ∈ Γc(H; B) is a section of B and h ∈Hu is arbitrary, then τ̃(h) ∶=
τ∣Hu is a continuous, compactly supported section Hu →B; i.e., τ̃(h) is an element
of M(h), so τ̃ is a section of the bundle M . The family {τ̃∶ τ ∈ Γc(H; B)} uniquely
induces a topology on M making it upper semi-continuous. The attentive reader will
have expected what comes next: we will show that M is a right B-demi-equivalence
over the principal H-space X =H (Example 1.2).

Remark 6.4 Let us compare what we have done so far with what was done in [20,
17]; this will also give us an indicator as to what will happen next. Muhly constructs
first an upper semi-continuous Banach bundle V = (V →H(0)), which is exactly V =
M ∣H(0) and which Kumjian calls the “Hilbert B(0)-module bundle over H(0)” in [17,
Section 4.2]; he points out that V is full.

From V , they then construct a bundle E = (E →H); in the notation of the paper
at hand, E can be constructed as the pullback bundle of

V ⊗B(0) B =
⎛
⎝ ⊔(v ,h)

V(v) ⊗v B(h) →H(0) ∗id r H
⎞
⎠

(6.2)

along the isomorphism H ≅H(0) ∗id r H, h ↦ (r(h), h).9
It is then shown that E is an equivalence between B and the semi-direct product

Fell bundle of a certainH-action on another bundle which Kumjian and Muhly denote
by K(V ). Following [17, Section 1.7], K(V ) is the C∗-algebraic bundle with fibre
K(V(u)B(u)) over u ∈H(0). It is apparent that K(V ) coincides with our K(VB(0)) =
V ⊗B(0) V op, the imprimitivity Fell bundle of the right B(0)-demi-equivalence V .10

By construction E ≅M via the map ξ ⊗ b ↦ ξ b, and so in light of our main
theorem, we should expect that the imprimitivity Fell bundle K(MB) of M is
(isomorphic to) a semi-direct product of K(VB(0)) by H.

By Example 1.2, the anchor maps of X =H are exactly the range and the source
map once we identify its imprimitivity groupoid G = X ×H Xop with H. This means
that the B-valued inner product

⟨ ∣ ⟩B∶M ∗r r M → B

covers the map { ∣ }X

H
(Condition (DE2)). Moreover, the map

∶M ∗s r B → M

9The bundle V ⊗B(0) B is constructed in the same fashion as the bundle K =M ⊗B(0) M op in
Lemma 3.1; a more general construction of bundles of the form M ⊗B(0) N can be found in [4].

10To nitpick, Kumjian’s K(V ) is the pullback of K(VB(0)) along the homeomorphism H(0) →
H(0) ×H(0) (H(0))op , u ↦ [u, uop].
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covers the multiplication map of H (or, in other words, the map that describes the
right H-action on X =H; Condition (DE1)). Let us indicate how to check all other
conditions for M to be a demi-equivalence.

(DE3) Follows from the properties of Haar systems (Property (HS2) in [28, Defi-
nition 1.19]) and the definition of the topology on M as given above.

(DE4) Straight-forward computation.
(DE5) Follows from the properties of Haar systems (Property (HS3) in [28, Defi-

nition 1.19]).
(DE6) Since the integrand of ⟨ξ ∣ ξ⟩B takes positive values in B(s(h)), so does the

inner product itself, and ⟨ξ ∣ ξ⟩B = 0 implies ξ(�) = 0 for all � ∈Hs(h), which is the
entire domain of ξ.

(DE7) Holds by definition of the Banach space structure on M(h).
(DE8) Note that M(h) = M(u) as right-Hilbert C∗-B(u)-modules, so it suffices to

point out that M(u) = V(u) is known to be full since B is a saturated Fell bundle.
It follows from Theorem 1.6 that B is equivalent to the imprimitivity Fell bundle

M ⊗B M op of M . Let us describe M ⊗B M op as a bundle A = (A→H) over H.
There are multiple variants here, depending on our choice of section H → X ∗s s Xop

of the quotient map X ∗s s Xop → X ×H Xop ≅H.
In view of E as described in Equation (6.2) and in view of the fact that B(h) ≅

B(h−1)op by the Fell bundle properties, let us declare11

A(h) ∶= M(v) ⊗v M(h−1)op for h ∈Hv
u .

To describe the multiplication map, we must be a bit careful: if k ∈Hu
w , then our

choice of section turns the composable pair (h, k) into ([v , (h−1)op], [u, (k−1)op]) in
the imprimitivity groupoid. But h−1 and u do not coincide, and so neither will the
“inner” parts of A(h) and A(k):

A(h) × A(k) = (M(v) ⊗v M(h−1)op) × (M(u) ⊗u M(k−1)op) .

On the level of groupoids, we must therefore replace (for example) the representative
(u, (k−1)op) by (h−1 , (k−1 h−1)op).12 On the level of A , this is being done by the Ψ-map
from Lemma 3.4:

M(u) ⊗u M(k−1)op [ξ b] ⊗ ηop

[M(h−1) ⊗v B(h)] ⊗u M(k−1)op [ξ ⊗ b] ⊗ ηop

M(h−1) ⊗v [M(k−1) ⊗u B(h−1)]op ξ ⊗ [η ⊗ b∗]op

M(h−1) ⊗v M(k−1 h−1)op ξ ⊗ [η b∗]op

≅

≅

≅

11Notationally, it would have been nicer to choose A(h) = M(h) ⊗u M(u)op, but then our descrip-
tion would drift farther away from those in [17, 20].

12Again, this choice is not very pleasant, but it is indeed the best in this scenario.
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Having found compatible representatives, we can then use the U-map from
Lemma 3.14:

A(h) × A(k) id×Ψh,→ (M(v) ⊗v M(h−1)op) × (M(h−1) ⊗v M(k−1 h−1)op)
Uh−1,→ M(v) ⊗v M(k−1 h−1)op = A(hk),

where

Uh−1(ξ ⊗ ηop
1 , η2 ⊗ ζop) = (ξ ⟨η1 ∣ η2⟩B) ⊗ ζop .

We therefore see that, with the choice of A(h) that we have made, the multiplication
A(h) × A(k) → A(hk) is given by Uh−1 ○ (id×Ψh). The involution on A is easier to
decipher: it is given by

A(h) = M(v) ⊗v M(h−1)op Flip,→ M(h−1) ⊗v M(v)op Ψh−1,→ M(u) ⊗u M(h)op = A(h−1).

Now, M(h) and M(s(h)) are equal as right-Hilbert C∗-modules; the letter h is merely
needed to keep track of the “mixed” inner product in Equation (6.1). This means that
we have an isomorphism

Ψh ∶ V(u) ⊗u V(u)op ,→ V(v) ⊗u V(v)op .

If we make the canonical identification of V(u) ⊗u V(u)op with K(V(u)B(u)) =
K(VB(0))(s(h)), then the above can be written as

h ▹ ∶ K(VB(0))(s(h)) ,→ K(VB(0))(r(h)).

In other words, Ψ encodes an action of H on the bundle K(VB(0)) which covers the
map ▹ ∶ h ▹ s(h) = r(h). In this picture, the map Flip is just the adjoint:

ξ ⊗ ηop ∣ξ⟩⟨η∣ K(VB(0))(v)

η ⊗ ξop ∣η⟩⟨ξ∣ = ∣ξ⟩⟨η∣∗ K(VB(0))(v)

Flip

∈
∗

∈

and Uh−1 is just juxtaposition of compact operators:

(ξ ⊗ ηop
1 , η2 ⊗ ζop) (∣ξ⟩⟨η1∣, ∣η2⟩⟨ζ ∣) K(VB(0))(v) ×K(VB(0))(v)

(ξ ⟨η1 ∣ η2⟩B) ⊗ ζop ∣ξ ⟨η1 ∣ η2⟩B⟩⟨ζ ∣
= ∣ξ⟩⟨η1∣ ○ ∣η2⟩⟨ζ ∣ K(VB(0))(v)

Uh−1

∈

○

∈

If we write

A(h) = [V(v) × {v}] ⊗v [V(v) × {h−1}]op = [V(v) ⊗v V(v)op] × {h}
≅ K(V(v)B(v)) × {h},

then as sets, A = K(VB(0)) ⋊H. Moreover, we found that the multiplication
A(h) × A(k) → A(hk) is given by Uh−1 ○ (id×Ψh) and the involution A(h) → A(h−1)
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by Ψh−1 ○ Flip, which we have shown translates to

(T1 , h) ⋅ (T2 , k) = (T1 ○ (h ▹ T2), hk) and (T , h)∗ = (T∗ , h−1),
which are exactly the formulas in the semi-direct product. We deduce that the imprim-
itivity Fell bundle A of the B-action on M is exactly the Fell bundle K(VB(0)) ⋊H,
showing that Theorem 1.6 recovers13 Kumjian’s Stabilization trick.

6.2 Higher order operators à la Abadie–Ferraro

As alluded to earlier, a theorem similar to our main theorem has appeared in [1] in
the setting that H = X = G is a group. Before we can cite it, let us first establish the
following bridge between their terminology and ours.

Lemma 6.5 Suppose B is a saturated Fell bundle over a locally compact Hausdorff
group H. Then B-demi-equivalences over the same group are exactly right Hilbert B-
bundles in the sense of [1, Definition 2.1] that are fibrewise full.

Proof A priori, the norm of a demi-equivalence M = (M →H) is only upper semi-
continuous. However, since B is a Fell bundle over a group, it follows from [2,
Lemma 3.30] that b ↦ ∥b∥ is continuous (not only upper semi-continuous) on B,
and since the norm on M is given by ∥⟨m ∣ m⟩B∥

1/2 by Assumption (DE7), it is the
concatenation of continuous maps and hence itself continuous. Therefore, the upper
semi-continuous Banach bundle M is actually a continuous Banach bundle in the
sense of [9, Definition II.13.4], as needed for [1, Definition 2.1].

As in [1], the inner product and the right-action are continuous by (DE3) and
(DE16), respectively. The assumption that the Hilbert bundle be fibrewise full cor-
responds to (DE8) (and is stronger than the assumption (7R) in [1]). The remaining
items of [1, Definition 2.1] correspond to our assumptions as follows.
(1R) corresponds to (DE1) and (DE2), using that {hop

1 ∣ h2}
H

H
= h−1

1 h2 as explained in
Example 1.2;

(2R) corresponds to (DE13);
(3R) corresponds to (DE3);
(4R) corresponds to (DE4) and (DE5);
(5R) corresponds to (DE6); and
(6R) corresponds to (DE7).

∎
We can now restate the result of Abadie and Ferraro to which we want to compare

ours, in our terminology. We will artificially add the assumption that the fibres are all
full, to align with our situation. We will further use different letters for elements of the
group H: we use x if we think of H as a principal H-space; we use h if we think of H
as the group acting on the right, and g if it is acting on the left; in particular, x ◃ h and
g ▹ x will just be the products xh respectively gx in H.

13Of course, there is still the difficulty of having to come up with a suitable M in the first place; we
have taken it for granted here.
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Theorem 6.6 ([1, Definition 3.6, Theorem 3.9, Corollary 3.10]) Let H be a locally
compact Hausdorff group, B = (B →H) a Fell bundle, and M = (M →H) a right B-
demi-equivalence, also over H. For g ∈H, let Bg(M ) be the collection of continuous
maps S∶M → M such that
• there exists c ∈ R such that ∥Sm∥ ≤ c ∥m∥ for all m ∈ M;
• S(M(x)) ⊆ M(g ▹ x) for all x ∈H; and
• there exists S∗∶M → M such that ⟨Sm1 ∣ m2⟩B = ⟨m1 ∣ S∗m2⟩B for all mi ∈ M.
Then there exists a unique Fell bundle K(M ) over H such that:
(i) for all g ∈H, the fibre K(M )g is, as a Banach space, the closure in Bg(M ) of

span{∣m⟩⟨n∣ ∶ m ∈ M(g ▹ x), n ∈ M(x), x ∈H}
where ∣m⟩⟨n∣∶M → M , k ↦ m ⟨n ∣ k⟩B;

(ii) given ψ, φ ∈ Cc(M) and x ∈H, the function [ψ, φ, x]∶H → K(M ) given by
[ψ, φ, x](g) = [ψ(g ▹ x), φ(x)], is a continuous section of K(M ).

Moreover, M is a K(M ) −B-equivalence bundle with the action K(M ) ×M →
M given by (S , m) → S(m) and the left inner product M ×M → K(M ) given by
(m, n) → ∣m⟩⟨n∣.

Abadie and Ferraro call the elements of Bg(M ) adjointable operators of order g.
We conclude:

Corollary 6.7 Suppose H, B, and M are as in Theorem 6.6. The map

M ⊗B M op → K(M )
which maps [m ⊗ nop] in the fibre over [x , yop] of M ⊗B M op to the operator

∣m⟩⟨n∣∶ M ∋ k ↦ m ⟨n ∣ k⟩MB ∈ M

in the fibre over x y−1 of K(M ), is an isomorphism of Fell bundles, covering the map f
from Example 1.2.

Proof By Lemma 6.5, M is a right Hilbert B-bundle in the sense of [1, Defini-
tion 2.1]. It is proven in [1, Corollary 3.10] that M is an equivalence between B and
K(M ). Since M is also an equivalence between B and M ⊗B M op, it thus follows
from [1, Corollary 3.11] (or equivalently, from Proposition 5.1), that the displayed map
is the claimed isomorphism. ∎
Remark 6.8 As alluded to in Remark 2.4, the description à la Abadie and Ferraro
of the imprimitivity Fell bundle M ⊗B M op as “adjointable operators with a shift” is
also built into our construction, albeit less visibly so.

Even when we consider Fell bundles over groups, Theorem 1.6 can cover some
examples that are not covered by [1], since there, X =H always. One example is [19,
Proposition A.2.3]; another one is Example 6.9.

6.3 Imprimitivity theorems

Earlier, we alluded to a relationship between Theorem 1.6 and imprimitivity theorems;
let us give one example.
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Example 6.9 ([20, Example 14]) If X is a locally compact Hausdorff group with
closed subgroup H, then H acts on X by right translation (x ◃ h ∶= xh) and X is a
principal H-space. Its imprimitivity groupoid X ×H Xop is isomorphic to the trans-
formation group groupoid X ⋉ X/H of X acting on the quotient space X/H via

X ×H Xop → X ⋉ X/H, [x , yop] ↦ (x y−1 , yH).(6.3)

In terms of G ∶= X ⋉ X/H, the anchor map described in (1.2) becomes the quotient
map,

ρ∶X → G(0) ≅ X/H, x ↦ (1X , xH) ≜ xH,

and the left action on X as described in (1.3) becomes the action (x , yH) ▹ y ∶= x y.
We conclude that G is equivalent to the group H via X. To sum up,

Xop ∗ρ ρ X → H, {xop ∣ y}X

H = x−1 y, and X × Xop → G , {x ∣ yop}X

G = (x y−1 , yH).

Note that { ∣ }X

H indeed lands in H since ρ(x) = ρ(y).
Now suppose that A is a C∗-algebra with action α∶X → Aut(A). Let B = A⋊H be

the Fell bundle over H that encodes the restriction α∣H , meaning that, for each h ∈ H,
the fibre B(h) is A and the structure maps of B are given by

(a1 , h1) ⋅ (a2 , h2) ∶= (a1αh1(a2), h1h2) and (a, h)∗ ∶= (αh−1(a)∗ , h−1).

Let M = A× X be the “trivial A-bundle” over X. Then B acts on M via

M × B → M , (m, x) (b, h) ∶= (mαx(b), xh),

and we have a B-valued inner product given by

M ∗ρ ρ M → B, ⟨(m, x) ∣ (n, y)⟩B ∶= (αx−1(m∗n), x−1 y).

One quickly checks that M is a B-demi-equivalence, so B is equivalent via M
to M ⊗B M op. Let us identify the fibre of the latter Fell bundle over an element
(x y−1 , yH) = {x ∣ yop}X

G of G: As explained in Theorem 3.17, we use (3.8) to identify

(M ⊗B M op) (x y−1 , yH) ≅ M(x) ⊗e M(y)op

as KB(e)(M(x))– KB(e)(M(y))-imprimitivity bimodules. Over a unit (1G , yH) of
G, the fibre is (canonically isomorphic to) the C∗-algebra KB(e)(M(y)) itself, where
y is any representative of yH. These B(e)-compact operators on M(y) are generated
by ∣n1⟩⟨n2∣ for n i ∈ M(y), and one quickly computes that such a rank-one operator
just multiplies n ∈ M(y) on the left by n1n∗2 .

The balancing in M(x) ⊗e M(y)op identifies

(mαx(b), x) ⊗ (n, y)op = (m, x) ⊗ (nαy(b∗), y)op

for all b ∈ B(e) = A. If we let A(x y−1 , yH) ∶= A as a Banach space, then we can therefore
show that the map

M(x) ⊗e M(y)op → A(x y−1 , yH)
(m, x) ⊗ (n, y)op ↦ mαx y−1(n)∗
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is a Banach space isomorphism. These isomorphisms create a new Fell bundle A =
(pA ∶A→ G) out of M ⊗B M op: A has the fibre A(x y−1 , yH) over (x y−1 , yH), and
the structure maps of M ⊗B M op described in (3.24) and Corollary 3.10 translate to

⋅ ∶ A(x , yzH) × A(y, zH) → A(x y, zH), (a, b) ↦ aαx(b),
and

∗∶ A(x , yH) → A(x−1 , x yH), a ↦ αx−1(a∗).
The Fell bundle A is therefore exactly the semi-direct product Fell bundle
X ⋉ (A× X/H) which encodes the left-X action x ⋅ (a, yH) = (αx(a), x yH) on the
constant C∗-algebraic bundle A× X/H over X/H. We have therefore recovered the
same Fell bundle that was mentioned as being equivalent to B in [20, Example 14].

Example 6.9 is the extreme case where X is a group; the other extreme case is when
X is just a principal H-space: We can likewise define a free and proper action of the
transformation group groupoid X ⋊H on X by letting (x , h) transform x into x ◃ h.
The associated imprimitivity groupoid X ×X⋊H Xop is exactly the quotient X/H of
the original action on X, and so an application of [21, Theorem 2.8] recovers Green’s
theorem that C0(X/H) and C0(X) ⋊r H are strongly Morita equivalent.

There is a plethora of generalizations of Green’s result. For example, we can allow
the object X that is being acted on to be not just a space (as in Green’s theorem) or
a group (as in Example 6.9), but a groupoid X, and we allow the underlying bundles
to be more than line-bundles: if M = (M → X) is a Fell bundle that carries a free and
proper action of a group K, then M is an equivalence between the semi-direct product
Fell bundle B =M ⋊ K and the quotient Fell bundle K/M .14 Theorem 1.6 can recover
such results, in that M is a B-demi-equivalence, and M ⊗B M op can be computed
to be isomorphic to the quotient bundle.

A Hilbert C∗-Modules

Lemma A.1 If X is a full right Hilbert C∗-module over a C∗-algebra B and xi ∈ X, then
the operator-norm of the B-compact, positive operator∑k

i=1 ∣xi⟩⟨xi ∣ is exactly the norm
of∑k

i=1 ⟨xi ∣ xi⟩XB in B.

Proof Denote the compact operator in question by T. For any z ∈ X, we have

⟨Tz ∣ z⟩XB = ∑i ⟨xi ⋅ ⟨xi ∣ z⟩XB ∣ z⟩XB = ∑i ⟨z ∣ xi⟩XB⟨xi ∣ z⟩XB .

Note that the right-hand side is a sum of positive elements and hence positive, so T
is indeed a positive operator by [24, Lemma 2.28]. By the Cauchy–Schwarz inequality
for Hilbert modules [24, Lemma 2.5], we have for each i

⟨z ∣ xi⟩XB⟨xi ∣ z⟩XB ≤ ∥z∥
2 ⟨xi ∣ xi⟩XB

14This is a special case of [15, Theorem 3.1], where they consider two group actions on a groupoid X.
[5, Theorem 6.1] goes two steps further, by firstly allowing groupoid actions, and secondly by allowing
the actions to be only self-similar rather than by homomorphisms; this yields a Fell bundle equivalence
between the Zappa–Szép product Fell bundles (M /K1) �K2 and K1 � (K2/M ) as constructed in [6].
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in the C∗-algebra B, and hence we conclude that

⟨Tz ∣ z⟩XB ≤ ∥z∥
2∑i ⟨xi ∣ xi⟩XB .

Using [24, Remark 2.29] and positivity of T in the first equality of the following, we
deduce

∥T∥ = sup{∥⟨Tz ∣ z⟩XB∥ ∶ ∥z∥ ≤ 1} ≤ ∥∑i ⟨xi ∣ xi⟩XB∥ .

For the reverse inequality, note that X is an imprimitivity bimodule between KB(X)
and B, meaning that B is exactly the algebra of KB(X)-compact operators on the left-
Hilbert C∗-module X. In particular, the same proof for T replaced by ∑i ⟨xi ∣ xi⟩XB
yields the other estimate. ∎

The following result is well known.

Lemma A.2 Suppose X is an A – B-imprimitivity bimodule and Y is a C – B-
imprimitivity bimodule. Then the balanced tensor product X⊗B Yop is isomorphic to
the B-compact operators KB(Y, X) as A – C-imprimitivity bimodule s.

Proof First recall that KB(Y, X) is densely spanned by the maps

∣x⟩⟨y∣∶ y′ ↦ x ⋅ ⟨y ∣ y′⟩B

for x ∈ X, y ∈ Y. Its bimodule structure is given by

a ⋅ ∣x⟩⟨y∣ ∶= ∣a ⋅ x⟩⟨y∣ and ∣x⟩⟨y∣ ⋅ c ∶= ∣x⟩⟨c∗ ⋅ y∣.

The map

X ×Yop → KB(Y, X), (x, yop) ↦ ∣x⟩⟨y∣,

is bilinear, and so it descends to a linear map with domain X⊙Yop. For any b ∈ B, we
have

(x ⋅ b) ⋅ ⟨y ∣ y′⟩B = x ⋅ ⟨y ⋅ b∗ ∣ y′⟩B , so that ∣x ⋅ b⟩⟨y∣ = ∣x⟩⟨y ⋅ b∗∣.

Since (y ⋅ b∗)op = b ⋅ yop, we conclude that we have a linear map

X⊙B Yop → KB(Y, X) determined by x⊙ yop ↦ ∣x⟩⟨y∣.

Clearly, this map is an A− C-bimodule map and, by definition of KB(Y, X), it has
dense range. Thus, if we can show that the map is isometric, then it extends to an
isomorphism of Hilbert bimodules. For xi ∈ X and yi , y ∈ Y, we have

∥∑
i
∣xi⟩⟨yi ∣(y)∥

2

X
=
�����������
∑
i , j
⟨xi ⋅ ⟨yi ∣ y⟩B ∣ x j ⋅ ⟨y j ∣ y⟩B⟩B

�����������B

=
�����������
∑
i , j
⟨y ∣ yi⟩B⟨xi ∣ x j⟩B⟨y j ∣ y⟩B

�����������B
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As in [24, Lemma 2.65], we can write ⟨x j ∣ xi⟩XB = ∑l b j, l b∗i , l for some b i , j ∈ B, so that

=
������������
∑
i , j, l
⟨y ∣ yi⟩Bb i , l b∗j, l ⟨y j ∣ y⟩B

������������B

=
������������
∑
i , j, l
⟨y ∣ yi ⋅ b i , l ⟩B⟨y j ⋅ b j, l ∣ y⟩B

������������B

.

Write zl ∶= ∑i yi ⋅ b i , l . Since

⟨y ∣ zl ⟩YB⟨zl ∣ y⟩YB = ⟨y ∣ zl ⋅ ⟨zl ∣ y⟩YB⟩YB = ⟨y ∣ ⟨zl ∣ zl ⟩Y
C ⋅ y⟩YB ,

it follows that

∥∑
i
∣xi⟩⟨yi ∣∥

2

K

= sup
∥y∥≤1
∥∑

i
∣xi⟩⟨yi ∣(y)∥

2

X

= sup
∥y∥≤1
∥⟨y ∣ ∑

l
⟨zl ∣ zl ⟩Y

C ⋅ y⟩YB∥
B

(†)= ∥∑
l
⟨zl ∣ zl ⟩Y

C ∥ ,

where (†) follows from [24, Remark 2.29] applied to the positive operator
∑l ⟨zl ∣ zl ⟩Y

C . Since B acts by C-adjointable operators on Y, we have

∥∑
l
⟨zl ∣ zl ⟩Y

C ∥
C
=
������������
∑
i , j, l
⟨yi ∣ y j ⋅ (b j, l b∗i , l)⟩Y

C

������������C

=
�����������
∑
i , j
⟨yi ∣ y j ⋅ ⟨x j ∣ xi⟩XB⟩Y

C

�����������C

=
�����������
∑
i , j
⟨yop

i ∣ ⟨xi ∣ x j⟩XB ⋅ y
op
j ⟩

Yop

C

�����������C

(3.2)= ∥∑
i

xi ⊗ yop
i ∥

2

X⊗B Yop

,

as claimed. ∎

B Upper semi-continuous Banach bundles

The following lemma explains that, in an upper semi-continuous Banach bundle,
being arbitrarily close to convergent nets implies convergence. It is, in essence, just a
restatement of [29, Proposition C.20], where we drop the assumption that the bundle
be a C∗-bundle.

Lemma B.1 Let M = (qM ∶M → X) be an upper semi-continuous Banach bundle
over a locally compact Hausdorff space X. Suppose we are given a net (mλ)λ in M
and a point m ∈M such that qM (mλ) → qM (m). Then mλ → m if and only if, for
every ε > 0, there exists a convergent net (nε

λ)λ in M with qM (nε
λ) = qM (mλ) such

that for all large λ, we have

∥mλ − nε
λ∥ < ε and ∥m − lim

λ
nε

λ∥ < ε.

Proof The forwards implication is trivial. The backwards implication follows from
an application of [4, Lemma A.3, (i)⇒ (ii)] (applied to the convergent net (nε

λ)λ), the
triangle inequality, and an application of [4, Lemma A.3, (i)⇐ (ii)]. ∎
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Lemma B.2 (cf. [4, Proposition A.7]) Let M = (qM ∶M → X) and N = (qN ∶
N → Y) be two upper semi-continuous Banach bundles. Suppose we have a commutative
diagram

(B.1)
M N

X Y
qM

Ω

qN

ω

and that the maps satisfy the following conditions.
(a) for each x ∈ X, Ω∣Mx is linear;
(b) there exists a constant K > 0 such that ∥Ω(m)∥ ≤ K∥m∥ for all m ∈ M;
(c) ω is a continuous map; and
(d) there exists a collection Γ of continuous sections of M such that the C-linear

span of {γ(x) ∶ γ ∈ Γ} is dense in each Mx and, for each γ ∈ Γ, the section
Ω ○ γ∶ x ↦ (x , Ω(γ(x))) of the pull-back bundle ω∗(N ) is continuous.

Then Ω is continuous.

Proof First we point out that the proof of [4, Proposition A.7] does not require Γ to
be a vector space but only that span

C
{γ(x) ∶ γ ∈ Γ} is dense in M(x); in other words,

we already know that Lemma B.2 holds in the case that ω is a homeomorphism.
Consider the commutative diagram

(B.2)

m (qM (m), Ω(m)) Ω(m)

M ω∗(N ) N

X X Y

∈ ∈ ∈

qM

Ψ

pr1 qN

ω

We claim that the map Ψ is continuous, which will imply that Ω is continuous since
Diagram B.2 commutes. Since the identity map on X is a homeomorphism, we are in
good shape to invoke [4, Proposition A.7] for the square on the left-hand side; because
of Assumption (d), it only remains to verify that Ψ is fibrewise linear and bounded.
But clearly, Assumption (a) implies linearity of Ψ∣Mx ∶Mx → ω∗(N )x = {x} ×Nω(x)
by the definition of the linear structure on ω∗(N ). And likewise, by definition of
the norm on ω∗(N )x , we have ∥Ψ(m)∥ = ∥Ω(m)∥, and hence ∥Ψ(m)∥ ≤ K ∥m∥ for
all m ∈ M by (b). Using [4, Proposition A.7], we conclude that Ψ and hence Ω is
continuous. ∎
Lemma B.3 (cf. [4, Proposition A.8]) Let M = (qM ∶M → X) and N =
(qN ∶N → Y) be two upper semi-continuous Banach bundles, and suppose we
have the commutative Diagram (B.1) and that the maps Ω, ω satisfy the following
conditions.
(a) for each x ∈ X, Ω∣Mx is linear;
(b) there exists a constant k > 0 such that ∥Ω(m)∥ ≥ k∥m∥ for all m ∈ M;
(c) ω is an embedding (i.e., a homeomorphism onto its image); and
(d) Ω is continuous.
Then Ω−1∶Ω(M) → M is continuous.
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Proof As in the proof of Lemma B.2, consider the map Ψ in Diagram (B.2). Again,
since Ω∣Mx is linear, so is Ψ∣Mx , and since Ω is bounded below, so is Ψ. This time,
continuity of Ω implies continuity of Ψ. We can therefore apply [4, Proposition
A.8] to the square on the left-hand side of Diagram (B.2) to conclude that the map
Ψ−1∶Ψ(M) → M is continuous.

Since qN (Ω(m)) = ω(qM (m)) by commutativity of Diagram (B.1), it fol-
lows from Assumption (c) that the map f = qM ○ ω−1 ○ qN ∶Ω(M) → X , Ω(m) ↦
qM (m), is well defined and continuous. By definition of Ψ, we have

( f (Ω(m)), Ω(m)) = (qM (m), Ω(m)) = Ψ(m),

so that for n ∈ Ω(M), Ψ−1( f (n), n) = Ω−1(n). It follows that Ω−1 is continuous as
concatenation of continuous maps. ∎
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